Promoter Methylation of Wnt-Antagonists in Polypoid and Nonpolypoid Colorectal Adenomas
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Single Nucleotide Polymorphisms in DKK3 Gene Are Associated with Prostate Cancer Risk and Progression ______
ORIGINAL ARTICLE Vol. 41 (5): 869-897, September - October, 2015 doi: 10.1590/S1677-5538.IBJU.2014.0041 Single nucleotide polymorphisms in DKK3 gene are associated with prostate cancer risk and progression _______________________________________________ Min Su Kim 1, Ha Na Lee 2, Hae Jong Kim 3,4, Soon Chul Myung 5 1Department of Urology, Seoul Medical Center, Seoul, Korea; 2Department of Urology, Seoul Seonam Hospital, EwhaWomans University, Seoul, Korea; 3Research Institue for Biomedical and Pharmaceutical Sciences, Chung-Ang University, Seoul, Korea; 4Advanced Urogenital Diseas Research Center, Chung-Ang University, College of Medicine, Seoul, Korea; 5Department of Urology, Chung-Ang University, College of Medicine, Seoul, Korea ABSTRACT ARTICLE INFO ______________________________________________________________ ______________________ We had investigated whether sequence variants within DKK3 gene are associated with Key words: the development of prostate cancer in a Korean study cohort. We evaluated the asso- Biological Markers; Genetic ciation between 53 single nucleotide polymorphisms (SNPs) in the DKK3 gene and Variation; Prostatic Neoplasms; prostate cancer risk as well as clinical characteristics (PSA, clinical stage, pathological Polymorphism, Single Nucleotide stage and Gleason score) in Korean men (272 prostate cancer subjects and 173 benign prostate hyperplasia subjects) using unconditional logistic regression analysis. Of the Int Braz J Urol. 2015; 41: 869-97 53 SNPs and 25 common haplotypes, 5 SNPs and 4 haplotypes were -
Short Bowel Syndrome Results in Increased Gene Expression
Schall et al. BMC Genomics (2017) 18:23 DOI 10.1186/s12864-016-3433-4 RESEARCH ARTICLE Open Access Short bowel syndrome results in increased gene expression associated with proliferation, inflammation, bile acid synthesis and immune system activation: RNA sequencing a zebrafish SBS model Kathy A. Schall1, Matthew E. Thornton2, Mubina Isani1, Kathleen A. Holoyda1, Xiaogang Hou1, Ching-Ling Lien3, Brendan H. Grubbs2 and Tracy C. Grikscheit1,4* Abstract Background: Much of the morbidity associated with short bowel syndrome (SBS) is attributed to effects of decreased enteral nutrition and administration of total parenteral nutrition (TPN). We hypothesized that acute SBS alone has significant effects on gene expression beyond epithelial proliferation, and tested this in a zebrafish SBS model. Methods: In a model of SBS in zebrafish (laparotomy, proximal stoma, distal ligation, n = 29) or sham (laparotomy alone, n = 28) surgery, RNA-Seq was performed after 2 weeks. The proximal intestine was harvested and RNA isolated. The three samples from each group with the highest amount of RNA were spiked with external RNA controls consortium (ERCC) controls, sequenced and aligned to reference genome with gene ontology (GO) enrichment analysis performed. Gene expression of ctnnb1, ccnb1, ccnd1, cyp7a1a, dkk3, ifng1-2, igf2a, il1b, lef1, nos2b, saa1, stat3, tnfa and wnt5a were confirmed to be elevated in SBS by RT-qPCR. Results: RNA-seq analysis identified 1346 significantly upregulated genes and 678 significantly downregulated genes in SBS zebrafish intestine compared to sham with Ingenuity analysis. The upregulated genes were involved in cell proliferation, acute phase response signaling, innate and adaptive immunity, bile acid regulation, production of nitric oxide and reactive oxygen species, cellular barrier and coagulation. -
Investigation of Key Genes and Pathways in Inhibition of Oxycodone on Vincristine-Induced Microglia Activation by Using Bioinformatics Analysis
