The Didactical De Morgan: a Selection of Augustus De Morgan's Thoughts on Teaching and Learning Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

The Didactical De Morgan: a Selection of Augustus De Morgan's Thoughts on Teaching and Learning Mathematics The Didactical De Morgan: a Selection of Augustus De Morgan's Thoughts on Teaching and Learning Mathematics ABRAHAM ARCAVI, MAXIM BRUCKHEIMER Less well known than Hamilton for any single achieve­ At the age of 16 he entered Trinity College, Cambridge, ment, less well known than Salmon for his thoroughness where he came under the influence of such mathemati­ in science, familiar to a much larger circle of readers cians as George Peacock He graduated in 1827 as fourth because of his wide range of interest and his skill in wrangler* He came a "mere" fourth apparently, because popularizing the science, was that eccentric but brilliant already then his interests interfered with the "drilling•· teacher, Augustus De Morgan. [I] necessary to "succeed" in the tripos. (De Morgan has left In spite of the excellence and extent of his mathematical some severe criticism of the Cambridge system **)Within writings, it is probably as a logical reformer that De a year, the University of London (what is now University Morgan will be best known to future times In this respect College) was established, and De Morgan became the first he stands alongside of his great contemporaries Hamilton professor of mathematics-at the age of 22-a post ht: and Boote, held with a break of five years, for over 30 years As a teacher of mathematics De Morgan was un­ rivalled. De Morgan's writings, however excellent, His wife, Sophia Elizabeth De Morgan [3, pp 98-99. give little idea of the perspicuity and elegance of his viva 100-10 I] quotes the following description of his teachin> voce expositions, which never failed to fix the attention of at the University as given by one of his former students all who were worthy of hearing him [2] As Professor of Pure Mathematics at University College. London, De Morgan regularly delivered four courses o1 As a popularizer of science, as a logician, or as a mathe­ lectures, each of three hours a week, and lasting through­ matician, De Morgan has his place in the history of the out the academical year. He thus lectured two hours ever~ 19th century mathematics. In this article, we would like to day to his College classes, besides giving a courst glance at a less well known aspect of his extraordinary addressed to schoolmasters in the evening during a por­ creativity: his thoughts and insights on the teaching and tion of the year His courses embraced a systematic vie" learning of mathematics It would take more serious his­ of the whole field of Pure Mathematics, from the firs1 torians than we pretend to be to present a considered view book of Euclid and Elementary Arithmetic up to tht of his writings in this field, including any influence he may Calculus of Variations from two to three years wen ordinarily spent by Mathematical students in attendanct have had on his contemporaries and the following genera­ on his lectures De Morgan was far from thinking th< tions. (It would also require access to more extensive duties of his chair adequately performed by lecturint source materials than we have available) The purpose of only At the close of every lecture in each course he gavt the present paper is to present a selection illustrating the out a number of problems and examples illustrative of th1 sharpness of his ideas, his creative insights and his wit, for subject which was then engaging the attention of the class the enjoyment of the reader. Thus we present a small His students were expected to bring these to him worke< collection, which we believe still has meaning for anyone out He then looked them over, and returned them revise< engaged in understanding the teaching and learning of before the next lecture. Each example, if rightly done, wa mathematics, even though the extracts were written 150 carefully marked with a tick, or if a mere inaccurac: years ago. The reader whose appetite has been whetted occurred in the working it was crossed out, and the prope correction inserted. If, however, a mistake of prim ipf, can find much more in the same vein in the references was committed, the words 'show me' appeared on th, cited. We precede the selection by a short description of exercise The student so summoned was expected to pre his life and work. sent himself on the platform at the close of the lecture when De Morgan would carefully go over the point witl Life and work him privately, and endeavour to clear up whatever diffi Augustus De Morgan was born in Madras, India in 1806, culty he experienced The amount of labour thus involve' where his father held a position in the army When he was seven months old his family moved back to England He attended private schools at which he acquired a mastery *A person placed