Wettability of Quartz Surfaces Under Carbon Dioxide Geo-Sequestration Conditions
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Bioinspired Inner Microstructured Tube Controlled Capillary Rise
Bioinspired inner microstructured tube controlled capillary rise Chuxin Lia, Haoyu Daia, Can Gaoa, Ting Wanga, Zhichao Donga,1, and Lei Jianga aChinese Academy of Sciences Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 Beijing, China Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved May 21, 2019 (received for review December 17, 2018) Effective, long-range, and self-propelled water elevation and trans- viscosity resistance for subsequent bulk water elevation but also, port are important in industrial, medical, and agricultural applica- shrinks the inner diameter of the tube. On turning the peristome- tions. Although research has grown rapidly, existing methods for mimetic tube upside down, we can achieve capillary rise gating water film elevation are still limited. Scaling up for practical behavior, where no water rises in the tube. In addition to the cap- applications in an energy-efficient way remains a challenge. Inspired illary rise diode behavior, significantly, on bending the peristome- by the continuous water cross-boundary transport on the peristome mimetic tube replica into a “candy cane”-shaped pipe (closed sys- surface of Nepenthes alata,herewedemonstratetheuseof tem), a self-siphon is achieved with a high flux of ∼5.0 mL/min in a peristome-mimetic structures for controlled water elevation by pipe with a diameter of only 1.0 mm. bending biomimetic plates into tubes. The fabricated structures have unique advantages beyond those of natural pitcher plants: bulk wa- Results ter diode transport behavior is achieved with a high-speed passing General Description of the Natural Peristome Surface. -
Solid State Chemistry CHEM-E4155 (5 Cr)
Solid State Chemistry CHEM-E4155 (5 cr) Spring 2019 Antti Karttunen Department of Chemistry and Materials Science Aalto University Course outline • Teacher: Antti Karttunen • Lectures – 16 lectures (Mondays and Tuesdays, 12:15-14:00) – Each lecture includes a set of exercises (a MyCourses Quiz) – We start the exercises together during the lecture (deadline: Sunday 23:59) • Project work – We create content in the Aalto Solid State Chemistry Wiki – Includes both independent and collaborative work (peer review) – Lots of content has been created in the Wiki during 2017-2018. • Grading – Exercises 50% – Project work 50% • Workload (135 h) – Lectures, combined with exercises 32 h – Home problem solving 48 h – Independent project work 55 h 2 Honor code for exercises • The purpose of the exercises is to support your learning • Most of the exercises are graded automatically – Some of the more demaning exercises I will grade manually • It is perfectly OK to discuss the exercises with the other students – In fact, I encourage discussion during the exercise sessions • It is not OK to take answers directly from the other students – This also means that is not OK to give answers directly to the other students • The exercise answers and timestamps are being monitored 3 Mondays: 12.15 – 14.00 Course calendar Tuesdays: 12.15 - 14.00 Week Lect. Date Topic 1: Structure 1 25.2. Structure of crystalline materials. X-ray diffraction. Symmetry. 2 26.2. Structural databases, visualization of crystal structures. 2: Bonding 3 4.3. Bonding in solids. Description of crystal structures. 4 5.3. Band theory. Band structures. 3: Synthesis 5 11.3. -
The Life of a Surface Bubble
molecules Review The Life of a Surface Bubble Jonas Miguet 1,†, Florence Rouyer 2,† and Emmanuelle Rio 3,*,† 1 TIPS C.P.165/67, Université Libre de Bruxelles, Av. F. Roosevelt 50, 1050 Brussels, Belgium; [email protected] 2 Laboratoire Navier, Université Gustave Eiffel, Ecole des Ponts, CNRS, 77454 Marne-la-Vallée, France; fl[email protected] 3 Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 91405 Orsay, France * Correspondence: [email protected]; Tel.: +33-1691-569-60 † These authors contributed equally to this work. Abstract: Surface bubbles are present in many industrial processes and in nature, as well as in carbon- ated beverages. They have motivated many theoretical, numerical