Diversity and Characterization of Plant Parasitic Nematodes Associated with Cereals in Haiti

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Characterization of Plant Parasitic Nematodes Associated with Cereals in Haiti Thesis Diversity and characterization of plant parasitic nematodes associated with cereals in Haiti Lesly Joseph Student number: 01700927 Promoter: Prof. Dr. Wim Bert A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of International Master of Science in Agro- and Environmental Nematology Academic year: 2018 -2019 1 Diversity and characterization of plant parasitic nematodes associated with cereals in Haiti Lesly Joseph Nematology Research Unit, Department of Biology, Ghent University Ledeganckstraat 35, Ghent 9000, Belgium Abstract The diversity and the prevalence of plant parasitic nematodes associated with the cereals in Haiti have been assessed from samples collected in 35 agricultural fields: rice (18 samples), maize (11 samples) and sorghum (6 samples). Thirty (30) nematode species belonging to 12 genera have been identified. From the nematode species recovered, 20 nematode species from 12 genera were found associated with rice, 15 nematode species from 9 genera with maize and 9 nematodes species from 7 genera with sorghum. Five new species have been identified, from the following genera Helicotylenchus (2), Pralylenchus (1), Xiphinema (1) and Ditylenchus (1). From the nematode species recovered within the rice fields, Meloidogyne graminicola, Pratylenchus zeae, Helicotylenchus retusus were the most prevalent and abundant. Within the maize fields, Pratylenchus parazeae, Helicotylenchus erithrinae and Rotylenchulus reniformis were the most prevalent and abundant. In the sorghum fields, Pratylenchus parazeae, Helicotylenchus erithrinae and the criconematids were the most abundant nematode species but at low prevalence. This study confirmed the evidence that the prevalence and the density of plant parasitic nematodes are influenced by the crops. The sorghum cultivars in the investigated fields are poor host for the most damageable plant parasitic nematodes. Nine nematodes species (Tylenchorhynchus agri, Rotylenchulus reniformis, Pratylenchus parazeae, Pratylenchus zeae, Meloidogyne graminicola, Helicotylenchus erythrinae, Helicotylenchus retusus, Quinisulcius acutus, Mesocriconema sphaerocephalum) have been characterized morphologically and molecularly. This study provided the first molecular characterization and the first sequences for Helicotylenchus erythrinae, Helicotylenchus retusus and Quinisulcius acutus based on the 18S rDNA, D2-D3 and ITS1-5.8-ITS2 regions. The first sequences of the 18S rDNA gene for Tylenchorhynchus agri and Xiphinema basiri are provided from this research. This study presented an overview of the phylogeny of the sub-family of Telotylenchinae and suggested the combination of the genera Paratrophorus, Bitylenchus, Neodolichorhynchus, Sauertylenchus, Histotylenchus, Telotylenchus, Quinisulcius with Tylenchorhynchus to form a super genus of Tylenchorhynchus sensu lato. Key words: Plant parasitic nematode, cereals, phylogeny, species, Haiti, maize, rice, sorghum Introduction Plant-parasitic nematodes are omnipresent in all agricultural areas in the world. Globally, they are responsible of 10% of the total losses in the agricultural production chain (Savary et al., 2012; De Waele & Elsen, 2007). The monoculture and the conventional agriculture increase the density and the prevalence of plant of plant-parasitic nematodes (Coyne and al, 1999; Coyne and al, 2001). The biggest density of plant of plant parasitic nematodes has been observed in the ecosystem of the most cultivated crops in the 2 world (cereals, potatoes, soybean) (Sikora and al, 2018), which consequently induced more damages, more losses. According to FAO (2012), 30% of the total cereals produced in the world are lost. Taking into consideration the estimation of De Waele & Elsen (2007), plant parasitic nematodes are responsible of 3% of the total cereal lost worldwide. The cereals are staple foods for more than half of the human population, who are dependent at daily basis for their energy uptake (FAO, 2014). With the increasing human population, there is an increasing gap between the total cereals produced and the needs for those crops, which tend to affect the food security of the population of many third countries which are highly dependent on. In the Caribbean region, Haiti is among the countries with the highest rate of consumption of cereals, particularly rice (Sanou et al., 2013). Every year, on average an Haitian eat 40 kg of rice and on average 20 kg of maize