in the first class of the mathematical tripos, which ar any of the examinations for the B. A degree with honors at Carr of Latin, Greek and Hebrew Very early in his life he bridge University developed a strong interest in mathematics, although his **See. for example, in the description of his teaching in the folio win talents were unnoticed. and (3, p 283] For the Learning of Mathematics 9, l (February, 1989) 34 Fl M Publishing Association, Montreal, Quebec, Canada was very considerable, as the number of students in lesser capacity Thus, at the same time as refusing the attendance frequently exceeded one hundred The Presidency, he proposes himself as secretary with the fundamental conceptions of each main department of following self-description: "A De Morgan-well enough Mathematics were dwelt upon and illustrated in such in his way, but cranky-for all miscellaneous work, from detail as to show that, in the judgement of the lecturer, a wax candles to Council minutes " [3, p. !54] thorough comprehension and mental assimilation of It was also a matter of principle with him not to accept great principles far outweighed in importance any mere '"honours" Thus in reply to an offer of the honorary analytical dexterity in the application of half-understood principles to particular cases. T'hus. for instance, in Trig­ degree of LL.D of the University of Edinburgh, De M or­ onometry, the wide generality of that subject, as the gan writes: "I hope I shall give no offence by very respect­ science of undulating or periodic magnitude. was brought fully declining the honour. I mean the diploma. The out and insisted on from the very first. In like manner the honour lies in the good opinion of the Senate, and that Differential Calculus was approached through a rich your communication gives me a right to say I have already conglomerate of elementary illustration, by which the earned My reason for declining the degree is my own notion of a differential coefficient was made thoroughly pecular dislike of conventional titles, which are not what intelligible before any formal definition of its meaning bridge, they seem to be" [3, p. 303] had been given The amount of time spent on any one The same principle extended even to the Royal Society lemati­ subject was regulated exclusively by the importance Thus in a lengthy and mainly critical discussion of the fourth which De Morgan held it to possess in a systematic view )ecause of Mathematical science. The claims which University or Royal Society in the Introduction to his Budget of Para­ rilling" College examinations might be supposed to have on the doxes he writes: "Whether I could have been a Fellow, I has left studies of his pupils were never allowed to influence his cannot know; as the gentleman said who was asked if he Within programme in the slightest degree He laboured to form could play the violin, I never tried Everyone who saw sound scientific Mathematicians, and, if he succeeded in iversity the three letters [F R S ] after my name would infer cer­ this, cared little whether his pupils could reproduce more tain things as to my mode of thought which would not be the first or less of their knowledge on paper in a given time On one true inference" [4, Vol I, pp 25, 28] post he occasion, when I had expressed regret that a most distin­ Similarly De Morgan never '"confessed with my lips" guished student of his had been beaten, in the Cambridge his Christian belief, ''because in my time such confession 98-99, Mathematical Tripos. by several men believed to be his eaching inferiors. De Morgan quietly remarked that he "never has always been the way up in the world" [3, p 368] A remarkable tribute to De Morgan's character is .udents. thought-likely to do himself justice in THE GREAT WRITING RACE .., All uam he held in the most sover­ given by Mary Everest Boole, wife of George Boole: "M r College, eign contempt I remember, during the last week of his Boote's work was, as he gratefully acknowledged, made )urses of course which preceded an annual College examination. possible by the generous and self-forgetting aid freely through­ his abruptly addressing his class as follows: ''·I notice that given to him by many contemporary mathematicians; and urs every many of you have left off working my examples this week. in particular by Professor De Morgan, who seemed to a course I know perfectly well what you are doing; YOU ARE take a pleasure in effacing himself to bring forward the ng a por­ CRAMMING FOR THE EXAMINATION. But I will man whom he might have been expected to feel a rival." atic view set you such a paper as shall make ALL YOUR CRAM of [5] the first no use 1p to the Augustus De Morgan died in 1871 aged 65 ~ars were De Morgan was very active on two fronts: the populariza­ .tendance tion of science on the one hand and the raising of the level nking the of scientific activity in England.
Recommended publications
  • George Boole?
