Applied Econometrics

Total Page:16

File Type:pdf, Size:1020Kb

Applied Econometrics Applied Econometrics K Hervé Dakpo [email protected] January 25, 2021 DUT STID FI Paris Descartes Objectives and Course Content Course Objectives ® Understand basic concepts in econometrics ã Identify the appropriate model for a specific economic question ã Derive the proper estimators ã Test (statistical significance) implied economic theories ã Understand the consequences of the violations of key (regression) assumptions and pinpoint possible remedies ® Implement the computations using R statistical software ® Interpret the results 1 Course Content ¾ Chapter 0 Introduction ¾ Chapter 1 The Linear econometric Model: Estimation and Assumptions ¾ Chapter 2 The Linear econometric Model: Diagnostic tests 2 Materials Course’s main materials • Course’s slides: based on all my readings To start Wooldridge (2016) To go further Wooldridge (2010) 3 Course’s main materials Other useful textbooks • Angrist and Pischke (2008): Mostly Harmless Econometrics: An Empiricist’s Companion • Greene (2017): Econometric Analysis • Gujarati and Porter (2009): Basic Econometrics • Hamilton (1994): Time Series Analysis • Araujo, Brun, and Combes (2008): Econométrie • Bourbonnais (2018): Econométrie • Dormont (2007): Introduction à l’économétrie 4 Other Materials Other materials for this course can be found: • Econometrics by Bruce E. Hansen https://www.ssc.wisc.edu/~bhansen/econometrics/ • Basic Econometrics by Riccardo Luccheti http://www2.econ.univpm.it/servizi/hpp/lucchetti/ didattica/ 5 Prerequisites Requirements: Background Mathematical Statistics • Elements of probability and distribution theory • Expectations and other characteristics of probability distributions • Important families of density functions • Statistical inference • ··· See Mittelhammer (2013) and Newbold, Carlson, and Thorne (2013) There is also Matrix Algebra: See Poole (2014) 6 Software Software • R statistical software (Cran R) https://cran.r-project.org/ • Rstudio https://www.rstudio.com/products/rstudio/download/ 7 Software Some resources to learn R • http://cran.r-project.org/doc/manuals/r-release/ R-intro.pdf • http://cran.r-project.org/other-docs.html • https://bookdown.org/ • https://privefl.github.io/advr38book/index.html • https://r-pkgs.org/index.html • Teetor (2011) and Zuur, Ieno, and Meesters (2009) 8 Software Econometrics Using R • Fox and Weisberg (2018), Kleiber and Zeileis (2008), Vinod (2008), Heiss (2016), Hanck et al. (2019), and Colonescu (2016) 9 Software Other R resources • https: //cran.r-project.org/web/views/Econometrics.html • https://bookdown.org/ccolonescu/RPoE4/ • https://www.econometrics-with-r.org/ • http://www.urfie.net/ • https://scpoecon.github.io/ScPoEconometrics/ 10 Software Other R resources • https://www.zeileis.org/teaching/AER/index.html • https://hhsievertsen.github.io/applied_econ_with_ r/#9_Difference-in-Differences 11 Software Other Softwares • Eviews • PC-GIVE • Julia • Python • GAMS • RATS • GAUSS • SAS • gretl • SHAZAM • LIMDEP • SPSS • MATLAB • Stata • MICROFIT • TSP • OxMetrics • ··· 12 Grading Grading Policy § Homework 20% § Mid-term 20% § Group project 60% 13 References Angrist, J.D. and J.S. Pischke (2008). Mostly Harmless Econo- metrics: An Empiricist’s Companion. Princeton University Press. isbn: 9781400829828. url: https : / / books . google . fr / books?id=ztXL21Xd8v8C. Araujo, C., J.F. Brun, and J.L. Combes (2008). Econométrie. Bréal. isbn: 9782749503011. url: https://books.google. fr/books?id=PjQXOwAACAAJ. Bourbonnais, R. (2018). Économétrie - 10e éd.: Cours et ex- ercices corrigés. Dunod. isbn: 9782100777211. url: https : //books.google.fr/books?id=IiZFDwAAQBAJ. Colonescu, Constantin (2016). Principles of Econometrics with R. url: https://bookdown.org/ccolonescu/RPoE4/. 