Hindawi Disease Markers Volume 2019, Article ID 3521746, 10 pages https://doi.org/10.1155/2019/3521746 Research Article Investigation of Key Genes and Pathways in Inhibition of Oxycodone on Vincristine-Induced Microglia Activation by Using Bioinformatics Analysis Wei Liu,1 Jishi Ye,2 and Hong Yan 1 1Department of Anesthesiology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China 2Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei, China Correspondence should be addressed to Hong Yan; [email protected] Received 2 November 2018; Accepted 31 December 2018; Published 10 February 2019 Academic Editor: Hubertus Himmerich Copyright © 2019 Wei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. The neurobiological mechanisms underlying the chemotherapy-induced neuropathic pain are only partially understood. Among them, microglia activation was identified as the key component of neuropathic pain. The aim of this study was to identify differentially expressed genes (DEGs) and pathways associated with vincristine-induced neuropathic pain by using bioinformatics analysis and observe the effects of oxycodone on these DEG expressions in a vincristine-induced microglia activation model. Methods. Based on microarray profile GSE53897, we identified DEGs between vincristine-induced neuropathic pain rats and the control group. Using the ToppGene database, the prioritization DEGs were screened and performed by gene ontology (GO) and signaling pathway enrichment. A protein-protein interaction (PPI) network was used to explore the relationship among DEGs. -
Distant Bystander Effect of REIC/DKK3 Gene Therapy Through Immune System Stimulation in Thoracic Malignancies
ANTICANCER RESEARCH 37 : 301-308 (2017) doi:10.21873/anticanres.11321 Distant Bystander Effect of REIC/DKK3 Gene Therapy Through Immune System Stimulation in Thoracic Malignancies KEN SUZAWA 1* , KAZUHIKO SHIEN 1,2* , HUANG PENG 3, MASAKIYO SAKAGUCHI 4, MASAMI WATANABE 5,6,7 , SHINSUKE HASHIDA 1,2 , YUHO MAKI 1, HIROMASA YAMAMOTO 1, SHUTA TOMIDA 8, JUNICHI SOH 1, HIROAKI ASANO 1, KAZUNORI TSUKUDA 1, YASUTOMO NASU 5,6,7 , HIROMI KUMON 3,5,7 , SHINICHIRO MIYOSHI 1 and SHINICHI TOYOOKA 1,2 Departments of 1Thoracic Surgery, 2Clinical Genomic Medicine and 4Cell Biology, 5Urology, 3Collaborative Research Center for Okayama Medical Innovation Center, and 8Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; 6Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan; 7Innovation Center Okayama for Nanobio-Targeted Therapy, Okayama University, Okayama, Japan Abstract. Background: Reduced expression in immortalized Both advanced-stage non-small cell lung cancer (NSCLC) cell (REIC)/Dickkoph-3 (DKK3) is a tumor-suppressor gene, and malignant mesothelioma (MM) are aggressive tumors and and its overexpression by adenovirus vector (Ad-REIC) present a dismal prognosis. Despite advances in treatment exhibits a remarkable therapeutic effect on various human regimens for both diseases, such as surgical resection, cancer types through a mechanism triggered by endoplasmic chemotherapy, molecular-targeted therapy and radiotherapy, reticulum stress. Materials and Methods: We examined the treatment outcome is still unsatisfactory. Gene therapy for direct anti-tumor effect of Ad-REIC gene therapy on lung thoracic malignancies represents a novel therapeutic approach cancer and malignant mesothelioma cell lines in vitro, and and has been evaluated in a number of clinical trials over the the distant bystander effect using immunocompetent mouse last two decades (1). -
Oncogenic Role of SFRP2 in P53-Mutant Osteosarcoma Development Via Autocrine and Paracrine Mechanism
Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism Huensuk Kima,b,c, Seungyeul Yood,e, Ruoji Zhouf,g,AnXuf, Jeffrey M. Bernitza,b,c, Ye Yuana,b,c, Andreia M. Gomesa,b,h,i, Michael G. Daniela,b,c, Jie Sua,b,c,j, Elizabeth G. Demiccok,l, Jun Zhud,e, Kateri A. Moorea,b,c, Dung-Fang Leea,b,f,g,m,n,1,2, Ihor R. Lemischkaa,b,c,o,1,3, and Christoph Schaniela,b,c,o,p,1,2 aDepartment of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; bThe Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; cThe Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; dDepartment of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; eIcahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; fDepartment of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030; gThe University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030; hCentre for Neuroscience and Cell Biology, University of Coimbra, 3030-789 Coimbra, Portugal; iInstitute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; jCancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; kDepartment of Pathology, Icahn School -