and experimental works. This paper presents the current knowledge on the physics of surface bubbles lifetime and shows the diversity of mechanisms at play that depend on the properties of the bath, the interfaces and the ambient air. In particular, we explore the role of drainage and evaporation on film thinning. We highlight the existence of two different scenarios depending on whether the cap film ruptures at large or small thickness compared to the thickness at which van der Waals interaction come in to play. Keywords: bubble; film; drainage; evaporation; lifetime 1. Introduction Bubbles have attracted much attention in the past for several reasons. First, their ephemeral Citation: Miguet, J.; Rouyer, F.; nature commonly awakes children’s interest and amusement. Their visual appeal has raised Rio, E. The Life of a Surface Bubble. interest in painting [1], in graphism [2] or in living art. -
INTERNATIONAL GEMMOLOGICAL CONFERENCE Nantes - France INTERNATIONAL GEMMOLOGICAL August 2019 CONFERENCE Nantes - France August 2019
IGC 2019 - Nantes IGC 2019 INTERNATIONAL GEMMOLOGICAL CONFERENCE Nantes - France INTERNATIONAL GEMMOLOGICAL August 2019 CONFERENCE Nantes - France www.igc-gemmology.org August 2019 36th IGC 2019 – Nantes, France Introduction 36th International Gemmological Conference IGC August 2019 Nantes, France Dear colleagues of IGC, It is our great pleasure and pride to welcome you to the 36th International Gemmological Conference in Nantes, France. Nantes has progressively gained a reputation in the science of gemmology since Prof. Bernard Lasnier created the Diplôme d’Université de Gemmologie (DUG) in the early 1980s. Several DUGs or PhDs have since made a name for themselves in international gemmology. In addition, the town of Nantes has been on several occasions recognized as a very attractive, green town, with a high quality of life. This regional capital is also an important hub for the industry (e.g. agriculture, aeronautics), education and high-tech. It has only recently developed tourism even if has much to offer, with its historical downtown, the beginning of the Loire river estuary, and the ocean close by. The organizers of 36th International Gemmological Conference wish you a pleasant and rewarding conference Dr. Emmanuel Fritsch, Dr. Nathalie Barreau, Féodor Blumentritt MsC. The organizers of the 36th International Gemmological Conference in Nantes, France From left to right Dr. Emmanuel Fritsch, Dr. Nathalie Barreau, Féodor Blumentritt MsC. 3 36th IGC 2019 – Nantes, France Introduction Organization of the 36th International Gemmological Conference Organizing Committee Dr. Emmanuel Fritsch (University of Nantes) Dr. Nathalie Barreau (IMN-CNRS) Feodor Blumentritt Dr. Jayshree Panjikar (IGC Executive Secretary) IGC Executive Committee Excursions Sophie Joubert, Richou, Cholet Hervé Renoux, Richou, Cholet Guest Programme Sophie Joubert, Richou, Cholet Homepage Dr. -
Properties of Minerals for Processing
2 C h a p t e r Properties of Minerals for Processing 2.1 SAMPLING Sampling is a process of obtaining a small portion from a large quantity of a similar material such that, it truly represents the composition of the whole lot. It is an important step before testing of any material in the laboratory. Sampling of homogeneous materials is easy as compared to heterogeneous materials and hence, has to be conducted carefully. It is so because unlike heterogeneous materials, homogeneous materials have a uniform composition. However, almost all metallurgical materials are heterogeneous in nature. 2.1.1 Sampling of Ores/Minerals The process of sampling is complicated because of the following reasons: (1) A large variety of constituents are present in ores and minerals. (2) There is a large variation in the distribution of these constituents throughout the material. (3) In many cases, weight of the sample may vary from, 0.5 to 5 gm or 10 gm. Small fraction from large quantity like 50 to 250 tonnes are not true representative of the entire lot. The size of the sample required for testing depends on the method of testing and the testing machine which is used. However, sampling may involve three operations, namely, crushing and/or grinding, mixing and finally cutting. These operations may be executed repeatedly wherein the quantity of sample can be reduced to a desired weight. Sampling should be based on the relation between maximum particle size and the amount of sample. The size of ore/mineral particles taken for sampling depends on uniformity of composition, i.e., if the composition is more uniform, smaller particle size of the sample is taken and vice versa. -