14 Dormont, B. (2007). Introduction à l’économétrie. Montchrestien. isbn: 9782707613981. url: https : / / books . google . fr / books?id=ZTAQKgAACAAJ. Fox, J. and S. Weisberg (2018). An R Companion to Applied Re- gression. SAGE Publications. isbn: 9781544336466. url: https: //books.google.fr/books?id=k_NrDwAAQBAJ. Greene, W.H. (2017). Econometric Analysis. Pearson Education. isbn: 9780134811932. url: https : / / books . google . fr / books?id=iICcDgAAQBAJ. Gujarati, D.N. and D.C. Porter (2009). Basic Econometrics. McGraw-Hill Irwin. isbn: 9780071276252. url: https://books. google.fr/books?id=6l1CPgAACAAJ. Hamilton, J.D. (1994). Time Series Analysis. Princeton Uni- versity Press. isbn: 9780691042893. url: https : / / books . google.fr/books?id=B8_1UBmqVUoC. 15 Hanck, Christoph et al. (2019). Introduction to Econometrics with R. Essen: University of Duisburg-Essen. url: https:// www.econometrics-with-r.org/. Heiss, F. (2016). Using R for Introductory Econometrics. Cre- ateSpace Independent Publishing Platform. isbn: 9781523285136. url: http://www.urfie.net/. Kleiber, Christian and Achim Zeileis (2008). Applied economet- rics with R. Springer Science & Business Media. isbn: 0387773185. Mittelhammer, R.C. (2013). Mathematical Statistics for Eco- nomics and Business. Springer New York. isbn: 9781461239888. url: https://books.google.fr/books?id=MpPhBwAAQBAJ. Newbold, P., W.L. Carlson, and B. Thorne (2013). Statistics for Business and Economics. Prentice Hall. isbn: 9780136085362. url: https://books.google.fr/books?id=l3BLPgAACAAJ. 16 Poole, D. (2014). Linear Algebra: A Modern Introduction. Cen- gage Learning. isbn: 9781285463247. url: https://books. google.fr/books?id=V-UbCgAAQBAJ. Teetor, P. (2011). R Cookbook: Proven Recipes for Data Analy- sis, Statistics, and Graphics. O’Reilly Media. isbn: 9781449307264. url: https://books.google.bj/books?id=KIHuSXyhawEC. Vinod, H.D. (2008). Hands-on Intermediate Econometrics Us- ing R: Templates for Extending Dozens of Practical Examples. World Scientific. isbn: 9789812818850. url: https://books. google.fr/books?id=VL6Gql5MemMC. Wooldridge, J.M. (2010). Econometric Analysis of Cross Section and Panel Data. MIT Press. isbn: 9780262232586. url: https: //books.google.fr/books?id=yov6AQAAQBAJ. 17 Wooldridge, J.M. (2016). Introductory Econometrics: A Mod- ern Approach. Cengage Learning. isbn: 9781305446380. url: https://books.google.fr/books?id=wUF4BwAAQBAJ. Zuur, A.F., E.N. Ieno, and E.H.W.G. Meesters (2009). A Begin- ner’s Guide to R. Springer-Verlag New York. isbn: 9780387938370. url: http://books.google.fr/books?id=bvwVXHhNQ-4C. 18.
Recommended publications
  • Introduction, Structure, and Advanced Programming Techniques
    APQE12-all Advanced Programming in Quantitative Economics Introduction, structure, and advanced programming techniques Charles S. Bos VU University Amsterdam [email protected] 20 { 24 August 2012, Aarhus, Denmark 1/260 APQE12-all Outline OutlineI Introduction Concepts: Data, variables, functions, actions Elements Install Example: Gauss elimination Getting started Why programming? Programming in theory Questions Blocks & names Input/output Intermezzo: Stack-loss Elements Droste 2/260 APQE12-all Outline OutlineII KISS Steps Flow Recap of main concepts Floating point numbers and rounding errors Efficiency System Algorithm Operators Loops Loops and conditionals Conditionals Memory Optimization 3/260 APQE12-all Outline Outline III Optimization pitfalls Maximize Standard deviations Standard deviations Restrictions MaxSQP Transforming parameters Fixing parameters Include packages Magic numbers Declaration files Alternative: Command line arguments OxDraw Speed 4/260 APQE12-all Outline OutlineIV Include packages SsfPack Input and output High frequency data Data selection OxDraw Speed C-Code Fortran Code 5/260 APQE12-all Outline Day 1 - Morning 9.30 Introduction I Target of course I Science, data, hypothesis, model, estimation I Bit of background I Concepts of I Data, Variables, Functions, Addresses I Programming by example I Gauss elimination I (Installation/getting started) 11.00 Tutorial: Do it yourself 12.30 Lunch 6/260 APQE12-all Introduction Target of course I Learn I structured I programming I and organisation I (in Ox or other language) Not: Just