    iCompute For more fun computing lessons and resources visit: Who was George Boole? 8 He was an English mathematician 8 He believed that human thought could be George Boole written down as ‘rules’ 8 His ideas led to boolean logic which is Biography for children used by computers today The story of important figures in the history of computing George Boole (1815 – 1864) © iCompute 2015 www.icompute -uk.com iCompute Why is George Boole important? 8 He invented a set of rules for thinking that are used by computers today 8 The rules were that some statements can only ever be ‘true’ or ‘false’ 8 His idea was first used in computers as switches either being ‘on’ or ‘off’ 8 Today this logic is used in almost every device and almost every line of computer code His early years nd 8 Born 2 November 1815 8 His father was a struggling shoemaker 8 George had had very little education and taught himself maths, French, German and Latin © iCompute 2015 www.icompute -uk.com iCompute 8 He also taught himself Greek and published a translation of a Greek poem in 1828 at the age of 14! 8 Aged 16, the family business collapsed and George began working as a teacher to support the family 8 At 19 he started his own school 8 In 1840 he began having his books about mathematics published 8 In 1844, he was given the first gold medal for Mathematics by the Royal Society 8 Despite never having been to University himself, in 1849 he became professor of Mathematics at Queens College Cork in Ireland 8 He married Mary Everett in 1855 8 They had four daughters between 1956-1864
    [Show full text]
  • Explanations
    © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. CHAPTER 1 Explanations 1.1 SALLIES Language is an instrument of Logic, but not an indispensable instrument. Boole 1847a, 118 We know that mathematicians care no more for logic than logicians for mathematics. The two eyes of exact science are mathematics and logic; the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two. De Morgan 1868a,71 That which is provable, ought not to be believed in science without proof. Dedekind 1888a, preface If I compare arithmetic with a tree that unfolds upwards in a multitude of techniques and theorems whilst the root drives into the depthswx . Frege 1893a, xiii Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians. Russell 1903a, 451 1.2 SCOPE AND LIMITS OF THE BOOK 1.2.1 An outline history. The story told here from §3 onwards is re- garded as well known. It begins with the emergence of set theory in the 1870s under the inspiration of Georg Cantor, and the contemporary development of mathematical logic by Gottlob Frege andŽ. especially Giuseppe Peano. A cumulation of these and some related movements was achieved in the 1900s with the philosophy of mathematics proposed by Alfred North Whitehead and Bertrand Russell.
    [Show full text]
  • AUGUSTUS DE MORGAN and the LOGIC of RELATIONS the New Synthese Historical Library Texts and Studies in the History of Philosophy
    AUGUSTUS DE MORGAN AND THE LOGIC OF RELATIONS The New Synthese Historical Library Texts and Studies in the History of Philosophy VOLUME 38 Series Editor: NORMAN KRETZMANN, Cornell University Associate Editors: DANIEL ELLIOT GARBER, University of Chicago SIMO KNUUTTILA, University of Helsinki RICHARD SORABJI, University of London Editorial Consultants: JAN A. AERTSEN, Free University, Amsterdam ROGER ARIEW, Virginia Polytechnic Institute E. JENNIFER ASHWORTH, University of Waterloo MICHAEL AYERS, Wadham College, Oxford GAIL FINE, Cornell University R. J. HANKINSON, University of Texas JAAKKO HINTIKKA, Boston University, Finnish Academy PAUL HOFFMAN, Massachusetts Institute of Technology DAVID KONSTAN, Brown University RICHARD H. KRAUT, University of Illinois, Chicago ALAIN DE LIBERA, Ecole Pratique des Hautes Etudes, Sorbonne DAVID FATE NORTON, McGill University LUCA OBERTELLO, Universita degli Studi di Genova ELEONORE STUMP, Virginia Polytechnic Institute ALLEN WOOD, Cornell University The titles published in this series are listed at the end of this volume. DANIEL D. MERRILL Department of Philosophy, Oberlin College, USA AUGUSTUS DE MORGAN AND THE LOGIC OF RELATIONS KLUWER ACADEMIC PUBLISHERS DORDRECHT I BOSTON I LONDON Library of Congress Cataloging. in·Publication Data Merrill, Daniel D. (Daniel Davy) Augustus De Morgan and the lOglC of relations / Daniel D. Merril. p. cm. -- <The New synthese historical library; 38) 1. De Morgan, Augustus, 1806-1871--Contributions in logic of relations. 2. Inference. 3. Syllogism. 4. Logic, Symbolic and mathematical--History--19th cenTury. I. Title. II. Series. BC185.M47 1990 160' .92--dc20 90-34935 ISBN·13: 978·94·010·7418·6 e-ISBN -13: 978-94-009-2047-7 DOl: 10.1007/978-94-009-2047-7 Published by Kluwer Academic Publishers, P.O.
    [Show full text]
  • How Peircean Was the “'Fregean' Revolution” in Logic?