A Web-Based Crystallographic Tool for the Construction of Nanoparticles
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS SCHOOL OF SCIENCE DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION INTERDISCIPLINARY POSTGRADUATE PROGRAM "INFORMATION TECHNOLOGIES IN MEDICINE AND BIOLOGY" MASTER THESIS A web-based crystallographic tool for the construction of nanoparticles Alexios T. Chatzigoulas Supervisor: Dr. Zoe Cournia, Researcher - Assistant Professor Level, Biomedical Research Foundation of the Academy of Athens (BRFAA) ATHENS FEBRUARY 2018 ΔΘΝΗΚΟ ΚΑΗ ΚΑΠΟΓΗΣΡΗΑΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΥΟΛΖ ΘΔΣΗΚΩΝ ΔΠΗΣΖΜΩΝ ΣΜΖΜΑ ΠΛΖΡΟΦΟΡΗΚΖ ΚΑΗ ΣΖΛΔΠΗΚΟΗΝΩΝΗΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΜΔΣΑΠΣΤΥΗΑΚΟ ΠΡΟΓΡΑΜΜΑ "ΣΔΥΝΟΛΟΓΗΔ ΠΛΖΡΟΦΟΡΗΚΖ ΣΖΝ ΗΑΣΡΗΚΖ ΚΑΗ ΣΖ ΒΗΟΛΟΓΗΑ" ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ Ένα διαδικηςακό κπςζηαλλογπαθικό επγαλείο για ηεν καηαζηεςή νανοζωμαηιδίων Αλέξιορ Θ. Υαηδεγούλαρ Δπιβλέποςζα: Γπ. Εωή Κούπνια, Δξεπλήηξηα Γ‟, Ίδξπκα Ιαηξνβηνινγηθώλ Δξεπλώλ Αθαδεκίαο Αζελώλ (ΙΙΒΔΑΑ) ΑΘΖΝΑ ΦΔΒΡΟΤΑΡΗΟ 2018 MASTER THESIS A web-based crystallographic tool for the construction of nanoparticles Alexios T. Chatzigoulas S.N.: PIV0155 SUPERVISOR: Dr. Zoe Cournia, Researcher - Assistant Professor Level, Biomedical Research Foundation of the Academy of Athens (BRFAA) EXAMINATION Dr. Zoe Cournia, Researcher - Assistant Professor Level, COMMITTEE: Biomedical Research Foundation of the Academy of Athens (BRFAA) Dr. Ioannis Emiris, Professor Level, National and Kapodistrian University of Athens (NKUA), Department of Informatics and Telecommunications (DIT) Dr. Evangelia Chrysina, Senior Researcher at the Institute of Biology, Medicinal Chemistry and Biotechnology, -
Equilibria of Pendant Droplets: Spatial Variation and Anisotropy of Surface Tension
Equilibria of Pendant Droplets: Spatial Variation and Anisotropy of Surface Tension by Dale G. Karr Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI 48109-2145 USA Email: [email protected] 1 Abstract An example of capillary phenomena commonly seen and often studied is a droplet of water hanging in air from a horizontal surface. A thin capillary surface interface between the liquid and gas develops tangential surface tension, which provides a balance of the internal and external pressures. The Young-Laplace equation has been historically used to establish the equilibrium geometry of the droplet, relating the pressure difference across the surface to the mean curvature of the surface and the surface tension, which is presumed constant and isotropic. The surface energy per unit area is often referred to as simply surface energy and is commonly considered equal to the surface tension. The relation between the surface energy and the surface tension can be established for axisymmetric droplets in a gravitational field by the application of the calculus of variations, minimizing the total potential energy. Here it is shown analytically and experimentally that, for conditions of constant volume of the droplet, equilibrium states exist with surface tensions less than the surface energy of the water-air interface. The surface tensions of the interface membrane vary with position and are anisotropic. Keywords: capillary forces, droplets, surface energy, surface tension 2 Background For droplets of water in air with negligible inertia forces, the water mass is influenced by gravity and surface tension. These forces dominate at length scales of approximately 2mm, the characteristic capillary length (1-3). -
Directional Water Wicking on a Metal Surface Patterned by Microchannels