    [Show full text]
  • Zanetti Chini E. “Forecaster's Utility and Forecasts Coherence”
    ISSN: 2281-1346 Department of Economics and Management DEM Working Paper Series Forecasters’ utility and forecast coherence Emilio Zanetti Chini (Università di Pavia) # 145 (01-18) Via San Felice, 5 I-27100 Pavia economiaweb.unipv.it Revised in: August 2018 Forecasters’ utility and forecast coherence Emilio Zanetti Chini∗ University of Pavia Department of Economics and Management Via San Felice 5 - 27100, Pavia (ITALY) e-mail: [email protected] FIRST VERSION: December, 2017 THIS VERSION: August, 2018 Abstract We introduce a new definition of probabilistic forecasts’ coherence based on the divergence between forecasters’ expected utility and their own models’ likelihood function. When the divergence is zero, this utility is said to be local. A new micro-founded forecasting environment, the “Scoring Structure”, where the forecast users interact with forecasters, allows econometricians to build a formal test for the null hypothesis of locality. The test behaves consistently with the requirements of the theoretical literature. The locality is fundamental to set dating algorithms for the assessment of the probability of recession in U.S. business cycle and central banks’ “fan” charts Keywords: Business Cycle, Fan Charts, Locality Testing, Smooth Transition Auto-Regressions, Predictive Density, Scoring Rules and Structures. JEL: C12, C22, C44, C53. ∗This paper was initiated when the author was visiting Ph.D. student at CREATES, the Center for Research in Econometric Analysis of Time Series (DNRF78), which is funded by the Danish National Research Foundation. The hospitality and the stimulating research environment provided by Niels Haldrup are gratefully acknowledged. The author is particularly grateful to Tommaso Proietti and Timo Teräsvirta for their supervision.
    [Show full text]
  • Econometrics Oxford University, 2017 1 / 34 Introduction
    Do attractive people get paid more? Felix Pretis (Oxford) Econometrics Oxford University, 2017 1 / 34 Introduction Econometrics: Computer Modelling Felix Pretis Programme for Economic Modelling Oxford Martin School, University of Oxford Lecture 1: Introduction to Econometric Software & Cross-Section Analysis Felix Pretis (Oxford) Econometrics Oxford University, 2017 2 / 34 Aim of this Course Aim: Introduce econometric modelling in practice Introduce OxMetrics/PcGive Software By the end of the course: Able to build econometric models Evaluate output and test theories Use OxMetrics/PcGive to load, graph, model, data Felix Pretis (Oxford) Econometrics Oxford University, 2017 3 / 34 Administration Textbooks: no single text book. Useful: Doornik, J.A. and Hendry, D.F. (2013). Empirical Econometric Modelling Using PcGive 14: Volume I, London: Timberlake Consultants Press. Included in OxMetrics installation – “Help” Hendry, D. F. (2015) Introductory Macro-econometrics: A New Approach. Freely available online: http: //www.timberlake.co.uk/macroeconometrics.html Lecture Notes & Lab Material online: http://www.felixpretis.org Problem Set: to be covered in tutorial Exam: Questions possible (Q4 and Q8 from past papers 2016 and 2017) Felix Pretis (Oxford) Econometrics Oxford University, 2017 4 / 34 Structure 1: Intro to Econometric Software & Cross-Section Regression 2: Micro-Econometrics: Limited Indep. Variable 3: Macro-Econometrics: Time Series Felix Pretis (Oxford) Econometrics Oxford University, 2017 5 / 34 Motivation Economies high dimensional, interdependent, heterogeneous, and evolving: comprehensive specification of all events is impossible. Economic Theory likely wrong and incomplete meaningless without empirical support Econometrics to discover new relationships from data Econometrics can provide empirical support. or refutation. Require econometric software unless you really like doing matrix manipulation by hand.