    HOW PEIRCEAN WAS THE “‘FREGEAN’ REVOLUTION” IN LOGIC? Irving H. Anellis Peirce Edition, Institute for American Thought Indiana University – Purdue University at Indianapolis Indianapolis, IN, USA [email protected] Abstract. The historiography of logic conceives of a Fregean revolution in which modern mathematical logic (also called symbolic logic) has replaced Aristotelian logic. The preeminent expositors of this conception are Jean van Heijenoort (1912–1986) and Don- ald Angus Gillies. The innovations and characteristics that comprise mathematical logic and distinguish it from Aristotelian logic, according to this conception, created ex nihlo by Gottlob Frege (1848–1925) in his Begriffsschrift of 1879, and with Bertrand Rus- sell (1872–1970) as its chief This position likewise understands the algebraic logic of Augustus De Morgan (1806–1871), George Boole (1815–1864), Charles Sanders Peirce (1838–1914), and Ernst Schröder (1841–1902) as belonging to the Aristotelian tradi- tion. The “Booleans” are understood, from this vantage point, to merely have rewritten Aristotelian syllogistic in algebraic guise. The most detailed listing and elaboration of Frege’s innovations, and the characteristics that distinguish mathematical logic from Aristotelian logic, were set forth by van Heijenoort. I consider each of the elements of van Heijenoort’s list and note the extent to which Peirce had also developed each of these aspects of logic. I also consider the extent to which Peirce and Frege were aware of, and may have influenced, one another’s logical writings. AMS (MOS) 2010 subject classifications: Primary: 03-03, 03A05, 03C05, 03C10, 03G27, 01A55; secondary: 03B05, 03B10, 03E30, 08A20; Key words and phrases: Peirce, abstract algebraic logic; propositional logic; first-order logic; quantifier elimina- tion, equational classes, relational systems §0.
    [Show full text]
  • Mathematical Language and Mathematical Progress by Eberhard Knobloch
    Mathematical language and mathematical progress By Eberhard Knobloch In 1972 the space probe Pioneer 10 was launched, carrying a plaque which contains the first message of mankind to leave our solar system1: The space probe is represented by a circular segment and a rectangle designed on the same scale as that of the man and the woman. This is not true of the solar system: sun and planets are represented by small circles and points. We do not know whether there are other intelligent beings living on stars in the universe, or whether they will even understand the message. But the non-verbal, the symbolical language of geometry seemed to be more appropriate than any other language. The grammar of any ordinary language is so complicated that still every computer breaks down with regards to it. 1 Karl Märker, "Sind wir allein im Weltall? Kosmos und Leben", in: Astronomie im Deutschen Museum, Planeten - Sterne - Welteninseln, hrsg. von Gerhard Hartl, Karl Märker, Jürgen Teichmann, Gudrun Wolfschmidt (München: Deutsches Museum, 1993), p. 217. [We reproduce the image of the plaque from: http://en.wikipedia.org/wiki/Pioneer_plaque ; Karine Chemla] 1 The famous Nicholas Bourbaki wrote in 19482: "It is the external form which the mathematician gives to his thought, the vehicle which makes it accessible to others, in short, the language suited to mathematics; this is all, no further significance should be attached to it". Bourbaki added: "To lay down the rules of this language, to set up its vocabulary and to clarify its syntax, all that is indeed extremely useful." But it was only the least interesting aspect of the axiomatic method for him.
    [Show full text]
  • George Boole. Selected Manuscripts on Logic and Its Philosophy (Science Networks
    George Boole. Selected Manuscripts on Logic and its Philosophy (Science Networks. Historical Studies, vol. 20). Ivor Grattan-Guinness/G´erard Bor- net, eds. Birkh¨auser Verlag: Basel/Boston/Berlin, 1997, e 37.30, ISBN 0- 8176-5456-9, lxiv + 236 pp. Reviewed by Volker Peckhaus Universit¨at Paderborn Kulturwissenschaftliche Fakult¨at Warburger Str. 100, D – 33098 Paderborn E-mail: [email protected] George Boole, the founder of the algebra of logic, did not stop working on logic after having published his seminal An Investigation of the Laws of Thought (1854 ). Among his aims was to write a philosophical comple- ment to his writings in the algebra of logic, but he died before he was able to finish it. All this was known already to his contemporaries and although leading authorities like Augustus De Morgan, Bertrand Russell, Philip E. B. Jourdain and Louis Couturat were involved in attempts to publish Boole’s posthumous logical papers, only bits and pieces from his logical manuscripts have been published up to now. This insufficient situation comes now to an end with this scholarly edition by Ivor Grattan-Guinness and G´erard Bornet. The editors have compiled a selection of about 40 % of Boole’s unpublished manuscripts on logic “from a scattered and chronologically unclear textual universe” (p. xxv). The bad condition of the manuscripts is due to Boole’s working style. He usually started each time from scratch producing not really substantial texts but notes and further work-plans. This is explained by Boole himself when he reported his plans to Augustus De Morgan in March 1859 (quoted p.