Three Dact Gene Family Members Are Expressed During Embryonic Development
Three Dact Gene Family Members are Expressed During Embryonic Development and in the Adult Brains of Mice Daniel A Fisher, Saul Kivimäe, Jun Hoshino, Rowena Suriben, Pierre -Marie Martin, Nichol Baxter, Benjamin NR Cheyette Department of Psychiatry & Gra duate Programs in Developmental Biology and Neuroscience, University of California, San Francisco, 94143-2611 Correspondence: Benjamin NR Cheyette [email protected] 415.476.7826 Running Title: Mouse Dact Gene Family Expression Key Words: mouse, Dpr, Frodo, Thyex, Dact, Wnt, Dvl, expression, embryo, brain Supported by: NIH: MH01750 K08; NARSAD Young Investigator Award; NAAR award #551. Abstract Members of the Dact protein family were initially identified through binding to Dishevelled (Dvl), a cytoplasmic protein central to Wnt signaling. During mouse development, Dact1 is detected in the presomitic mesoderm and somites during segmentation, in the limb bud mesenchyme and other mesoderm-derived tissues, and in the central nervous system (CNS). Dact2 expression is most prominent during organogenesis of the thymus, kidneys, and salivary glands, with much lower levels in the somites and in the developing CNS. Dact3, not previously described in any organism, is expressed in the ventral region of maturing somites, limb bud and branchial arch mesenchyme, and in the embryonic CNS; of the three paralogs it is the most highly expressed in the adult cerebral cortex. These data are consistent with studies in other vertebrates showing that Dact paralogs have distinct signaling and developmental roles, and suggest they may differentially contribute to postnatal brain physiology. Introduction Signaling downstream of secreted Wnt ligands is a conserved process in multicellular animals that plays important roles during development and, when misregulated, contributes to cancer and other diseases (Polakis, 2000; Moon et al., 2002). -
Multivariate Analysis Reveals Differentially Expressed Genes
www.nature.com/scientificreports OPEN Multivariate analysis reveals diferentially expressed genes among distinct subtypes of difuse astrocytic gliomas: diagnostic implications Nerea González‑García1,2, Ana Belén Nieto‑Librero1,2, Ana Luisa Vital3, Herminio José Tao4, María González‑Tablas2,5,6, Álvaro Otero2, Purifcación Galindo‑Villardón1,2, Alberto Orfao2,5,6 & María Dolores Tabernero2,5,6,7* Diagnosis and classifcation of gliomas mostly relies on histopathology and a few genetic markers. Here we interrogated microarray gene expression profles (GEP) of 268 difuse astrocytic gliomas—33 difuse astrocytomas (DA), 52 anaplastic astrocytomas (AA) and 183 primary glioblastoma (GBM)—based on multivariate analysis, to identify discriminatory GEP that might support precise histopathological tumor stratifcation, particularly among inconclusive cases with II–III grade diagnosed, which have diferent prognosis and treatment strategies. Microarrays based GEP was analyzed on 155 difuse astrocytic gliomas (discovery cohort) and validated in another 113 tumors (validation set) via sequential univariate analysis (pairwise comparison) for discriminatory gene selection, followed by nonnegative matrix factorization and canonical biplot for identifcation of discriminatory GEP among the distinct histological tumor subtypes. GEP data analysis identifed a set of 27 genes capable of diferentiating among distinct subtypes of gliomas that might support current histological classifcation. DA + AA showed similar molecular profles with only a few discriminatory genes -
Transcriptomic and Epigenomic Characterization of the Developing Bat Wing
