An Overview of Synthetic Biology
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
NASA Resources for Biology Classes
NASA Resources for Biology classes For NC Bio. Obj. 1.2.3 - Cell adaptations help cells survive in particular environments Lesson Plan: Is it Alive? This lesson is designed to be a review of the characteristics of living things. http://marsed.asu.edu/sites/default/files/stem_resources/Is_it_Alive_HS_Lesson_2_16.pdf Lesson Plan: Building Blocks of Life Experiment with Yeast to simulate carbonaceous meteorites. https://er.jsc.nasa.gov/seh/Exploring_Meteorite_Mysteries.pdf#page=138 Video: ● Subsurface Astrobiology: Cave Habitats on Earth, Mars and Beyond: In our quest to explore other planets, we only have our own planet as an analogue to the environments we may find life. By exploring extreme environments on Earth, we can model conditions that may be present on other celestial bodies and select locations to explore for signatures of life. https://images.nasa.gov/details-ARC-20160809-AAV2863-SummerSeries-15-PenelopeBoston- Youtube.html ● Real World: Heart Rate and Blood Pressure: Learn about the physiological effects reduced gravity environments have on the human body. Use multiplication to calculate cardiac output and find out what effect space travel has on sensory-motor skills, stroke volume and heart rates of the astronauts. https://nasaeclips.arc.nasa.gov/video/realworld/real-world-heart-rate-and-blood- pressure ● Launchpad: Astrobiology: Are we alone in the universe? Where do we come from? Join NASA in the search for answers to these and many more questions about life in our solar system. Learn how astrobiologists use what we know about Earth to investigate Titan, Europa and other far-off worlds. https://nasaeclips.arc.nasa.gov/video/launchpad/launchpad-astrobiology Article: ● Synthetic Biology - ‘Worker Microbes’ for Deep Space Missions https://www.nasa.gov/content/synthetic-biology For NC Bio. -
The Principles for the Oversight of Synthetic Biology the Principles for the Oversight of Synthetic Biology
The Principles for the Oversight of Synthetic Biology The Principles for the Oversight of Synthetic Biology Drafted through a collaborative process among civil society groups. For more information or copies of this declaration, contact: The Principles for the Eric Hoffman Food and technology policy campaigner Friends of the Earth U.S. Oversight of Synthetic Biology 1100 15th St. NW, 11th Floor Washington, D.C. 20005 202.222.0747 [email protected] www.foe.org Jaydee Hanson Policy director International Center for Technology Assessment 660 Pennsylvania Ave., SE, Suite 302 Washington, D.C. 20003 202.547.9359 [email protected] www.icta.org Jim Thomas Research program manager ETC Group 5961 Rue Jeanne Marce Montreal, Quebec Canada +1.514.273.9994 [email protected] The views expressed in this declaration represent those of the signers and do not necessarily represent those of individual contributors to Friends of the Earth U.S., International Center for Technology Assessment, ETC Group or the funding organizations. Funding thanks to CS Fund and Appleton Foundation. The Principles for the Oversight of Synthetic Biology The undersigned, a broad coalition of civil society groups, social movements, local and indigenous communities, public interest, environmental, scientif ic, human rights, religious and labor organizations concerned about various aspects of synthetic biology’s human health, environmental, social, economic, ethical and other impacts, offer the following declaration, The Principles for the Oversight of Synthetic Biology. Executive Summary Synthetic biology, an extreme form of genetic engi- and should include consideration of synthetic biology’s neering, is developing rapidly with little oversight or wide-ranging effects, including ethical, social and eco- regulation despite carrying vast uncertainty. -
Synthetic Biology and the CBD Five Key Decisions for COP 13 & COP-MOP 8