    [Show full text]
  • Estimating Complex Production Functions: the Importance of Starting Values
    Version: January 26 Estimating complex production functions: The importance of starting values Mark Neal Presented at the 51st Australian Agricultural and Resource Economics Society Conference, Queenstown, New Zealand, 14-16 February, 2007. Postdoctoral Research Fellow Risk and Sustainable Management Group University of Queensland Room 519, School of Economics, Colin Clark Building (39) University of Queensland, St Lucia, QLD, 4072 Email: [email protected] Ph: +61 (0) 7 3365 6601 Fax: +61 (0) 7 3365 7299 http://www.uq.edu.au/rsmg Acknowledgements Chris O’Donnell helpfully provided access to Gauss code that he had written for estimation of latent class models so it could be translated into Shazam. Leighton Brough (UQ), Ariel Liebman (UQ) and Tom Pechey (UMelb) helped by organising a workshop with Nimrod/enFuzion at UQ in June 2006. enFuzion (via Rok Sosic) provided a limited license for use in the project. Leighton Brough, tools coordinator for the ARC Centre for Complex Systems (ACCS), assisted greatly in setting up an enFuzion grid and collating the large volume of results. Son Nghiem provided assistance in collating and analysing data as well as in creating some of the figures. Page 1 of 30 Version: January 26 ABSTRACT Production functions that take into account uncertainty can be empirically estimated by taking a state contingent view of the world. Where there is no a priori information to allocate data amongst a small number of states, the estimation may be carried out with finite mixtures model. The complexity of the estimation almost guarantees a large number of local maxima for the likelihood function.
    [Show full text]
  • Apple / Shazam Merger Procedure Regulation (Ec)
    EUROPEAN COMMISSION DG Competition CASE M.8788 – APPLE / SHAZAM (Only the English text is authentic) MERGER PROCEDURE REGULATION (EC) 139/2004 Article 8(1) Regulation (EC) 139/2004 Date: 06/09/2018 This text is made available for information purposes only. A summary of this decision is published in all EU languages in the Official Journal of the European Union. Parts of this text have been edited to ensure that confidential information is not disclosed; those parts are enclosed in square brackets. EUROPEAN COMMISSION Brussels, 6.9.2018 C(2018) 5748 final COMMISSION DECISION of 6.9.2018 declaring a concentration to be compatible with the internal market and the EEA Agreement (Case M.8788 – Apple/Shazam) (Only the English version is authentic) TABLE OF CONTENTS 1. Introduction .................................................................................................................. 6 2. The Parties and the Transaction ................................................................................... 6 3. Jurisdiction of the Commission .................................................................................... 7 4. The procedure ............................................................................................................... 8 5. The investigation .......................................................................................................... 8 6. Overview of the digital music industry ........................................................................ 9 6.1. The digital music distribution value
    [Show full text]
  • Statistics and GIS Assistance Help with Statistics
    Statistics and GIS assistance An arrangement for help and advice with regard to statistics and GIS is now in operation, principally for Master’s students. How do you seek advice? 1. The users, i.e. students at INA, make direct contact with the person whom they think can help and arrange a time for consultation. Remember to be well prepared! 2. Doctoral students and postdocs register the time used in Agresso (if you have questions about this contact Gunnar Jensen). Help with statistics Research scientist Even Bergseng Discipline: Forest economy, forest policies, forest models Statistical expertise: Regression analysis, models with random and fixed effects, controlled/truncated data, some time series modelling, parametric and non-parametric effectiveness analyses Software: Stata, Excel Postdoc. Ole Martin Bollandsås Discipline: Forest production, forest inventory Statistics expertise: Regression analysis, sampling Software: SAS, R Associate Professor Sjur Baardsen Discipline: Econometric analysis of markets in the forest sector Statistical expertise: General, although somewhat “rusty”, expertise in many econometric topics (all-rounder) Software: Shazam, Frontier Associate Professor Terje Gobakken Discipline: GIS og long-term predictions Statistical expertise: Regression analysis, ANOVA and PLS regression Software: SAS, R Ph.D. Student Espen Halvorsen Discipline: Forest economy, forest management planning Statistical expertise: OLS, GLS, hypothesis testing, autocorrelation, ANOVA, categorical data, GLM, ANOVA Software: (partly) Shazam, Minitab og JMP Ph.D. Student Jan Vidar Haukeland Discipline: Nature based tourism Statistical expertise: Regression and factor analysis Software: SPSS Associate Professor Olav Høibø Discipline: Wood technology Statistical expertise: Planning of experiments, regression analysis (linear and non-linear), ANOVA, random and non-random effects, categorical data, multivariate analysis Software: R, JMP, Unscrambler, some SAS Ph.D.
