Barnegat Bay— Year 3
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Fishery Bulletin/U S Dept of Commerce National Oceanic
NEW RECORDS OF ELLOBIOPSIDAE (PROTISTA (INCERTAE SEDIS» FROM THE NORTH PACIFIC WITH A DESCRIPTION OF THALASSOMYCES ALBATROSSI N.SP., A PARASITE OF THE MYSID STILOMYSIS MAJOR BRUCE L. WINGl ABSTRACT Ten species of ellobiopsids are currently known to occur in the North Pacific Ocean-three on mysids and seven on other crustaceans. Thalassomyces boschmai parasitizes mysids of genera Acanthomysis, Neomysis, and Meterythrops from the coastal waters of Alaska, British Columbia, and Washington. Thalassomyces albatrossi n.sp. is described as a parasite of Stilomysis major from Korea. Thalassomyces fasciatus parasitizes the pelagic mysids Gnathophausia ingens and G. gracilis from Baja California and southern California. Thalassomyces marsupii parasitizes the hyperiid amphipods Parathemisto pacifica and P. libellula and the lysianassid amphipod Cypho caris challengeri in the northeastern Pacific. Thalassomyces fagei parasitizes euphausiids of the genera Euphausia and Thysanoessa in the northeastern Pacific from the southern Chukchi Sea to southern California, and occurs off the coast of Japan in the western Pacific. Thalassomyces capillosus parasitizes the decapod shrimp Pasiphaea pacifica in the northeastern Pacific from Alaska to Oregon, while Thalassomyces californiensis parasitizes Pasiphaea emarginata from central California. An eighth species of Thalassomyces parasitizing pasiphaeid shrimp from Baja California remains undescribed. Ellobiopsis chattoni parasitizes the calanoid copepods Metridia longa and Pseudocalanus minutus in the coastal waters of southeastern Alaska. Ellobiocystis caridarum is found frequently on the mouth parts ofPasiphaea pacifica from southeastern Alaska. An epibiont closely resembling Ellobiocystis caridarum has been found on the benthic gammarid amphipod Rhachotropis helleri from Auke Bay, Alaska. Where sufficient data are available, notes on variability, seasonal occurrence, and effects on the hosts are presented for each species of ellobiopsid. -
Full Text in Pdf Format
MARINE ECOLOGY PROGRESS SERIES Vol. 166: 301-306, 1998 Published May 28 Mar Ecol Prog Ser l NOTE Diel vertical movement by mesograzers on seaweeds Cary N. Rogers*, Jane E. Williamson, David G. Carson, Peter D. Steinberg School of Biological Science. University of New South Wales. Sydney 2052. Australia ABSTRACT- Diel vertical movement is well documented for nutrients across trophic levels in such systems (Kitting many zooplankton. The ecology of small benthic herbivores et al. 1984, Longhurst & Harrison 1989). which use seaweeds as food and habitat, known as 'meso- Arguably, the dominant model to explain die1 verti- grazers', is similar in some regards to zooplankton, and we hypothesised that mesograzers might also exhlbit diel pat- cal movement by zooplankton is avoidance of visually terns of movement on host algae. We studied 3 non-swim- feeding predators in surface waters during the day ming species of mesograzer, the sea hare Aplysia parvula, the (Zaret & Suffern 1976, Stich & Lampert 1981, Bollens & sea urchin Holopneustes purpurascens, and the prosobranch Frost 1989).This model is supported by studies of both mollusc Phasianotrochus eximius. All exhibited diel move- & ment on host algae. This behaviour occurred on different host demersal and pelagic zooplankton (Robertson algae, despite variation in algal morphology and other char- Howard 1978, Alldredge & King 1985, Ohman 1990, acters. Possible factors causing diel movement by mesograz- Osgood & Frost 1994), although the impact of preda- ers include predation, nutritional gain, avoidance of photo- tion on zooplankton vanes with nntogenetic stage, damage, micro-environmental vanation near host algae, and food availability, and predator evasion or defence reproductive strategies. -
Zooplankton Community Response to Seasonal Hypoxia: a Test of Three Hypotheses
diversity Article Zooplankton Community Response to Seasonal Hypoxia: A Test of Three Hypotheses Julie E. Keister *, Amanda K. Winans and BethElLee Herrmann School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195, USA; [email protected] (A.K.W.); [email protected] (B.H.) * Correspondence: [email protected] Received: 7 November 2019; Accepted: 28 December 2019; Published: 1 January 2020 Abstract: Several hypotheses of how zooplankton communities respond to coastal hypoxia have been put forward in the literature over the past few decades. We explored three of those that are focused on how zooplankton composition or biomass is affected by seasonal hypoxia using data collected over two summers in Hood Canal, a seasonally-hypoxic sub-basin of Puget Sound, Washington. We conducted hydrographic profiles and zooplankton net tows at four