and sorghum (Baro, 2002; Locher, 2001) . However, even though the cereals are crucial for the alimentation of the Haitian population, the country suffer a huge deficiency in the tonnage consumed compare to its production. In Haiti, more than 400 000 tons of rice are consumed yearly, while the annual production is around 172 000 tones, which represent 43% of the total needs and the rest are imported. The production of maize in Haiti is around 251 000 tons per year, which represent 90% of the total maize used for human consumption in the country (Dumazert & Ernest, 2017). Perhaps, the maize used as feeds are mainly imported, that constitute a barrier for the improvement of the livestock production in the country. Haiti is self-sufficient for sorghum supply for human consumption (ACF, 2017). However, with the increasing use of sorghum in beer production in Haiti, efficiency in the production should improve to prevent shortage. The agricultural system of Haiti is characterized by a low productivity and a low efficiency in the natural resources used in the production chain. Too many production factors are limited or missed in the production chain. The structural constraints intrinsic to this agricultural system, make plant parasitic nematodes not really regarded as a major problem that weaken the sustainability of this system of production. Therefore, plant parasitic nematodes don’t receive the attention they deserved in Haiti considering their known impacts in the agricultural sector worldwide. Furthermore, the lack of active nematologists and the low investment globally in agricultural researches from the government are also responsible of the sparsity of researches in the nematology field in Haiti. Consequently, most of the nematodes (Plant parasitic and free living) inhabitant the Haitian territory remain unknown to the scientific community. The first published report of plant of plant parasitic nematodes in Haiti was submitted by Crill (1973), exploring the diversity of plant parasitic nematodes associated with tomatoes in Haiti. Later, CIRAD (2005, 2012) presented Pratylenchus and Meloidogyne amongst the pests of yam and plantains in Haiti. Beside these two reports, no publication has been recovered about plant parasitic nematodes in Haiti. To our knowledge, none plant parasitic nematode from Haiti has already morphologically and molecularly characterized or link to molecular barcoding. Knowing that nematodes are omnipresent and caused important losses in the tropical regions where Haiti is, effective taxonomy strategy to identify the plant parasitic nematodes associated with the cash crops of Haiti at species level are an emergency now. The assessment of the diversity and the damage thresholds of the most abundant species will probably help to develop effective management strategy. The integrative taxonomy, combining traditional taxonomy and molecular barcode, is so far the best method to identify plant parasitic nematodes, as it combines the morphological and the genetic variations to determine the taxonomical status of a specimen or a population (Palomares-Rius et al., 2017). The molecular barcode in nematology is relevant, as it facilitates the identification of nematodes by non-experts in this field and globalized the research on the phylogeny of this order. The molecular barcode method could facilitate taxonomical work in the south countries like 3 Haiti, where expertise on nematode taxonomy are missing for the identification of the nematode morphologically. The general objectives of this study were to evaluate the density and the prevalence of the plant parasitic nematodes associated with rice, maize and sorghum and Provide morphological and molecular characterizations of the most important species recovered, including informative molecular barcodes for the partial 18S SSU rDNA, D2-D3 28S LSU rDNA and the ITS genes. Materials and methods Samplings and extraction During November 2018, samples of soils and roots where collected in 35 agricultural fields from maize (11 samples), rice (18 samples) and sorghum (6 samples) in Haiti (Fig 1). For each field, the geographical position coordinates were taken using a GPS Garmin. The samples were collected by digging out one plant and collect the soils attached and surrounding the roots system into a plastic bag. Soil samples were processed from a representative 200 ml using a modified Baermann funnel method. The nematodes recovered were fixed in DESS solution (DMSO-EDTA salt-saturated solution) in Haiti. The remaining part of each sample was brought to Belgium. In February 2019, 200 ml of soil from these samples were processed to extract the nematodes by using a modified Baermann funnel method for 72 hours and the nematodes recovered where fixed in Formalin. The Baunacke method was used for the extraction of the cyst nematodes in Belgium. Fig 1: Map presenting the locations of the samples collected in Haiti Density and prevalence value 4 The density of the different genera of PPN in each sample was calculated by pouring all the nematodes extracted into a counting dish