materials Article Directional Water Wicking on a Metal Surface Patterned by Microchannels Nima Abbaspour 1,*, Philippe Beltrame 1,* , Marie-Christine Néel 1 and Volker P. Schulz 2 1 UMR1114 EMMAH INRAE—Avignon Université, F-84914 Avignon, France; [email protected] 2 Department of Mechanical Engineering, Baden-Württemberg Cooperative State University Mannheim, Coblitzallee 1-9, D-68163 Mannheim, Germany; [email protected] * Correspondence: [email protected] (N.A.); [email protected] (P.B.) Abstract: This work focuses on the simulation and experimental study of directional wicking of water on a surface structured by open microchannels. Stainless steel was chosen as the material for the structure motivated by industrial applications as fuel cells. Inspired by nature and literature, we designed a fin type structure. Using Selective Laser Melting (SLM) the fin type structure was manufactured additively with a resolution down to about 30 µm. The geometry was manufactured with three different scalings and both the experiments and the simulation show that the efficiency of the water transport depends on dimensionless numbers such as Reynolds and Capillary numbers. Full 3D numerical simulations of the multiphase Navier-Stokes equations using Volume of Fluid (VOF) and Lattice-Boltzmann (LBM) methods reproduce qualitatively the experimental results and provide new insight into the details of dynamics at small space and time scales. The influence of the static contact angle on the directional wicking was also studied. The simulation enabled estimation of the contact angle threshold beyond which transport vanishes in addition to the optimal contact angle for transport. Keywords: directional wicking; patterned surface; wetting dynamics; capillarity, 3D simulation; Citation: Abbaspour, N.; Beltrame, Volume of Fluid; Lattice Boltzmann Method; Selective Laser Melting Manufacturing; microstructure B.; Néel, M.-C.; Schulz, V. -
Arxiv:1805.07608V3 [Cond-Mat.Soft] 29 Aug 2018 Rsafreta Ihrdasteclne Noo Expels Or Into Cylinder the Ex- Drags Meniscus Either the That 17]
The Meniscus on the Outside of a Circular Cylinder: From Microscopic to Macroscopic Scales Yanfei Tang (唐雁飞) and Shengfeng Cheng (程胜峰)∗ Department of Physics, Center for Soft Matter and Biological Physics, and Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA (Dated: August 30, 2018) We systematically study the meniscus on the outside of a small circular cylinder vertically im- mersed in a liquid bath in a cylindrical container that is coaxial with the cylinder. The cylinder has a radius R much smaller than the capillary length, κ−1, and the container radius, L, is varied − from a small value comparable to R to ∞. In the limit of L ≪ κ 1, we analytically solve the general Young-Laplace equation governing the meniscus profile and show that the meniscus height, − ∆h, scales approximately with R ln(L/R). In the opposite limit where L ≫ κ 1, ∆h becomes inde- − pendent of L and scales with R ln(κ 1/R). We implement a numerical scheme to solve the general Young-Laplace equation for an arbitrary L and demonstrate the crossover of the meniscus profile be- − − tween these two limits. The crossover region has been determined to be roughly 0.4κ 1 . L . 4κ 1. An approximate analytical expression has been found for ∆h, enabling its accurate prediction at any values of L that ranges from microscopic to macroscopic scales. I. INTRODUCTION it from the liquid depending on if the contact angle is acute or obtuse. A recent study of the meniscus rise on a A liquid meniscus as a manifestation of capillary action nanofiber showed that the force on the nanofiber highly is ubiquitous in nature and our daily life. -
Polyhipes MORPHOLOGY, SURFACE MODIFICATION and TRANSPORT
POLYHIPEs MORPHOLOGY, SURFACE MODIFICATION AND TRANSPORT PROPERTIES by BORAN ZHAO Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Dissertation Advisers: Dr. Donald L. Feke and Dr. Ica Manas-Zloczower Department of Chemical and Biomolecular Engineering CASE WESTERN RESERVE UNIVERSITY January 2019 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Boran Zhao candidate for the degree of Doctor of Philosophy *. Committee Chair Donald L. Feke Committee Members Ica Manas-Zloczower Jay Adin Mann Jr. Uziel Landau David Schiraldi Date of Defense September 18th, 2018 *We also certify that written approval has been obtained for any proprietary material contained therein. DEDICATION