Synthetic Biology and the CBD Five key decisions for COP 13 & COP-MOP 8 Synthetic biology threatens to undermine all What Is Synthetic Biology? three objectives of the Convention if Parties fail to act on the following 5 key issues: Synthetic biology describes the next generation of biotechnologies that attempt to engineer, re- 1. Operational Definition. It’s time for the design, re-edit and synthesize biological systems, CBD to adopt an operational definition of including at the genetic level. synthetic biology. Synthetic biology goes far beyond the first 2. Precaution: Gene drives. Gene drives pose generation of ‘transgenic’ engineered organisms. wide ecological and societal threats and should Predicted to be almost a 40 billion dollar (US) be placed under a moratorium. market by 2020, industrial activity in synthetic 3. Biopiracy: Digital Sequences. Synthetic biology is rapidly exploding as new genome biology allows for digital theft and use of DNA editing tools and cheaper synthesis of DNA sequences – this must be addressed by both the make it easier and faster to genetically re-design CBD and the Nagoya Protocol. or alter biological organisms. Synthetic biology-derived products already on 4. Socio-economic Impacts: Sustainable Use. the market include biosynthesized versions of The CBD needs a process to address impacts flavors, fragrances, fuels, pharmaceuticals, of synthetic biology on sustainable use of textiles, industrial chemicals, cosmetic and food biodiversity. ingredients. A next generation of synthetically 5. Cartagena Protocol: Risk Assessment. engineered (including ‘genome edited’) crops, Parties to the COP-MOP 8 need to clearly insects and animals are also nearing move forward with elaborating risk assessment commercialization. -
Future Directions of Synthetic Biology for Energy & Power
Future Directions of Synthetic Biology for Energy & Power March 6–7, 2018 Michael C. Jewett, Northwestern University Workshop funded by the Basic Research Yang Shao-Horn, Massachusetts Institute of Technology Office, Office of the Under Secretary of Defense Christopher A. Voigt, Massachusetts Institute of Technology for Research & Engineering. This report does not necessarily reflect the policies or positions Prepared by: Kate Klemic, VT-ARC of the US Department of Defense Esha Mathew, AAAS S&T Policy Fellow, OUSD(R&E) Preface OVER THE PAST CENTURY, SCIENCE AND TECHNOLOGY HAS BROUGHT RE- MARKABLE NEW CAPABILITIES TO ALL SECTORS OF THE ECONOMY; from telecommunications, energy, and electronics to medicine, transpor- tation and defense. Technologies that were fantasy decades ago, such as the internet and mobile devices, now inform the way we live, work, and interact with our environment. Key to this technologi- cal progress is the capacity of the global basic research community to create new knowledge and to develop new insights in science, technology, and engineering. Understanding the trajectories of this fundamental research, within the context of global challenges, em- powers stakeholders to identify and seize potential opportunities. The Future Directions Workshop series, sponsored by the Basic Re- search Directorate of the Office of the Under Secretary of Defense for Research and Engineering, seeks to examine emerging research and engineering areas that are most likely to transform future tech- nology capabilities. These workshops gather distinguished academic researchers from around the globe to engage in an interactive dia- logue about the promises and challenges of emerging basic research areas and how they could impact future capabilities. -
Methylase-Assisted Subcloning for High Throughput Biobrick Assembly
Methylase-assisted subcloning for high throughput BioBrick assembly Ichiro Matsumura Emory University School of Medicine, Department of Biochemistry, Atlanta, GA, United States of America ABSTRACT The BioBrick standard makes possible iterated pairwise assembly of cloned parts with- out any depletion of unique restriction sites. Every part that conforms to the standard is compatible with every other part, thereby fostering a worldwide user community. The assembly methods, however, are labor intensive or inefficient compared to some newer ones so the standard may be falling out of favor. An easier way to assemble BioBricks is described herein. Plasmids encoding BioBrick parts are purified from Escherichia coli cells that express a foreign site-specific DNA methyltransferase, so that each is subsequently protected in vitro from the activity of a particular restriction endonuclease. Each plasmid is double-digested and all resulting restriction fragments are ligated together without gel purification. The ligation products are subsequently double-digested with another pair of restriction endonucleases so only the desired insert-recipient vector construct retains the capacity to transform E. coli. This 4R/2M BioBrick assembly protocol is more efficient and accurate than established workflows including 3A