    [Show full text]
  • An Introduction to Symbolic Logic
    An Introduction to Symbolic Logic Guram Bezhanishvili and Wesley Fussner∗ 1 Introduction This project is dedicated to the study of the basics of propositional and pred- icate logic. We will study it based on Russell and Whitehead's epoch making treatise Principia Mathematica [9]. Published in three volumes between 1910 and 1913, Principia was a culmination of work that had been done in the preceding century on the foundations of mathematics. Since the middle of the nineteenth century, such thinkers as George Boole (1815{1864), Augustus De Morgan (1806{1871), Charles Sanders Peirce (1839{1914), Ernst Schr¨oder (1841-1902), Gottlob Frege (1848{1925), and Giuseppe Peano (1858{1932) had been developing axiomatic bases for logic and the foundations of math- ematics. This research program found its culmination in Principia, which had a tremendous influence on the development of logic and the foundations of mathematics in the twentieth century. Logic is a branch of science that studies correct forms of reasoning. It plays a fundamental role in such disciplines as philosophy, mathematics, and computer science. Like philosophy and mathematics, logic has ancient roots. The earliest treatises on the nature of correct reasoning were written over 2000 years ago. Some of the most prominent philosophers of ancient Greece wrote of the nature of deduction more than 2300 years ago, and thinkers in ancient China wrote of logical paradoxes around the same time. However, though its roots may be in the distant past, logic continues to be a vibrant field of study to this day. Modern logic originated in the work of the great Greek philosopher Aris- totle (384{322 bce), the most famous student of Plato (c.427{c.347 bce) and ∗Department of Mathematical Sciences; New Mexico State University; Las Cruces, NM 88003, USA; [email protected]; [email protected].
    [Show full text]
  • Download Article (PDF)
    Nonlinear Engineering 2015; 4(1): 39–41 Majid Khan*, Tariq Shah, and Ali Shahab A brief description about the fathers of computer and information sciences Abstract: In this article, we are mainly presenting a trib- 1985) [1]. We will utilize both this book [1] and the life story ute to the fathers of computer and information sciences, composed by O’connor and Robertson for the Mactutor George Boole and Claude Elwood Shannon with their hard- History of Mathematics document [2]. Also, we have taken ships and achievements. This piece of writing also elabo- some of historical memories from the book of Thomas [3]. rates the applications of George Boole’s and Claude Shan- George Boole was born in November 1815 in Lincoln, non’s works in dierent disciplines. England. His father was an ordinary tradesman. He gave Boole his rst mathematics lessons and planted in him the Keywords: George Boole; Computer Science; Claude Shan- passion of learning. A family friend ,who was a local book- non; Information Science seller, helped him learn basic Latin. By the age of 12, Boole was beginning to translate Latin poetry. By 14, the adoles- DOI 10.1515/nleng-2014-0029 cent Boole was uent in French, German, and Italian as Received December 31, 2014; accepted February 27, 2015. well. His love for poetry and novels was remarkable. His capabilities in higher maths did not indicate un- til he was 17 years of age . He read his maiden progressed arithmetic book, in particular Lacroix’s Dierential and 1 The Contributions of George Integral Calculus. Since his father’s business zzled, he Boole was compelled to earn his bread to look after his family.