Recommended publications
  • JOURNAL of NEMATOLOGY Description of Heterodera
    JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2020-097 e2020-97 | Vol. 52 Description of Heterodera microulae sp. n. (Nematoda: Heteroderinae) from China a new cyst nematode in the Goettingiana group Wenhao Li1, Huixia Li1,*, Chunhui Ni1, Deliang Peng2, Yonggang Liu3, Ning Luo1 and Abstract 1 Xuefen Xu A new cyst-forming nematode, Heterodera microulae sp. n., was 1College of Plant Protection, Gansu isolated from the roots and rhizosphere soil of Microula sikkimensis Agricultural University/Biocontrol in China. Morphologically, the new species is characterized by Engineering Laboratory of Crop lemon-shaped body with an extruded neck and obtuse vulval cone. Diseases and Pests of Gansu The vulval cone of the new species appeared to be ambifenestrate Province, Lanzhou, 730070, without bullae and a weak underbridge. The second-stage juveniles Gansu Province, China. have a longer body length with four lateral lines, strong stylets with rounded and flat stylet knobs, tail with a comparatively longer hyaline 2 State Key Laboratory for Biology area, and a sharp terminus. The phylogenetic analyses based on of Plant Diseases and Insect ITS-rDNA, D2-D3 of 28S rDNA, and COI sequences revealed that the Pests, Institute of Plant Protection, new species formed a separate clade from other Heterodera species Chinese Academy of Agricultural in Goettingiana group, which further support the unique status of Sciences, Beijing, 100193, China. H. microulae sp. n. Therefore, it is described herein as a new species 3Institute of Plant Protection, Gansu of genus Heterodera; additionally, the present study provided the first Academy of Agricultural Sciences, record of Goettingiana group in Gansu Province, China.
    [Show full text]
  • Pathogenicity of Pratylenchus Hexincisus on Corn, Soybean, And
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1979 Pathogenicity of Pratylenchus hexincisus on corn, soybean, and tomato and population changes as influenced by hosts, temperature and soil type Mohammad Esmail Zirakparvar Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, and the Plant Pathology Commons Recommended Citation Zirakparvar, Mohammad Esmail, "Pathogenicity of Pratylenchus hexincisus on corn, soybean, and tomato and population changes as influenced by hosts, temperature and soil type" (1979). Retrospective Theses and Dissertations. 7260. https://lib.dr.iastate.edu/rtd/7260 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages.
    [Show full text]
  • Nematode, Heterodera Zeae on Maize (Zea Mays L.)
    Management of maize cyst nematode JBiopest 8(2):62-67 (2015) Botanicals- An effective tool for the management of maize cyst nematode, Heterodera zeae on maize (Zea mays L.) S. K. Mehta, B. L. Baheti, B. S. Rathore and *C. P. Nama ABSTRACT Maize cyst nematode, Heterodera zeae (Koshy et al.) has been reported to cause significant losses in Rajasthan due to monocropping of maize, favorable soil and environmental conditions and ignorance of management practices. In present investigation, an experiment was carried out to evaluate the efficacy of neem (Azadirachta indica), aak (Calotropis procera) and water hyacinth (Eichhornia crassipes) leaf powder for the management of maize cyst nematode, H. zeae on maize variety PEHM-2. Plant leaf powders were applied at 1, 2 and 4 g/plant as soil amendment at the time of sowing. A treated chemical check (Phorate 2 kg/ha) and untreated check were also maintained for interpretation of experimental results. Results indicated maximum increase in shoot length, root length, shoot weight and root weight which were observed when neem leaf powders were applied at 4 g/plant followed by aak and water hyacinth leaf powders at 4 g/plant. Significant reduction in nematode population viz., cyst/plant, cyst/100 cc soil, eggs and larvae/cyst and larvae/100 cc soil was also observed with neem leaf powders at 4 g/plant over control. MS History: 27.03.2014 (Received)-01.05.2014 (Revised)-21.05.2014 (Accepted) Key words: Management, Maize, Heterodera zeae, Botanicals, Neem, Aak and Water hyacinth. Citation: Mehta, S. K., Baheti, B. L., Rathore, B.