To faith in truth, who carries me in seeking answers; To faith in consciousness, who drives me in the right directions; To my beloved family, who are the source of my happiness; To myself, for not yielding in pressure and not being satisfied in absorbing knowledge. i TABLE OF CONTENTS Dedication ............................................................................................................................ i Table of Contents ................................................................................................................ ii List of Tables ................................................................................................................... viii List of Figures ................................................................................................................... -
Dripping Faucet in Extreme Spatial and Temporal Resolution
Dripping faucet in extreme spatial and temporal resolution Achim Sack and Thorsten Poschel€ Institute for Multiscale Simulations, Friedrich-Alexander-Universitat€ Erlangen-Nurnberg,€ Erlangen 91052, Germany (Received 5 February 2016; accepted 22 March 2017) Besides its importance for science and engineering, the process of drop formation from a homogeneous jet or at a nozzle is of great aesthetic appeal. In this paper, we introduce a low-cost setup for classroom use to produce quasi-high-speed recordings with high temporal and spatial resolution of the formation of drops at a nozzle. The visualization of the process can be used for quantitative analysis of the underlying physical phenomena. VC 2017 American Association of Physics Teachers. [http://dx.doi.org/10.1119/1.4979657] I. INTRODUCTION depending on the parameters of the experiment, one or more much smaller satellite drops may appear for each drop (see The formation of drops of liquids is an everyday phenom- Fig. 1 below); and (ii) small perturbations of the surface of a enon, yet obtaining a detailed understanding of the process fluid cylinder grow over time if the wavelength of the pertur- is not straightforward from an experimental or a theoretical bation exceeds a certain value. The latter observation allowed point of view. In engineering, drop formation is of impor- for the systematic investigation of the instability of fluid surfa- tance for a number of processes such as ink jet printing, ces and gave rise to a large body of related experimental work spray drying, spray coating, and others. by Hagen,8,9 Magnus,10 Rayleigh,11,12 and many others. -
Raman Evidence for Pressure-Induced Formation of Diamondene
Raman evidence for pressure-induced formation of diamondene The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Martins, Luiz Gustavo Pimenta et al. “Raman Evidence for Pressure- Induced Formation of Diamondene.” Nature Communications 8, 1 (July 2017) © 2017 The Author(s) As Published http://dx.doi.org/10.1038/S41467-017-00149-8 Publisher Nature Publishing Group Version Final published version Citable link http://hdl.handle.net/1721.1/113640 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms https://creativecommons.org/licenses/by/4.0/ ARTICLE DOI: 10.1038/s41467-017-00149-8 OPEN Raman evidence for pressure-induced formation of diamondene Luiz Gustavo Pimenta Martins1,7, Matheus J.S. Matos 2, Alexandre R. Paschoal3, Paulo T.C. Freire3, Nadia F. Andrade4, Acrísio L. Aguiar5, Jing Kong6, Bernardo R.A. Neves 1, Alan B. de Oliveira2, Mário S.C. Mazzoni1, Antonio G. Souza Filho3 & Luiz Gustavo Cançado1 Despite the advanced stage of diamond thin-film technology, with applications ranging from superconductivity to biosensing, the realization of a stable and atomically thick two-dimensional diamond material, named here as diamondene, is still forthcoming. Adding to the outstanding properties of its bulk and thin-film counterparts, diamondene is predicted to be a ferromagnetic semiconductor with spin polarized bands. Here, we provide spectro- scopic evidence for the formation of diamondene by performing Raman spectroscopy of double-layer graphene under high pressure. The results are explained in terms of a break- down in the Kohn anomaly associated with the finite size of the remaining graphene sites surrounded by the diamondene matrix.