stations, from a region in the south that annually experiences moderate hypoxia to a region in the north where oxygen remains above hypoxic levels. The specific hypotheses tested were that low oxygen leads to: (1) increased dominance of gelatinous relative to crustacean zooplankton, (2) increased dominance of cyclopoid copepods relative to calanoid copepods, and (3) overall decreased zooplankton abundance and biomass at hypoxic sites compared to where oxygen levels are high. Additionally, we examined whether the temporal stability of community structure was decreased by hypoxia. We found evidence of a shift toward more gelatinous zooplankton and lower total zooplankton abundance and biomass at hypoxic sites, but no clear increase in the dominance of cyclopoid relative to calanoid copepods. We also found the lowest variance in community structure at the most hypoxic site, in contrast to our prediction. -
Oup Plankt Fbw025 610..623 ++
Journal of Plankton Research plankt.oxfordjournals.org J. Plankton Res. (2016) 38(3): 610–623. First published online April 21, 2016 doi:10.1093/plankt/fbw025 Phylogeography and connectivity of the Pseudocalanus (Copepoda: Calanoida) species complex in the eastern North Pacific and the Pacific Arctic Region JENNIFER MARIE QUESTEL1*, LEOCADIO BLANCO-BERCIAL2, RUSSELL R. HOPCROFT1 AND ANN BUCKLIN3 INSTITUTE OF MARINE SCIENCE, UNIVERSITY OF ALASKA FAIRBANKS, N. KOYUKUK DRIVE, O’NEILL BUILDING, FAIRBANKS, AK , USA, BERMUDA INSTITUTE OF OCEAN SCIENCES–ZOOPLANKTON ECOLOGY, ST. GEORGE’S, BERMUDA AND DEPARTMENT OF MARINE SCIENCES, UNIVERSITY OF CONNECTICUT, SHENNECOSSETT ROAD, GROTON, CT , USA *CORRESPONDING AUTHOR: [email protected] Received December 14, 2015; accepted March 9, 2016 Corresponding editor: Roger Harris The genus Pseudocalanus (Copepoda, Calanoida) is among the most numerically dominant copepods in eastern North Pacific and Pacific-Arctic waters. We compared population connectivity and phylogeography based on DNA sequence variation for a portion of the mitochondrial cytochrome oxidase I gene for four Pseudocalanus species with differing biogeographical ranges within these ocean regions. Genetic analyses were linked to characterization of bio- logical and physical environmental variables for each sampled region. Haplotype diversity was higher for the temp- erate species (Pseudocalanus mimus and Pseudocalanus newmani) than for the Arctic species (Pseudocalanus acuspes and Pseudocalanus minutus). Genetic differentiation among populations at regional scales was observed for all species, except P. minutus. The program Migrate-N tested the likelihood of alternative models of directional gene flow between sampled populations in relation to oceanographic features. Model results estimated predominantly north- ward gene flow from the Gulf of Alaska to the Beaufort Sea for P. -
Bioprospecting Marine Plankton Heni Abida, Sandrine Ruchaud, Laurent Rios, Anne Humeau, Ian Probert, Colomban De Vargas, Stéphane Bach, Chris Bowler
Bioprospecting Marine Plankton Heni Abida, Sandrine Ruchaud, Laurent Rios, Anne Humeau, Ian Probert, Colomban de Vargas, Stéphane Bach, Chris Bowler To cite this version: Heni Abida, Sandrine Ruchaud, Laurent Rios, Anne Humeau, Ian Probert, et al.. Bioprospecting Marine Plankton. Marine drugs, MDPI, 2013, 11 (11), pp.4594-4611. 10.3390/md11114594. hal- 01258229 HAL Id: hal-01258229 https://hal.archives-ouvertes.fr/hal-01258229 Submitted on 27 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Mar. Drugs 2013, 11, 4594-4611; doi:10.3390/md11114594 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Bioprospecting Marine Plankton Heni Abida 1, Sandrine Ruchaud 2, Laurent Rios 3, Anne Humeau 4, Ian Probert 5, Colomban De Vargas 6, Stéphane Bach 2,* and Chris Bowler 1,* 1 Environmental and Evolutionary Genomics Section, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR8197 INSERM -
Zooplankton Migration Patterns at Scotton Landing: Behavioral Adaptations Written by Lauren Zodl, University of Delaware
Zooplankton Migration Patterns at Scotton Landing: Behavioral Adaptations written by Lauren Zodl, University of Delaware Summary: Zooplankton have evolved specific migration patterns that increase their chances of survival. These migrations patterns are behavioral adaptations and they are unique to each species of zooplankton in the Delaware Bay. Students will determine how zooplankton from the St. Jones River migrate and how these adaptations increase their chances of survival. Students will also explore Simpson’s diversity index. Activity Use: This activity can be used as a part of any unit on biology, evolution, adaptations, ecology, diversity, and more. Target Grade Level: High School Standards Addressed: LS1.A: Structure and Function LS1.B: Growth and Development of Organisms LS1.C: Organization for Matter and Energy Flow in Organism LS1.D: Information Processing LS2.A: Interdependent Relationships in Ecosystems LS2.B: Cycles of Matter and Energy Transfer in Ecosystems LS2.C: Ecosystem Dynamics, Functioning, and Resilience LS2.D: Interactions and Group Behavior Lesson Time: Two 45 minute periods Essential Question: How do the behavioral adaptations of zooplankton, specifically their migration patterns, increase their chances of survival? SMART Objectives: After completing this activity, students will be able to: 1. Name two zooplankton species in the Delaware Bay. 2. Describe two different migration patterns that zooplankton use. 3. Explain how behavioral adaptations of zooplankton increase their chances of survival. 