    [Show full text]
  • Research/Investigación Aggressiveness Of
    RESEARCH/INVESTIGACIÓN AGGRESSIVENESS OF PRATYLENCHUS BRACHYURUS TO SUGARCANE, COMPARED WITH KEY NEMATODE P. ZEAE Bruno Flávio Figueiredo Barbosa1*, Jaime Maia dos Santos¹, José Carlos Barbosa¹, Pedro Luiz Martins Soares1, Anderson Robert Ruas², Rafael Bernal de Carvalho¹ ¹Jaboticabal Unit, UNESP São Paulo State University, Department of Plant Protection, Jaboticabal, SP, 14884-900, Brazil. ²São Luiz College, Jaboticabal, SP, 14870-370, Brazil. The work is part of the doctorate thesis in Agronomy (Crop Production) of the first author. Author for correspondence: [email protected] ABSTRACT Barbosa, B. F. F., J. M. dos Santos, J. C. Barbosa, P. L. M. Soares, A. R. Ruas, R. B. de Carvalho. 2013. Aggressiveness of Pratylenchus brachyurus to the sugarcane, compared with key nematode P. zeae. Nematropica 43:119-130. Pratylenchus zeae, Meloidogyne javanica and M. incognita are considered key species of nematodes in sugarcane in Brazil, but P. brachyurus is also frequently found. This study was conducted to determine the aggressiveness of P. brachyurus compared with P. zeae to sugarcane. Plants were grown in pots (100 L) in an open area with initial inoculation of 10, 100, 1,000, 10,000 and 100,000/plant for P. brachyurus and P. zeae. The nematode inocula were from in vitro, carrot-cylinder cultures. Sampling was performed every 60 days until 300 days after inoculation. At harvest, we evaluated the population dynamics of the nematodes and plant growth characteristics. The population for the initial levels of 10 and 100,000 specimens/plant, for P. brachyurus and P. zeae at 300 days after inoculation were similar. This fact shows that, upon detection of nematodes in a certain place during the planting of sugarcane, the ratoon on this area should be treated so as to control populations of P.
    [Show full text]
  • Plant-Parasitic Nematodes and Their Management: a Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.8, No.1, 2018 Plant-Parasitic Nematodes and Their Management: A Review Misgana Mitiku Department of Plant Pathology, Southern Agricultural Research Institute, Jinka, Agricultural Research Center, Jinka, Ethiopia Abstract Nowhere will the need to sustainably increase agricultural productivity in line with increasing demand be more pertinent than in resource poor areas of the world, especially Africa, where populations are most rapidly expanding. Although a 35% population increase is projected by 2050. Significant improvements are consequently necessary in terms of resource use efficiency. In moving crop yields towards an efficiency frontier, optimal pest and disease management will be essential, especially as the proportional production of some commodities steadily shifts. With this in mind, it is essential that the full spectrums of crop production limitations are considered appropriately, including the often overlooked nematode constraints about half of all nematode species are marine nematodes, 25% are free-living, soil inhabiting nematodes, I5% are animal and human parasites and l0% are plant parasites. Today, even with modern technology, 5-l0% of crop production is lost due to nematodes in developed countries. So, the aim of this work was to review some agricultural nematodes genera, species they contain and their management methods. In this review work the species, feeding habit, morphology, host and symptoms they show on the effected plant and management of eleven nematode genera was reviewed.
