Unravelling the Symbiotic Relationships Between the Scale Worm

Total Page:16

File Type:pdf, Size:1020Kb

Unravelling the Symbiotic Relationships Between the Scale Worm applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2020, XX, 1–24. With 8 figures. Sleeping with the enemy: unravelling the symbiotic relationships between the scale worm Neopolynoe Downloaded from https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlaa146/6055457 by guest on 04 January 2021 chondrocladiae (Annelida: Polynoidae) and its carnivorous sponge hosts SERGI TABOADA1,2,3,*,†, , ANA SERRA SILVA2,4,5,†, , CRISTINA DÍEZ-VIVES2, LENKA NEAL2, JAVIER CRISTOBO1,6, PILAR RÍOS1,7, JON THOMASSEN HESTETUN8, BRETT CLARK2, MARIA ELEONORA ROSSI5, JUAN JUNOY1, JOAN NAVARRO9, and ANA RIESGO2 1Departamento de Ciencias de la Vida, Apdo. 20, Campus Universitario, Universidad de Alcalá, 28805 Alcalá de Henares, Spain 2Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 3Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Facultad de Ciencias, Cantoblanco 28049, Madrid, Spain 4Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK 5School of Earth Sciences, University of Bristol, Queens Road, Bristol BS8 1RJ, UK 6Instituto Español de Oceanografía, Centro Oceanográfico de Gijón, C/ Príncipe de Asturias 70 bis, 33212 Gijón, Asturias, Spain 7Instituto Español de Oceanografía, Centro Oceanográfico de Santander, Promontorio San Martín s/n, Apdo. 240, 39080 Santander, Spain 8NORCE Environment, NORCE Norwegian Research Centre, Nygårdsgaten 112 NO-5838 Bergen, Norway 9Instituto de Ciencias del Mar CSIC, Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain Received 13 July 2020; revised 19 September 2020; accepted for publication 14 October 2020 The North Atlantic deep-water polynoid worm Neopolynoe chondrocladiae is involved in an exceptional symbiotic relationship with two hosts: the carnivorous sponges Chondrocladia robertballardi and Chondrocladia virgata. While this is an obligate symbiotic relationship, its real nature is unclear. We used a multidisciplinary approach to narrow down the type of symbiotic relationship between symbiont and hosts. Molecular connectivity analyses using COI and 16S suggest that N. chondrocladiae has high potential for dispersal, connecting sites hundreds of kilometres apart, likely aided by oceanographic currents. Microbial analyses on different anatomical parts of five Chondrocladia species suggest that the presence of the worm in C. robertballardi does not affect the microbiome of the sponge. MicroCT analysis on N. chondrocladiae show that it has dorsally oriented parapodia, which might prevent the worm from getting trapped in the sponge. A faecal pellet recovered from the worm suggests that the polynoid feeds on the crustacean prey captured by the sponge, something corroborated by our stable isotope analysis. Light and confocal microscopy images suggest that N. chondrocladiae elytra produce bioluminescence. We propose that the worm might use bioluminescence as a lure for prey (increasing the food available for both the sponge and the polynoid) and thus fuelling a mutualistic relationship. ADDITIONAL KEYWORDS: bioluminescence – confocal – microbiome – microCT – molecular connectivity – mutualism – stable isotopes – trophic relationships. INTRODUCTION *Corresponding author. E-mail: [email protected] Marine annelid polychaetes are known to engage in a †These authors contributed equally to this work. multitude of symbiotic relationships, with hundreds of © 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2020, XX, 1–24 1 2 S. TABOADA ET AL. examples in a plethora of families (Martín & Britayev, an adhesive surface due to the presence of velcro-like 1998, 2018). Despite the efforts of the scientific community anchorate isochaelae spicules, which trap the prey; over the past 20 years, which have doubled the number the prey is later engulfed by the sponge tissue and of described symbiotic associations in polychaetes, subsequently digested by symbiotic bacteria (Vacelet our understanding of the interactions between these & Boury-Esnault, 1995; Vacelet & Duport, 2004; Lee symbiotic worms and their respective hosts is still et al., 2012). Interestingly, two recent studies on the Downloaded from https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlaa146/6055457 by guest on 04 January 2021 scarce and inadequate (Martín & Britayev, 1998, 2018). microbial characterization of the sponge Chondrocladia In their latest review on symbiotic polychaetes, Martín grandis (Verrill, 1879) showed that specific bacterial & Britayev (2018) highlighted that after a period when taxa were enriched in different anatomical parts, most of the reported symbiotic relationships were thus suggesting different microbial functional roles classified as commensal (Martín & Britayev, 1998; in sponge metabolism (Verhoeven & Dufour, 2017; Britayev et al., 2014), there has been an increase in Verhoeven et al., 2017). Especially in the spheres, a the number of relationships identified as mutualistic greater abundance of Proteobacteria of the genera (many of which were formerly described as commensal Colwellia Deming et al., 1988 and Pseudoalteromonas or parasitic), which proves the efficacy of applying new Gauthier et al., 1995 was found; these bacteria are techniques and resources to the study of these symbiotic known to be involved in the hydrolysis of chitin, one associations. However, there are still many aspects of of the main components of crustacean exoskeletons symbiotic relationships involving polychaetes that need (Verhoeven et al., 2017). to be addressed in detail. Among them, for instance, In a recent study, Taboada et al. (2020) described is the scarce information available about behavioural morphological adaptations in both N. chondrocladiae observations based on living organisms (e.g. Martín and its hosts, two species of the genus Chondrocladia. et al., 2015), the nature of the trophic links between host These adaptations suggested the obligate nature of and symbiont (see: Martín & Britayev, 1998, 2018), and the symbiotic relationship established between the the phylogeographic and colonization patterns of the worm and the sponge. Neopolynoe chondrocladiae has symbiont, limited to the best of our knowledge to just specialized hooked chaetae in some segments, which two recent contributions (Lattig et al., 2017; Meca et al., could facilitate the attachment to, and navigation along, 2019). Difficulties in obtaining all this information are the branching body of the sponge host (Taboada et al., directly linked to the inherent limitations of studying 2020). These hooked chaetae have also been reported marine benthic organisms, which is particularly true for for other symbiotic polynoids (Pettibone, 1969; Martín deep-water species, whose collection and investigation & Britayev, 1998; Molodtsova et al., 2016; Ravara & are particularly challenging. Thus, there is a clear Cunha, 2016). Also, Taboada et al. (2020) described need to increase the information on known symbiotic open galleries in the stalk of the two sponges where relationships in polychaetes in order to provide a better N. chondrocladiae occurs, Chondrocladia virgata understanding of their true nature. Thomson, 1873 and Chondrocladia robertballardi Neopolynoe chondrocladiae (Fauvel, 1943) is a North Cristobo et al., 2015. Neopolynoe chondrocladiae worms Atlantic deep-water annelid of the family Polynoidae were found within these open galleries, which appeared Kinberg, 1856 involved in an exceptional symbiotic not to be excavated by the polynoid, but seemed to relationship with carnivorous sponges of the genus be produced by a gradual overgrowth of the sponge Chondrocladia Thomson, 1873 (Taboada et al., 2020). to accommodate the worm (Taboada et al., 2020). The symbiotic association between these organisms is Similar induced galleries, commonly known as ‘worm- noteworthy due to the fact that the symbiotic worm runs’, have been reported in gorgonian and hexacoral is a potential prey living inside its potential predator antipatharians, which are built by the host in order to and host. Members of the genus Chondrocladia belong provide shelter for the worm (Molodtsova & Budaeva, to the sponge family Cladorhizidae Dendy, 1922, and 2007; Britayev et al., 2014). Regarding the symbiotic are sponge carnivores feeding primarily on small relationship between N. chondrocladiae and its two crustaceans and polychaetes (Vacelet & Duport, 2004; Chondrocladia hosts, Taboada et al. (2020) hypothesized Vacelet, 2007). Chondrocladia sponges consist of that, apart from getting shelter from its host, the worm several anatomical parts: roots (used to anchor the might also be getting food that sponges trap in their animal to the sediment), axis (which can be subdivided spheres, while the worm might be providing a benefit in multiple branches) and terminal inflatable spheres to the sponge by cleaning its surface and/or dissuading sometimes sustained by short stems (Hestetun et al., potential predators, as described in other examples in 2016b). The spheres are used both for prey capture and the literature (e.g. Martín et al., 1992; Mortensen, 2001). reproduction, and maintain their turgidity thanks to In any case, despite the different sources of evidence a remnant aquiferous system with canals inside the provided, Taboada et al. (2020) hypothesized that the main axis (Kübler & Barthel, 1999). The spheres have nature of the symbiotic relationship between the worm © 2020 The Linnean Society
Recommended publications
  • Annelida, Hesionidae), Described As New Based on Morphometry