ARTICLES OPEN Transcriptomic and epigenomic characterization of the developing bat wing Walter L Eckalbar1,2,9, Stephen A Schlebusch3,9, Mandy K Mason3, Zoe Gill3, Ash V Parker3, Betty M Booker1,2, Sierra Nishizaki1,2, Christiane Muswamba-Nday3, Elizabeth Terhune4,5, Kimberly A Nevonen4, Nadja Makki1,2, Tara Friedrich2,6, Julia E VanderMeer1,2, Katherine S Pollard2,6,7, Lucia Carbone4,8, Jeff D Wall2,7, Nicola Illing3 & Nadav Ahituv1,2 Bats are the only mammals capable of powered flight, but little is known about the genetic determinants that shape their wings. Here we generated a genome for Miniopterus natalensis and performed RNA-seq and ChIP-seq (H3K27ac and H3K27me3) analyses on its developing forelimb and hindlimb autopods at sequential embryonic stages to decipher the molecular events that underlie bat wing development. Over 7,000 genes and several long noncoding RNAs, including Tbx5-as1 and Hottip, were differentially expressed between forelimb and hindlimb, and across different stages. ChIP-seq analysis identified thousands of regions that are differentially modified in forelimb and hindlimb. Comparative genomics found 2,796 bat-accelerated regions within H3K27ac peaks, several of which cluster near limb-associated genes. Pathway analyses highlighted multiple ribosomal proteins and known limb patterning signaling pathways as differentially regulated and implicated increased forelimb mesenchymal condensation in differential growth. In combination, our work outlines multiple genetic components that likely contribute to bat wing formation, providing insights into this morphological innovation. The order Chiroptera, commonly known as bats, is the only group of To characterize the genetic differences that underlie divergence in mammals to have evolved the capability of flight. -
Comprehensive Analysis of SFRP Family Members Prognostic Value and Immune Infiltration in Gastric Cancer
life Article Comprehensive Analysis of SFRP Family Members Prognostic Value and Immune Infiltration in Gastric Cancer Dehua Liu 1 , Chenyu Sun 2 , Nahyun Kim 2 , Chandur Bhan 2, John Pocholo Whitaker Tuason 2, Yue Chen 3, Shaodi Ma 4, Yuting Huang 5 , Ce Cheng 6,7, Qin Zhou 8 and Kaiguang Zhang 1,* 1 The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; [email protected] 2 Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, Chicago, IL 60657, USA; [email protected] (C.S.); [email protected] (N.K.); [email protected] (C.B.); [email protected] (J.P.W.T.) 3 Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, Hefei 230032, China; [email protected] 4 Department of Epidemiology and Health Statistics, School of Public Health Anhui Medical University, Hefei 230032, China; [email protected] 5 University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA; [email protected] 6 The University of Arizona College of Medicine, Banner University Medical Center at South Campus, Tucson, AZ 85724, USA; [email protected] 7 Banner-University Medical Center South, Tucson, AZ 85713, USA 8 Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-138-5517-0097 Citation: Liu, D.; Sun, C.; Kim, N.; Abstract: Gastric cancer (GC) is the fifth most common cancer globally. Secreted frizzled-related Bhan, C.; Tuason, J.P.W.; Chen, Y.; Ma, proteins (SFRP) are important elements associated with the Wnt signaling pathway, and its dysregu- S.; Huang, Y.; Cheng, C.; Zhou, Q.; lated expression is found in multiple cancers. -
Genomic and Transcriptome Analysis Revealing an Oncogenic Functional Module in Meningiomas
Neurosurg Focus 35 (6):E3, 2013 ©AANS, 2013 Genomic and transcriptome analysis revealing an oncogenic functional module in meningiomas XIAO CHANG, PH.D.,1 LINGLING SHI, PH.D.,2 FAN GAO, PH.D.,1 JONATHAN RUssIN, M.D.,3 LIYUN ZENG, PH.D.,1 SHUHAN HE, B.S.,3 THOMAS C. CHEN, M.D.,3 STEVEN L. GIANNOTTA, M.D.,3 DANIEL J. WEISENBERGER, PH.D.,4 GAbrIEL ZADA, M.D.,3 KAI WANG, PH.D.,1,5,6 AND WIllIAM J. MAck, M.D.1,3 1Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; 2GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; 3Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; 4USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California; 5Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California Object. Meningiomas