    [Show full text]
  • Management Strategies for Control of Soybean Cyst Nematode and Their Effect on Nematode Community
    Management Strategies for Control of Soybean Cyst Nematode and Their Effect on Nematode Community A Thesis SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Zane Grabau IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Dr. Senyu Chen June 2013 © Zane Grabau 2013 Acknowledgements I would like to acknowledge my committee members John Lamb, Robert Blanchette, and advisor Senyu Chen for their helpful feedback and input on my research and thesis. Additionally, I would like to thank my advisor Senyu Chen for giving me the opportunity to conduct research on nematodes and, in many ways, for making the research possible. Additionally, technicians Cathy Johnson and Wayne Gottschalk at the Southern Research and Outreach Center (SROC) at Waseca deserve much credit for the hours of technical work they devoted to these experiments without which they would not be possible. I thank Yong Bao for his patient in initially helping to train me to identify free-living nematodes and his assistance during the first year of the field project. Similarly, I thank Eyob Kidane, who, along with Senyu Chen, trained me in the methods for identification of fungal parasites of nematodes. Jeff Vetsch from SROC deserves credit for helping set up the field project and advising on all things dealing with fertilizers and soil nutrients. I want to acknowledge a number of people for helping acquire the amendments for the greenhouse study: Russ Gesch of ARS in Morris, MN; SROC swine unit; and Don Wyse of the University of Minnesota. Thanks to the University of Minnesota Plant Disease Clinic for contributing information for the literature review.
    [Show full text]
  • Temperature and the Life Cycle of Heterodera Zeae 1
    Journal of Nematology 22(3):414-417. 1990. © The Society of Nematologists 1990. Temperature and the Life Cycle of Heterodera zeae 1 PAULA A. HUTZELL AND LORIN R. KRUSBERG2 Abstract: Development of the corn cyst nematode, Heterodera zeae, was studied in growth chambers at 20, 25, 29, 33, and 36 -+ 1 C on Zea mays cv. Pioneer 3184. The optimum temperature for reproduction appeared to be 33 C, at which the life cycle, from second-stage juvenile (]2) to J2, was completed in 15-18 days; at 36 C, 19-20 days were required. Juveniles emerged from eggs within 28 days at 29 C and after 42 days at 25 C. Although J2 were present within eggs after 63 days at 20 C, emergence was not observed up to 99 days after inoculation. Female nematodes produced fewer eggs at 20 C than at higher temperatures. Key words: corn cyst nematode, Heterodera zeae, life cycle, temperature. The corn cyst nematode, Heterodera zeae H. zeae, including the influence of temper- Koshy, Swarup & Sethi, was first described ature on its life cycle. from corn, Zea mays L., in India in 1970, where it is widespread in most corn-grow- MATERIALS AND METHODS ing areas and is considered to pose an eco- Cultures of H. zeae were initially estab- nomic threat to corn production (4,5). Het- lished on Zea mays cv. Pioneer 3184 in the erodera zeae was subsequently detected in greenhouse as previously described (3). several agricultural regions of Egypt (Otei- Cysts from these cultures were the source fa, unpubl.) and in Pakistan (8).
    [Show full text]
  • Theory Manual Course No. Pl. Path
    NAVSARI AGRICULTURAL UNIVERSITY Theory Manual INTRODUCTORY PLANT NEMATOLOGY Course No. Pl. Path 2.2 (V Dean’s) nd 2 Semester B.Sc. (Hons.) Agri. PROF.R.R.PATEL, ASSISTANT PROFESSOR Dr.D.M.PATHAK, ASSOCIATE PROFESSOR Dr.R.R.WAGHUNDE, ASSISTANT PROFESSOR DEPARTMENT OF PLANT PATHOLOGY COLLEGE OF AGRICULTURE NAVSARI AGRICULTURAL UNIVERSITY BHARUCH 392012 1 GENERAL INTRODUCTION What are the nematodes? Nematodes are belongs to animal kingdom, they are triploblastic, unsegmented, bilateral symmetrical, pseudocoelomateandhaving well developed reproductive, nervous, excretoryand digestive system where as the circulatory and respiratory systems are absent but govern by the pseudocoelomic fluid. Plant Nematology: Nematology is a science deals with the study of morphology, taxonomy, classification, biology, symptomatology and management of {plant pathogenic} nematode (PPN). The word nematode is made up of two Greek words, Nema means thread like and eidos means form. The words Nematodes is derived from Greek words ‘Nema+oides’ meaning „Thread + form‟(thread like organism ) therefore, they also called threadworms. They are also known as roundworms because nematode body tubular is shape. The movement (serpentine) of nematodes like eel (marine fish), so also called them eelworm in U.K. and Nema in U.S.A. Roundworms by Zoologist Nematodes are a diverse group of organisms, which are found in many different environments. Approximately 50% of known nematode species are marine, 25% are free-living species found in soil or freshwater, 15% are parasites of animals, and 10% of known nematode species are parasites of plants (see figure at left). The study of nematodes has traditionally been viewed as three separate disciplines: (1) Helminthology dealing with the study of nematodes and other worms parasitic in vertebrates (mainly those of importance to human and veterinary medicine).