assembly. It is also much easier than gel purification to miniaturize, automate and perform more assembly reactions in parallel. As such, it should streamline DNA assembly for the existing community of BioBrick users, and possibly encourage others to join. Subjects Bioengineering, Molecular Biology, Synthetic Biology Keywords BioBrick assembly, Methylase-assisted cloning, Synthetic biology, Laboratory automation, DNA methyltransferase Submitted 27 April 2020 Accepted 10 August 2020 Published 11 September 2020 INTRODUCTION Corresponding author A bottleneck in many synthetic biology projects is the physical linkage of cloned synthetic Ichiro Matsumura, [email protected] genes (``parts'') to each other to form longer functional assemblies (``devices''). -
Synthetic Biology an Overview of the Debates
SYNTHETIC BIOLOGY PROJECT / SYNBIO 3 SYNTHETIC BIOLOGY Ethical Issuesin SYNBIO 3/JUNE2009 An overview ofthedebates Contents Preface 3 Executive Summary 4 Who is doing what, where are they doing it and how is this current work funded? 6 How distinct is synthetic biology from other emerging areas of scientific and technological innovation? 9 Ethics: What harms and benefits are associated with synthetic biology? 12 The pro-actionary and pre-cautionary frameworks 18 N OVERVIEW OF THE DEBATES N OVERVIEW OF A Competing—and potentially complementary—views about non-physical harms (harms to well-being) 23 The most contested harms to well-being 25 Conclusion: Moving the debate forward 26 References 29 ETHICAL ISSUES IN SYNTHETIC BIOLOGY: ETHICAL ISSUES IN SYNTHETIC BIOLOGY: ii The opinions expressed in this report are those of the authors and do not necessarily reflect views Sloan Foundation. Wilson International Center for Scholars or the Alfred P. of the Woodrow Ethical Issues in SYNTHETIC BIOLOGY An overview of the debates Erik Parens, Josephine Johnston, and Jacob Moses The Hastings Center, Garrison, New York SYNBIO 3 / JUNE 2009 2 ETHICAL ISSUES IN SYNTHETIC BIOLOGY: AN OVERVIEW OF THE DEBATES Preface Synthetic biology will allow scientists and where such topics are divided into two broad engineers to create biological systems categories: concerns about physical and non- that do not occur naturally as well as to physical harms. While physical harms often re-engineer existing biological systems to trigger debates about how to proceed among perform novel and beneficial tasks. This researchers, policymakers, and the public, emerging field presents a number of non-physical harms present more difficult opportunities to address ethical issues early conundrums. -
Genome Mining and Synthetic Biology in Marine Natural Product Discovery
marine drugs Editorial Genome Mining and Synthetic Biology in Marine Natural Product Discovery Maria Costantini Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; [email protected]; Tel.: +39-081-583-3285 Received: 17 November 2020; Accepted: 22 November 2020; Published: 3 December 2020 Oceans cover nearly 70% of the earth’s surface and host a huge ecological, chemical, and biological diversity. The natural conditions of the sea favor, in marine organisms, the production of a large variety of novel molecules with great pharmaceutical potential. Marine organisms are unique in their structural and functional features compared to terrestrial ones [1,2]. Innovation in this field is very rapid, as revealed by the funding of several Seventh Framework Programme (FP7) and Horizon 2020 projects under the topic “Blue Growth”. The major parts of these projects have the common final goal of meeting the urgent need to discover new drug entities to counteract the increased incidence of severe diseases (such as cancer) and the reduced efficacy of existing drugs [3]. For this reason, the application of molecular biology techniques in biotechnological field is very important. Driven by the rapidly-decreasing cost and increasing throughput of DNA-sequencing technologies, significant progress in genomics has renewed interest in the discovery of natural products. Rapidly-expanding genomic and metagenomic datasets reveal a vast number of biosynthetic gene clusters (BGCs) in nature, which are predicted to encode novel biomedically-relevant molecules. This ‘top-down’ discovery approach can only provide access to a small fraction of biosynthetic compounds, given that the majority of microorganisms cannot be isolated or cultured. -
A New Biobrick Assembly Strategy Designed for Facile Protein Engineering