are among the most common primary adult brain tumors. Although typically benign, roughly 2%–5% display malignant pathological features. The key molecular pathways involved in malignant trans- formation remain to be determined. Methods. Illumina expression microarrays were used to assess gene expression levels, and Illumina single- nucleotide polymorphism arrays were used to identify copy number variants in benign, atypical, and malignant me- ningiomas (19 tumors, including 4 malignant ones). The authors also reanalyzed 2 expression data sets generated on Affymetrix microarrays (n = 68, including 6 malignant ones; n = 56, including 3 malignant ones). -
Transcriptome Profiling and Differential Gene Expression In
G C A T T A C G G C A T genes Article Transcriptome Profiling and Differential Gene Expression in Canine Microdissected Anagen and Telogen Hair Follicles and Interfollicular Epidermis Dominique J. Wiener 1,* ,Kátia R. Groch 1 , Magdalena A.T. Brunner 2,3, Tosso Leeb 2,3 , Vidhya Jagannathan 2 and Monika M. Welle 3,4 1 Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX 77843, USA; [email protected] 2 Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; [email protected] (M.A.T.B.); [email protected] (T.L.); [email protected] (V.J.) 3 Dermfocus, Vetsuisse Faculty, University Hospital of Bern, 3010 Bern, Switzerland; [email protected] 4 Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland * Correspondence: [email protected]; Tel.: +1-979-862-1568 Received: 30 June 2020; Accepted: 3 August 2020; Published: 4 August 2020 Abstract: The transcriptome profile and differential gene expression in telogen and late anagen microdissected hair follicles and the interfollicular epidermis of healthy dogs was investigated by using RNAseq. The genes with the highest expression levels in each group were identified and genes known from studies in other species to be associated with structure and function of hair follicles and epidermis were evaluated. Transcriptome profiling revealed that late anagen follicles expressed mainly keratins and telogen follicles expressed GSN and KRT15. The interfollicular epidermis expressed predominately genes encoding for proteins associated with differentiation. All sample groups express genes encoding for proteins involved in cellular growth and signal transduction. -
Dickkopf-3 Links HSF1 and YAP/TAZ Signalling to Control Aggressive Behaviours in Cancer-Associated fibroblasts
ARTICLE https://doi.org/10.1038/s41467-018-07987-0 OPEN Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts Nicola Ferrari 1,8, Romana Ranftl1, Ievgeniia Chicherova1, Neil D. Slaven2, Emad Moeendarbary3,4, Aaron J. Farrugia1, Maxine Lam1, Maria Semiannikova1, Marie C. W. Westergaard5, Julia Tchou6, Luca Magnani 2 & Fernando Calvo1,7 1234567890():,; Aggressive behaviours of solid tumours are highly influenced by the tumour microenviron- ment. Multiple signalling pathways can affect the normal function of stromal fibroblasts in tumours, but how these events are coordinated to generate tumour-promoting cancer- associated fibroblasts (CAFs) is not well understood. Here we show that stromal expression of Dickkopf-3 (DKK3) is associated with aggressive breast, colorectal and ovarian cancers. We demonstrate that DKK3 is a HSF1 effector that modulates the pro-tumorigenic behaviour of CAFs in vitro and in vivo. DKK3 orchestrates a concomitant activation of β-catenin and YAP/TAZ. Whereas β-catenin is dispensable for CAF-mediated ECM remodelling, cancer cell growth and invasion, DKK3-driven YAP/TAZ activation is required to induce tumour- promoting phenotypes. Mechanistically, DKK3 in CAFs acts via canonical Wnt signalling by interfering with the negative regulator Kremen and increasing cell-surface levels of LRP6. This work reveals an unpredicted link between HSF1, Wnt signalling and YAP/TAZ relevant for the generation of tumour-promoting CAFs. 1 Tumour Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, UK. 2 Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK. 3 Department of Mechanical Engineering, University College London, London WC1E 7JE, UK.