4. Describe and interpret data from a diversity index. Vocabulary/Key Terms: Behavioral Adaptation, Diel Vertical Migration, Tidal Migration, Acartia tonsa, Rhithropanopeus harrisii, Estuary, Holoplankton, Meroplankton, Diversity This work is supported by a grant from the Delaware National Estuarine Research Reserve. -
Life Histories of the Copepods Pseudocalanus Minutus, P. Acuspes (Calanoida) and Oithona Similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OceanRep Polar Biol (2005) 28: 910–921 DOI 10.1007/s00300-005-0017-1 ORIGINAL PAPER Silke Lischka Æ Wilhelm Hagen Life histories of the copepods Pseudocalanus minutus, P. acuspes (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard) Received: 7 February 2005 / Revised: 27 April 2005 / Accepted: 29 April 2005 / Published online: 12 July 2005 Ó Springer-Verlag 2005 Abstract The year-round variation in abundance and Digby 1954; Grainger 1959; Kwasniewski 1990), due to stage-specific (vertical) distribution of Pseudocalanus the remoteness and difficult accessibility of polar re- minutus and Oithona similis was studied in the Arctic gions. The paucity of year-round studies has also been Kongsfjorden, Svalbard. Maxima of vertically inte- addressed by Conover and Siferd (1993). For auteco- grated abundance were found in November with logical investigations, for example, on species physiology 111,297 ind mÀ2 for P. minutus and 704,633 ind mÀ2 or biochemistry, data on distribution and population for O. similis. Minimum abundances comprised dynamics provide essential baseline information (Fal- 1,088 ind mÀ2 and 4,483 ind mÀ2 in June for P. min- kenhaug et al. 1997). Among metazooplankton in the utus and O. similis, respectively. The congener P. acuspes world’s oceans, copepods are by far the dominant taxon only occurred in low numbers (15–213 ind mÀ2), and in most of the areas (Longhurst 1985). Yet, many studies successful reproduction was debatable. Reproduction of on zooplankton ecology in the Arctic have focused on P. -
Baseline Survey of Zooplankton of Barnegat Bay
BASELINE SURVEY OF ZOOPLANKTON OF BARNEGAT BAY NJSG Project # 4904-0005 NJDEP # SR12-013 Sponsored by NJDEP Office of Science Monmouth University Urban Coast Institute Final Report February 2012 – May 2013 Principal Investigators James Nickels and Ursula Howson Monmouth University Co-Principal Investigators Thomas Noji and Jennifer Samson NOAA Fisheries Prepared by Ursula Howson 1 2.0 ACKNOWLEDGMENTS Student participants in Monmouth University School of Science Summer Research Program and Monmouth University students during the academic school year assisted with field sampling, laboratory processing, data entry, and creation of graphs. G. McIlvain, Marine Academy of Science and Technology, Monmouth County, analyzed ichthyoplankton data to create CPUE and frequency distribution figures. NOAA research scientist J. Hare facilitated shipment of samples to Poland for sorting, as well as the QA/QC of the samples. The James J. Howard NOAA Fisheries Laboratory provided manpower and vessel assistance for intensive sampling events, and facilitated transport and shipment of samples to Poland. Monmouth University Urban Coast Institute and Department of Biology provided facilities for storage of equipment and processing and storage of samples. Additional funding was provided to some undergraduate assistants by the Monmouth University School of Science Summer Research Program and the Urban Coast Institute during the summer, and the Monmouth University Department of Biology during the academic year. 2 3.0 TABLE OF CONTENTS 1.0 TITLE PAGE ......................................................................................................................................... -
The Biology of the Predatory Calanoid Copepod Tortanus Discaudatus (Thompson and Scott) in a New Hampshire Estuary David George Phillips
