Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 20, no. 2, pp. 189{215 (2016) DOI: 10.7155/jgaa.00390 Phylogenetic incongruence through the lens of Monadic Second Order logic Steven Kelk 1 Leo van Iersel 2 Celine Scornavacca 3 Mathias Weller 4 1Department of Knowledge Engineering (DKE), Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands 2Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5, 2600 AA Delft, The Netherlands 3Institut des Sciences de l'Evolution (Universit´ede Montpellier, CNRS, IRD, EPHE), Place E. Bataillon CC 064 - 34095 Montpellier Cedex 5, France 4Institut de Biologie Computationnelle (IBC), Laboratory of Informatics, Robotics, and Microelectronics of Montpellier (LIRMM), Universit´ede Montpellier II, 161 rue Ada 34392 Montpellier Cedex 5, France Submitted: Reviewed: Revised: Accepted: Final: August 2015 December 2015 January 2016 February 2016 February 2016 Published: February 2016 Article type: Communicated by: Regular paper G. Liotta E-mail addresses:
[email protected] (Steven Kelk)
[email protected] (Leo van Iersel)
[email protected] (Celine Scornavacca)
[email protected] (Mathias Weller) 190 Kelk et al. Phylogenetic incongruence through the lens of MSO logic Abstract Within the field of phylogenetics there is growing interest in measures for summarising the dissimilarity, or incongruence, of two or more phylo- genetic trees. Many of these measures are NP-hard to compute and this has stimulated a considerable volume of research into fixed parameter tractable algorithms. In this article we use Monadic Second Order logic (MSOL) to give alternative, compact proofs of fixed parameter tractabil- ity for several well-known incongruence measures.