    [Show full text]
  • 2016 Clifton Henry.Pdf
    The Foundations of Mathematics History, Concepts, and Applications in Higher Level Mathematics by Clifton Henry A CAPSTONE PROJECT submitted in partial fulfillment of the requirements for the acknowledgement Honors Distinction Mathematics School of Engineering, Mathematics, and Science TYLER JUNIOR COLLEGE Tyler, Texas 2016 When people hear the word mathematics, some think numbers and others think solving for x and y. In all truth, the field of mathematics is more than numbers and equations. Mathematics was founded based off the principle of counting in 50,000 B.C.E. Mathematical contributions and ideas increased from the Babylonian Empire in 2000 BC to the 18th century, where mathematicians and philosophers developed ideas in algebra, geometry and calculus. It can be argued that mathematical contributions in the 19th century shaped the field of mathematics and set in place the true foundations of mathematics. In the 19th century, mathematical logic was founded, followed by the development of set theory, and then came the concept of mathematical function. Logic, set theory, and function are some of the foundations of mathematics, and the three revolutionized the field of mathematics as a whole. Mathematical fields, such as topology, abstract algebra, and probability rely heavily on the three foundations. Instead of being seen as numbers and equations, mathematics is the field of logic and proof that is based off the mathematical foundations of logic, set theory, and function. It is important to know how the ideas were developed and put to use in order for mathematics to have its meaning and significance. After understanding how the foundations were developed, it is important to understand how they apply in advanced mathematical fields such as topology, abstract algebra, and probability.
    [Show full text]
  • On the Interplay Between Logic and Philosophy : a Historical Perspective Séminaire De Philosophie Et Mathématiques, 1992, Fascicule 7 « Logique Et Philosophie », , P
    Séminaire de philosophie et mathématiques YEHUDA RAV On the Interplay between Logic and Philosophy : a Historical Perspective Séminaire de Philosophie et Mathématiques, 1992, fascicule 7 « Logique et philosophie », , p. 1-21 <http://www.numdam.org/item?id=SPHM_1992___7_A1_0> © École normale supérieure – IREM Paris Nord – École centrale des arts et manufactures, 1992, tous droits réservés. L’accès aux archives de la série « Séminaire de philosophie et mathématiques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ON THE INTERPLAY BETWEEN LOGIC AND PHILOSOPHY: A HISTORICAL PERSPECTIVE Yehuda RAV* ABSTRACT In this historical essay, we examine the reciprocal influences of philosophical doctrines and logic, their interrelations with language, and the place of mathematics in these developments. Our concern in this essay is the interplay between logic and philosophy. The spectrum of philosophical traditions and topics is wide, ranging from inspirational, aphoristic, and poetic wisdom-searching philosophies to stark anti- metaphysical logical positivism. However, logic has flourished only within those philosophical traditions in which critical discussion and debates played a major role. "Formal logic,
    [Show full text]
  • John Venn on the Foundations of Symbolic Logic: a Non-Conceptualist Boole
    UvA-DARE (Digital Academic Repository) "A terrible piece of bad metaphysics"? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic Verburgt, L.M. Publication date 2015 Document Version Final published version Link to publication Citation for published version (APA): Verburgt, L. M. (2015). "A terrible piece of bad metaphysics"? Towards a history of abstraction in nineteenth- and early twentieth-century probability theory, mathematics and logic. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 chapter 7 John Venn on the foundations of symbolic logic: a non-conceptualist Boole 0. Introduction: Venn,
    [Show full text]
  • Augustus De Morgan (1806–1871)
    AUGUSTUS DE MORGAN (1806–1871) AUGUSTUS DE MORGAN was born in the month of June at Madura in the presid- ency of Madras, India; and the year of his birth may be found by solving a conundrum ¢ ¡ proposed by himself, “I was ¡ years of age in the year .” The problem is indeterm- inate, but it is made strictly determinate by the century of its utterance and the limit to a man’s life. His father was Col. De Morgan, who held various appointments in the service of the East India Company. His mother was descended from James Dodson, who computed a table of anti-logarithms, that is, the numbers corresponding to exact logarithms. It was the time of the Sepoy rebellion in India, and Col. De Morgan re- moved his family to England when Augustus was seven months old. As his father and grandfather had both been born in India, De Morgan used to say that he was neither English, nor Scottish, nor Irish, but a Briton “unattached,” using the technical term ap- plied to an undergraduate of Oxford or Cambridge who is not a member of any one of the Colleges. When De Morgan was ten years old, his father died. Mrs. De Morgan resided at various places in the southwest of England, and her son received his elementary edu- cation at various schools of no great account. His mathematical talents were unnoticed till he had reached the age of fourteen. A friend of the family accidentally discovered him making an elaborate drawing of a figure in Euclid with ruler and compasses, and explained to him the aim of Euclid, and gave him an initiation into demonstration.
    [Show full text]