    [Show full text]
  • Bab 1 Pendahuluan
    BAB 1 PENDAHULUAN Bab ini akan membahas pengertian dasar statistik dengan sub-sub pokok bahasan sebagai berikut : Sub Bab Pokok Bahasan A. Sejarah dan Perkembangan Statistik B. Tokoh-tokoh Kontributor Statistika C. Definisi dan Konsep Statistik Modern D. Kegunaan Statistik E. Pembagian Statistik F. Statistik dan Komputer G. Soal Latihan A. Sejarah dan Perkembangan Statistik Penggunaan istilah statistika berakar dari istilah-istilah dalam bahasa latin modern statisticum collegium (“dewan negara”) dan bahasa Italia statista (“negarawan” atau “politikus”). Istilah statistik pertama kali digunakan oleh Gottfried Achenwall (1719-1772), seorang guru besar dari Universitas Marlborough dan Gottingen. Gottfried Achenwall (1749) menggunakan Statistik dalam bahasa Jerman untuk pertama kalinya sebagai nama bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai “ilmu tentang negara/state”. Pada awal abad ke- 19 telah terjadi pergeseran arti menjadi “ilmu mengenai pengumpulan dan klasifikasi data”. Sir John Sinclair memperkenalkan nama dan pengertian statistics ini ke dalam bahasa Inggris. E.A.W. Zimmerman mengenalkan kata statistics ke negeri Inggris. Kata statistics dipopulerkan di Inggris oleh Sir John Sinclair dalam karyanya: Statistical Account of Scotland 1791-1799. Namun demikian, jauh sebelum abad XVIII masyarakat telah mencatat dan menggunakan data untuk keperluan mereka. Pada awalnya statistika hanya mengurus data yang dipakai lembaga- lembaga administratif dan pemerintahan. Pengumpulan data terus berlanjut, khususnya melalui sensus yang dilakukan secara teratur untuk memberi informasi kependudukan yang selalu berubah. Dalam bidang pemerintahan, statistik telah digunakan seiring dengan perjalanan sejarah sejak jaman dahulu. Kitab perjanjian lama (old testament) mencatat adanya kegiatan sensus penduduk. Pemerintah kuno Babilonia, Mesir, dan Roma mengumpulkan data lengkap tentang penduduk dan kekayaan alam yang dimilikinya.
    [Show full text]
  • Estimating Road Transport Fuel Demand Elasticities in the Uk: an Empirical Investigation of Response Heterogeneity
    1 ESTIMATING ROAD TRANSPORT FUEL DEMAND ELASTICITIES IN THE UK: AN EMPIRICAL INVESTIGATION OF RESPONSE HETEROGENEITY Ahmad Razi Ramli Centre for Transport Studies Department of Civil and Environmental Engineering Imperial College London Submitted for the Diploma of the Imperial College (DIC), PhD degree of Imperial College London March 2014 2 DECLARATION OF ORIGINALITY I hereby declare that I am the sole author of this thesis and have personally carried out the work contained within. The contribution of my supervisor was only supervisory and editorial. I further declare that all sources cited or quoted are indicated and acknowledged in the list of references in this thesis. ……………………………………………… Ahmad Razi Ramli 3 COPYRIGHT DECLARATION ‘The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work’. 4 ABSTRACT The main aim of this dissertation is to estimate fuel demand elasticities for the UK road transport sector. Despite being extensively studied, there is a renewed need for the estimation of fuel demand elasticities so that they might be more reflective of recent trends and changes in consumption patterns. At present, understanding the fuel demand sensitivities is especially important for policy making purposes. A review of the empirical literature on fuel demand revealed three important areas of concern.