    [Show full text]
  • The Effect of Pratylenchus Zeae on the Growth and Yield of Upland Rice
    The effect of Pratylenchus zeae on the growth and yield of upland rice Richard A. PLOWRIGHT",Danilo MATUS**, Tin AUNG**and Twng-Wah MEW** * CAB International Institute of Parasitology, 395 a, Hatfield Road, St. Albans, Hertfordshire, AL4 OXU, UK and ** International Rice Research Institute, P. O. Box 933, Manila, Philippines. SUMMARY The root lesion nematode Pratylenchus zeae is widely distributed on upland rice but its economic importance has not been assessed. In a field trial, following a five month clean fallow, the ofcontrol P. zeae using carbofuran, increased the yieldof cv. Upl Ri-5 whilst the yield of cv. Kinandang Patong was unaffected. Pre-sowing soil population densities (Pi) of P. zeae were low (0-1 11 nematodes/lOOml soil) and there were no obvious symptoms of infectionduring early vegetativegrowth although the plant height of Upl Ri-5 was slightly reduced. At harvest the yield of treated plants was increased byO/O 13-29of that of untreated plants having a mean infection of 1 350 nematodedg root(P < 0.05). In the glasshouse the rate of growth and tilleringof cv. IR36 was significantly reduced with a highPi (630-3 O00 nematodesllO0 cm3 soil). Infected root systems were stunted and mean root fresh weight was reduced by 40-60%. Although infection reducedthe no. of spikeletslplant, these plants had a higher harvest index and consequently grain yield was unaffected. The relationship between yield and the population density of P. zeae at different crop growth stages, in the field indicates low tolerance and a high relative minimum yield of 65O/o. RESUMÉ Influence de Pratylenchus zeae sur la croissance et la récolte du riz de plateau Pratylenchus zeae est très répandusur le riz de plateau mais son importance n'a jamais été évaluée.
    [Show full text]
  • DNA Barcoding Evidence for the North American Presence of Alfalfa Cyst Nematode, Heterodera Medicaginis Tom Powers
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 8-4-2018 DNA barcoding evidence for the North American presence of alfalfa cyst nematode, Heterodera medicaginis Tom Powers Andrea Skantar Timothy Harris Rebecca Higgins Peter Mullin See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Other Plant Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Tom Powers, Andrea Skantar, Timothy Harris, Rebecca Higgins, Peter Mullin, Saad Hafez, Zafar Handoo, Tim Todd, and Kirsten S. Powers JOURNAL OF NEMATOLOGY Article | DOI: 10.21307/jofnem-2019-016 e2019-16 | Vol. 51 DNA barcoding evidence for the North American presence of alfalfa cyst nematode, Heterodera medicaginis Thomas Powers1,*, Andrea Skantar2, Tim Harris1, Rebecca Higgins1, Peter Mullin1, Saad Hafez3, Abstract 2 4 Zafar Handoo , Tim Todd & Specimens of Heterodera have been collected from alfalfa fields 1 Kirsten Powers in Kearny County, Kansas and Carbon County, Montana. DNA 1University of Nebraska-Lincoln, barcoding with the COI mitochondrial gene indicate that the species is Lincoln NE 68583-0722. not Heterodera glycines, soybean cyst nematode, H. schachtii, sugar beet cyst nematode, or H. trifolii, clover cyst nematode. Maximum 2 Mycology and Nematology Genetic likelihood phylogenetic trees show that the alfalfa specimens form a Diversity and Biology Laboratory sister clade most closely related to H.