A New Biobrick Assembly Strategy Designed for Facile Protein Engineering Ira E. Phillips∗ and Pamela A. Silver∗ April 18, 2006 Abstract The existing biobrick assembly technique[1] provides a straightforward way to combine standardized biological components, termed biobricks. This system, however, is limited in that each protein-encoding biobrick must contain a complete translated region. Signal sequences or other pro- tein domains often convey a specific function to the protein to which they are attached; hence, each domain should be considered an independent biological part. With the current assembly technique, assembling such parts is not possible. This paper presents a revised assembly strategy that is compatible with the current biobrick definition and permits the construction of fusion proteins. Introduction The standard biobrick assembly technique was created in an attempt to simplify the construction of long concatemeric pieces of DNA often used in synthetic biology [1]. Previously existing techniques were limiting in that one often needed to design a unique cloning strategy for each desired construct. Moreover, the intermediates in the cloning of one construct would be of little value in creating other constructs. As a solution to these problems, T. Knight developed a novel cloning strategy that permits standardization of biological parts or biobricks [1]. Each biobrick can be placed in front of or behind another biobrick using a standard protocol that is independent of the content of the parts involved. (To insert a biobrick in front of another, simply digest the upstream biobrick with EcoRI and SpeI. Cut out this insert and ligate into a vector containing the second part cut with EcoRI and XbaI. -
SYNTHETIC BIOLOGY and ITS POTENTIAL IMPLICATIONS for BIOTRADE and ACCESS and BENEFIT-SHARING ©2019, United Nations Conference on Trade and Development
UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT SYNTHETIC BIOLOGY AND ITS POTENTIAL IMPLICATIONS FOR BIOTRADE AND ACCESS AND BENEFIT-SHARING ©2019, United Nations Conference on Trade and Development. All rights reserved. The trends, figures and views expressed in this publication are those of UNCTAD and do not necessarily represent the views of its member States. The designations employed and the presentation of material on any map in this work do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This study can be freely cited provided appropriate acknowledgment is given to UNCTAD. For further information on UNCTAD’s BioTrade Initiative please consult the following website: http://www.unctad. org/biotrade or contact us at: [email protected] This publication has not been formally edited. UNCTAD/DITC/TED/INF/2019/12 AND ITS POTENTIAL IMPLICATIONS FOR BIOTRADE AND ACCESS AND BENEFIT-SHARING iii Contents Acknowledgements ................................................................................................................................iv Abbreviations ...........................................................................................................................................v EXECUTIVE SUMMARY ............................................................................................. vi SECTION 1: INTRODUCTION TO BIOTRADE, -
Generating a Synthetic Genome by Whole Genome Assembly: X174 Bacteriophage from Synthetic Oligonucleotides
Generating a synthetic genome by whole genome assembly: X174 bacteriophage from synthetic oligonucleotides Hamilton O. Smith, Clyde A. Hutchison III†, Cynthia Pfannkoch, and J. Craig Venter‡ Institute for Biological Energy Alternatives, 1901 Research Boulevard, Suite 600, Rockville, MD 20850 Contributed by J. Craig Venter, November 3, 2003 We have improved upon the methodology and dramatically short- truncated species. Although such oligonucleotides are highly ened the time required for accurate assembly of 5- to 6-kb seg- useful as primers for PCR amplification and DNA sequencing, ments of DNA from synthetic oligonucleotides. As a test of this only small (a few hundred base pairs) synthetic genes can methodology, we have established conditions for the rapid (14- generally be accurately and directly synthesized without multiple day) assembly of the complete infectious genome of bacteriophage repair͞selection steps. For example, the recent report (9) of the X174 (5,386 bp) from a single pool of chemically synthesized assembly of a partially active poliovirus from cloned synthetic oligonucleotides. The procedure