    [Show full text]
  • 1 Reliability of Programming Software: Comparison of SHAZAM and SAS
    Reliability of Programming Software: Comparison of SHAZAM and SAS. Oluwarotimi Odeh Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506-4011 Phone: (785)-532-4438 Fax: (785)-523-6925 Email: [email protected] Allen M. Featherstone Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506-4011 Phone: (785)-532-4441 Fax: (785)-523-6925 Email: [email protected] Selected Paper for Presentation at the Western Agricultural Economics Association Annual Meeting, Honolulu, HI, June 30-July 2, 2004 Copyright 2004 by Odeh and Featherstone. All rights reserved. Readers may make verbatim copies for commercial purposes by any means, provided that this copyright notice appears on all such copies. 1 Reliability of Programming Software: Comparison of SHAZAM and SAS. Introduction The ability to combine quantitative methods, econometric techniques, theory and data to analyze societal problems has become one of the major strengths of agricultural economics. The inability of agricultural economists to perform this task perfectly in some cases has been linked to the fragility of econometric results (Learner, 1983; Tomek, 1993). While small changes in model specification may result in considerable impact and changes in empirical results, Hendry and Richard (1982) have shown that two models of the same relationship may result in contradicting result. Results like these weaken the value of applied econometrics (Tomek, 1993). Since the study by Tice and Kletke (1984) computer programming software have undergone tremendous improvements. However, experience in recent times has shown that available software packages are not foolproof and may not be as efficient and consistent as researchers often assume. Compounding errors, convergence, error due to how software read, interpret and process data impact the values of analytical results (see Tomek, 1993; Dewald, Thursby and Anderson, 1986).
    [Show full text]
  • Investigating Data Management Practices in Australian Universities
    Investigating Data Management Practices in Australian Universities Margaret Henty, The Australian National University Belinda Weaver, The University of Queensland Stephanie Bradbury, Queensland University of Technology Simon Porter, The University of Melbourne http://www.apsr.edu.au/investigating_data_management July, 2008 ii Table of Contents Introduction ...................................................................................... 1 About the survey ................................................................................ 1 About this report ................................................................................ 1 The respondents................................................................................. 2 The survey results............................................................................... 2 Tables and Comments .......................................................................... 3 Digital data .................................................................................... 3 Non-digital data forms....................................................................... 3 Types of digital data ......................................................................... 4 Size of data collection ....................................................................... 5 Software used for analysis or manipulation .............................................. 6 Software storage and retention ............................................................ 7 Research Data Management Plans.........................................................
    [Show full text]
  • Econometrics II Econ 8375 - 01 Fall 2018
    Econometrics II Econ 8375 - 01 Fall 2018 Course & Instructor: Instructor: Dr. Diego Escobari Office: BUSA 218D Phone: 956.665.3366 Email: [email protected] Web Page: http://faculty.utrgv.edu/diego.escobari/ Office Hours: MT 3:00 p.m. { 5:00 p.m., and by appointment Lecture Time: R 4:40 p.m. { 7:10 p.m. Lecture Venue: Weslaco Center for Innovation and Commercialization 2.206 Course Objective: The course objective is to provide students with the main methods of modern time series analysis. Emphasis will be placed on appreciating its scope, understanding the essentials un- derlying the various methods, and developing the ability to relate the methods to important issues. Through readings, lectures, written assignments and computer applications students are expected to become familiar with these techniques to read and understand applied sci- entific papers. At the end of this semester, students will be able to use computer based statistical packages to analyze time series data, will understand how to interpret the output and will be confident to carry out independent analysis. Prerequisites: Applied multivariate data analysis I and II (ISQM/QUMT 8310 and ISQM/QUMT 8311) Textbooks: Main Textbooks: (E) Walter Enders, Applied Econometric Time Series, John Wiley & Sons, Inc., 4th Edi- tion, 2015. ISBN-13: 978-1-118-80856-6. Econometrics II, page 1 of 9 Additional References: (H) James D. Hamilton, Time Series Analysis, Princeton University Press, 1994. ISBN-10: 0-691-04289-6 Classic reference for graduate time series econometrics. (D) Francis X. Diebold, Elements of Forecasting, South-Western Cengage Learning, 4th Edition, 2006.
    [Show full text]
  • Peer Institution Research: Recommendations and Trends 2016
    Peer Institution Research: Recommendations and Trends 2016 New Mexico State University Abstract This report evaluates the common technology services from New Mexico State University’s 15 peer institutions. Based on the findings, a summary of recommendations and trends are explained within each of the general areas researched: peer institution enrollment, technology fees, student computing, software, help desk services, classroom technology, equipment checkout and loan programs, committees and governing bodies on technology, student and faculty support, printing, emerging technologies and trends, homepage look & feel and ease of navigation, UNM and UTEP my.nmsu.edu comparison, top IT issues, and IT organization charts. Peer Institution Research 1 Table of Contents Peer Institution Enrollment ................................................................................. 3 Technology Fees ................................................................................................. 3 Student Computing ............................................................................................. 6 Software ............................................................................................................. 8 Help Desk Services .............................................................................................. 9 Classroom Technology ...................................................................................... 11 Equipment Checkout and Loan Programs .........................................................
    [Show full text]