    [Show full text]
  • Observations on the Genus Doronchus Andrássy
    Vol. 20, No. 1, pp.91-98 International Journal of Nematology June, 2010 Occurrence and distribution of nematodes in Idaho crops Saad L. Hafez*, P. Sundararaj*, Zafar A. Handoo** and M. Rafiq Siddiqi*** *University of Idaho, 29603 U of I Lane, Parma, Idaho 83660, USA **USDA-ARS-Nematology Laboratory, Beltsville, Maryland 20705, USA ***Nematode Taxonomy Laboratory, 24 Brantwood Road, Luton, LU1 1JJ, England, UK E-mail: [email protected] Abstract. Surveys were conducted in Idaho, USA during the 2000-2006 cropping seasons to study the occurrence, population density, host association and distribution of plant-parasitic nematodes associated with major crops, grasses and weeds. Eighty-four species and 43 genera of plant-parasitic nematodes were recorded in soil samples from 29 crops in 20 counties in Idaho. Among them, 36 species are new records in this region. The highest number of species belonged to the genus Pratylenchus; P. neglectus was the predominant species among all species of the identified genera. Among the endoparasitic nematodes, the highest percentage of occurrence was Pratylenchus (29.7) followed by Meloidogyne (4.4) and Heterodera (3.4). Among the ectoparasitic nematodes, Helicotylenchus was predominant (8.3) followed by Mesocriconema (5.0) and Tylenchorhynchus (4.8). Keywords. Distribution, Helicotylenchus, Heterodera, Idaho, Meloidogyne, Mesocriconema, population density, potato, Pratylenchus, survey, Tylenchorhynchus, USA. INTRODUCTION and cropping systems in Idaho are highly conducive for nematode multiplication. Information concerning the revious reports have described the association of occurrence and distribution of nematodes in Idaho is plant-parasitic nematode species associated with important to assess their potential to cause economic damage P several crops in the Pacific Northwest (Golden et al., to many crop plants.
    [Show full text]
  • The Mitochondrial Genome of the Soybean Cyst Nematode, Heterodera Glycines
    565 The mitochondrial genome of the soybean cyst nematode, Heterodera glycines Tracey Gibson, Daniel Farrugia, Jeff Barrett, David J. Chitwood, Janet Rowe, Sergei Subbotin, and Mark Dowton Abstract: We sequenced the entire coding region of the mitochondrial genome of Heterodera glycines. The sequence ob- tained comprised 14.9 kb, with PCR evidence indicating that the entire genome comprised a single, circular molecule of ap- proximately 21–22 kb. The genome is the most T-rich nematode mitochondrial genome reported to date, with T representing over half of all nucleotides on the coding strand. The genome also contains the highest number of poly(T) tracts so far reported (to our knowledge), with 60 poly(T) tracts ≥ 12 Ts. All genes are transcribed from the same mitochon- drial strand. The organization of the mitochondrial genome of H. glycines shows a number of similarities compared with Ra- dopholus similis, but fewer similarities when compared with Meloidogyne javanica. Very few gene boundaries are shared with Globodera pallida or Globodera rostochiensis. Partial mitochondrial genome sequences were also obtained for Hetero- dera cardiolata (5.3 kb) and Punctodera chalcoensis (6.8 kb), and these had identical organizations compared with H. gly- cines. We found PCR evidence of a minicircular mitochondrial genome in P. chalcoensis, but at low levels and lacking a noncoding region. Such circularised genome fragments may be present at low levels in a range of nematodes, with multipar- tite mitochondrial genomes representing a shift to a condition in which these subgenomic circles predominate. Key words: mitochondrial, nematode, gene rearrangement, Punctodera, Punctoderinae, Heteroderidae, Heterodera cardio- lata.
    [Show full text]