Geometry of Curves and Surfaces Notes c J M Speight 2011 Contact Details Lecturer: Dr. Lamia Alqahtani E-mail
[email protected] This note was made by Prof. Martin Speight, School of Mathematics, The University of Leeds, E-mail:
[email protected] 0 Why study geometry? Curves and surfaces are all around us in the natural world, and in the built environ- ment. The first step in understanding these structures is to find a mathematically natural way to describe them. That is the primary aim of this course, which will focus particularly on the concept of curvature. As a side effect, you will develop some very useful transferable skills. Key among these is the ability to translate a mathematical system (a set of equations, or formulae, or inequalities) into a visual picture. Your geometric intuition about the picture can then give you useful insight into the original mathematical system. This trick of visualizing mathematical systems can be very powerful and is, unfortunately, not strongly emphasized in the teaching of maths. Example 0 How does the number of solutions of the pair of simultaneous equations xy = 1 x2 + y2 = a2 depend on the constant a > 0? 0 x2 So for a < a0 (in fact, a0 = √2), the system has 0 solutions, for a = a0 it has 2 and for a > a0 it has 4. One could easily verify this by solving the equations explicitly, but the point is that visualizing x the system gave us a very quick (in fact, 1 almost instantaneous) short cut. The above example featured a pair of curves, each associated with an algebraic equation.