involves three key steps: (i) gel segments of DNA from which polio genomic RNA (7,440 bases) purification of pooled oligonucleotides to reduce contamination could be transcribed was quite complex and took many months with molecules of incorrect chain length, (ii) ligation of the oligo- to accomplish. First, segments 400–600 bp long were individually nucleotides under stringent annealing conditions (55°C) to select assembled and cloned, and 5–15 isolates of each were sequenced against annealing of molecules with incorrect sequences, and (iii) to find one that was correct or readily correctable by oligonu- assembly of ligation products into full-length genomes by poly- cleotide mutagenesis. -
Commissioned Papers Synthetic Genomics: Risks and Benefits For
Commissioned Papers Synthetic Genomics: Risks and Benefits for Science and Society This volume of papers accompanies the report Synthetic Genomics: Options for Governance Synthetic Genomics: Risks and Benefits for Science and Society (this page blank) Synthetic Genomics: Risks and Benefits for Science and Society COMMISSIONED PAPERS TABLE OF CONTENTS Robert Jones Sequence Screening……………………………………………………………...……1-16 Yogesh Sanghvi A Roadmap to the Assembly of Synthetic DNA from Raw Materials……..………….17-33 Ralph S. Baric Synthetic Viral Genomics…………………………………………………………….35-81 Marc S. Collett Impact of Synthetic Genomics on the Threat of Bioterrorism with Viral Agents..………………………………………………………………………..83-103 Diane O. Fleming Risk Assessment of Synthetic Genomics: A Biosafety and Biosecurity Perspective………………………...………………………………….105-164 Franco Furger From Genetically Modified Organisms to Synthetic Biology: Legislation in the European Union, in Six Member Countries, and in Switzerland…………………………………………………………..……..165-184 Synthetic Genomics: Risks and Benefits for Science and Society (this page blank) Synthetic Genomics: Risks and Benefits for Science and Society The following papers were commissioned for the project Synthetic Genomics: Risks and Benefits for Science and Society. These papers formed the basis of many discussions at project workshops and at a large invitational meeting. The information elicited from these meetings, and from the commissioned papers themselves, formed the basis of our report Synthetic Genomics: Options for Governance (http://dspace.mit.edu/handle/1721.1/39141). The views and opinions expressed in these commissioned papers are those of the authors of the papers and not necessarily those of the authors of the report, or of the institutions at which the authors work. Citation: Working Papers for Synthetic Genomics: Risks and Benefits for Science and Society. -
A Biobrick Compatible Strategy for Genetic Modification of Plants Boyle Et Al
A BioBrick compatible strategy for genetic modification of plants Boyle et al. Boyle et al. Journal of Biological Engineering 2012, 6:8 http://www.jbioleng.org/content/6/1/8 Boyle et al. Journal of Biological Engineering 2012, 6:8 http://www.jbioleng.org/content/6/1/8 METHODOLOGY Open Access A BioBrick compatible strategy for genetic modification of plants Patrick M Boyle1†, Devin R Burrill1†, Mara C Inniss1†, Christina M Agapakis1,7†, Aaron Deardon2, Jonathan G DeWerd2, Michael A Gedeon2, Jacqueline Y Quinn2, Morgan L Paull2, Anugraha M Raman2, Mark R Theilmann2, Lu Wang2, Julia C Winn2, Oliver Medvedik3, Kurt Schellenberg4, Karmella A Haynes1,8, Alain Viel3, Tamara J Brenner3, George M Church5,6, Jagesh V Shah1* and Pamela A Silver1,5* Abstract Background: Plant biotechnology can be leveraged to produce food, fuel, medicine, and materials. Standardized methods advocated by the synthetic biology community can accelerate the plant design cycle, ultimately making plant engineering more widely accessible to bioengineers who can contribute diverse creative input to the design process. Results: This paper presents work done largely by undergraduate students participating in the 2010 International Genetically Engineered Machines (iGEM) competition. Described here is a framework for engineering the model plant Arabidopsis thaliana with standardized, BioBrick compatible vectors and parts available through the Registry of Standard Biological Parts (www.partsregistry.org). This system was used to engineer a proof-of-concept plant that exogenously expresses the taste-inverting protein miraculin. Conclusions: Our work is intended to encourage future iGEM teams and other synthetic biologists to use plants as a genetic chassis.