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1976 THE BIOLOGY OF THE PREDATORY CALANOID COPEPOD TORTANUS DISCAUDATUS (THOMPSON AND SCOTT) IN A NEW HAMPSHIRE ESTUARY DAVID GEORGE PHILLIPS Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation PHILLIPS, DAVID GEORGE, "THE BIOLOGY OF THE PREDATORY CALANOID COPEPOD TORTANUS DISCAUDATUS (THOMPSON AND SCOTT) IN A NEW HAMPSHIRE ESTUARY" (1976). Doctoral Dissertations. 1124. https://scholars.unh.edu/dissertation/1124 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. -
Holoplankton, Meroplankton, and Meiofauna Associated with Marine Snow
MARINE ECOLOGY PROGRESS SERIES Vol. 156: 75-86, 1997 Published September 25 Mar Ecol Prog Ser Holoplankton, meroplankton, and meiofauna associated with marine snow Alan L. Shanks1#*,Keith Walters2 'Oregon Institute of Marine Biology, University of Oregon, PO Box 5389, Charleston, Oregon 97420, USA '~epartmentof Biology, PO Box 60, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA ;\BSTRACT. The associations of holoplankton, meroplankton and me~ofaunawith marine snow, as well CIS thelr behavior upon encountering marine snow, were investigated using SCUBA in the field and a vertical flume in the laboratory. Field san~pleswere collected in the Atlantic Ocean off Charleston, South Carolina, USA. (3 dates) and in the Pacific Ocean at 2 locations in the San Juan Islands, Wash- ington, USA (7 dates). Aggregates were present and abundant on all days (range 1 to 63 aggregates I-') but constituted a small percentage of the water column by volume (avg 0.078%). Holoplanktonic adult caldnoid and cyclopoid copepods, larvaceans, and copepod nauplii were found on aggregates. On average cl "/o of the calanoid and cyclopoid copepods sampled were on aggregates, indicating a weak dasociation with marine snow. In contrast, on average 2.6'%) of the larvaceans and 4.8% of the copepod nauplii sampled resided on aggregates, where they were, respectively, 33 to 62 times more concen- trated on marine snow compared to the surrounding water. Percentages of harpacticoid copepods, nematodes, and foraminiferans on aggregates were 12.4, 69.9 and 47.2% respectively, and all were significantly concentrated on aggregates. Cyprids, bryozoan cyphonautes, and Iarval echinoderms were either weakly assoc~atedwith or not found on aggregates. -
(Gulf Watch Alaska) Final Report the Seward Line: Marine Ecosystem
Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth Danielson Institute of Marine Science University of Alaska Fairbanks 905 N. Koyukuk Dr. Fairbanks, AK 99775-7220 Suzanne Strom Shannon Point Marine Center Western Washington University 1900 Shannon Point Road, Anacortes, WA 98221 Kathy Kuletz U.S. Fish and Wildlife Service 1011 East Tudor Road Anchorage, AK 99503 July 2018 The Exxon Valdez Oil Spill Trustee Council administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The Council administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Action of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information, please write to: EVOS Trustee Council, 4230 University Dr., Ste. 220, Anchorage, Alaska 99508-4650, or [email protected], or O.E.O., U.S. Department of the Interior, Washington, D.C. 20240. Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth L. -
A Guide to Marine Plankton
"Knowledge of the oceans is more than a matter of curiosity. Our very survival may hinge upon it.“ - John F. Kennedy - Quick Plankton Guide Conscinodiscus Chaetoceros Chaetoceros Ditylum Navicula Cylindrotheca Stephanopyxis Thalassionema dinoflagellate dinoflagellate dinoflagellate Licmorpha Protoperidinium Ceratium Ceratium ciliates radiolarian foramniferan jelly medusa jelly medusa ctenophore ctenophore Oweniidae larva Quick Plankton Guide polychaete larvae arrow worm snail veliger pteropod bivalve veliger cladoceran copepod nauplius copepod cumacean krill barnacle nauplius barnacle cyprid shrimp crab zoea crab megalop urchin larva sea star larva tunicate larva fish egg fish larva Diatoms Taxonomy Size Kingdom: Protista 5-60 µm Phylum: Bacillariophyta chains can be longer Diatoms are single-celled algae, usually golden-brown or yellow-green. Diatoms typically dominate the phytoplankton community in temperate regions. They are important producers, forming the base of ocean food chains. Diatoms are probably the single most important food source in the ocean. Energy source Sun - Diatoms are photosynthesizers. Predators Zooplankton. Life span A few days to a few weeks. Viewing tips To see phytoplankton well, you typically need 100X magnification or greater. It is easy to flood plankton with too much light, so reduce light and illuminate the slide from below. Interesting facts Diatoms produce oxygen through the process of photosynthesis and, along with the other phytoplankton, are responsible for 50-85% of the Earth’s oxygen. Diatoms use oil and many spines to help stay afloat in the ocean. Some also form chains to increase their ability to float. Floating near the surface is important because diatoms need the sun to produce energy, and the sunlight only penetrates to approx.