    Contributions to Zoology, 86 (2) 181-211 (2017) Another brick in the wall: population dynamics of a symbiotic species of Oxydromus (Annelida, Hesionidae), described as new based on morphometry Daniel Martin1,*, Miguel A. Meca1, João Gil1, Pilar Drake2 & Arne Nygren3 1 Centre d’Estudis Avançats de Blanes (CEAB-CSIC) – Carrer d’Accés a la Cala Sant Francesc 14. 17300 Blanes, Girona, Catalunya, Spain 2 Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avenida República Saharaui 2, Puerto Real 11519, Cádiz, Spain 3 Sjöfartsmuseet Akvariet, Karl Johansgatan 1-3, 41459, Göteborg, Sweden 1 E-mail: [email protected] Key words: Bivalvia, Cádiz Bay, Hesionidae, Iberian Peninsula, NE Atlantic Oxydromus, symbiosis, Tellinidae urn:lsid:zoobank.org:pub: D97B28C0-4BE9-4C1E-93F8-BD78F994A8D1 Abstract Results ............................................................................................. 186 Oxydromus humesi is an annelid polychaete living as a strict bi- Morphometry ........................................................................... 186 valve endosymbiont (likely parasitic) of Tellina nymphalis in Population size-structure ..................................................... 190 Congolese mangrove swamps and of Scrobicularia plana and Infestation characteristics .................................................... 190 Macomopsis pellucida in Iberian saltmarshes. The Congolese Discussion ....................................................................................... 193 and Iberian polychaete populations were previously
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Onetouch 4.0 Sanned Documents
    Vol. 82, pp. 1-30 29 May, 1969 PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON REVIEW OF SOME SPECIES REFERRED TO SCALISETOSUS MCINTOSH (POLYCHAETA, POLYNOIDAE) BY MABIAN H. PETTIBONE Smithsonian Institution, Washington, D. C. In connection with an extended review of the polynoid gen- era, based on a study of the type-species, it was foimd that Scalisetosus Mclntosh ( 1885) has been used for a heterogenous group of species. The genus has served to include species with setae as transparent as crystal and the neurosetae character- ized by the presence of a basal semilunar cusp or pocket, al- though this particular feature was not shown on the figure of the neiu-osetae of the type-species, S. ceramensis, by Mclntosh (1885, pi. lOA, fig. 14). Any species equipped with this pe- culiar type of neiu-osetae has been placed in Scalisetosus, re- gardless of other characters. Saint-Joseph (1899) proposed the new genus Adyte for three species {Polynoe pellucida Ehlers, Hermadion assimile Mclntosh, and H. echini Giard) having the peculiar type of neurosetae, separating them from S. cera- mensis, which lacks the basal semilunar cusps. Mclntosh (1900) was responsible for changing the diagnosis of Scali- setosus to include the species referred to Adyte by Saint- Joseph, Subsequently, Adyte was abandoned and was synony- mized with Scalisetosus by Fauvel (1914, p. 47). During a visit to the British Museum of Natural History in May 1967, I was able to examine the unique type of Scalise- tosus ceramensis and to verify that the neurosetae indeed do lack the basal semilunar cusps and that the species therefore lacks one of the key characters that has been attributed to the genus.
    [Show full text]
  • (Polychaeta) from the CANARY ISLANDS
    BULLETIN OF MARINE SCIENCE, 48(2): l8D-188, 1991 POL YNOIDAE (pOLYCHAETA) FROM THE CANARY ISLANDS M. C. Brito, J. Nunez and J. J. Bacallado ABSTRACT This paper is a contribution to the study of the family Polynoidae (Polychaeta) from the Canary Islands. The material examined has been collected by the authors from 1975 to 1989. A total of 18 species was found belonging to 8 genera: Gesiel/a (I), Po/ynoe (1), Adyte (I), Subadyte (I), Harrnothoe (11), A/entia (1), Lepidasthenia (1) and Lepidonotus (I). Ten species are new to this fauna and one, Harrnothoe cascabullico/a, is new to science. Furthermore, the genera Po/ynoe, Adyte and Lepidasthenia are recorded for the first time in the Canary Islands. The Polychaeta of the Canary Islands are enumerated in the provisional cata- logue of Nunez et al. (1984), in which are recorded 148 species, 12 of which belong to the family Polynoidae. Samples from the Canary coastline were examined and members ofPolynoidae studied. A total of 173 specimens was studied, belonging to 7 subfamilies, 8 genera, and 18 species, of which 9 species are recorded for the first time in the Canarian fauna. Worthy of note is the large number of species belonging to the genus Harmothoe (11), one of which, H. cascabullicola is new. METHODS The material examined was collected from 1975 to 1989, from 61 stations, at 45 localities on the Canary coasts (Fig. I). The list of stations, with their localities, types of substrate and collecting data are listed in Table I. The methods used in collecting depended on the type of substrate.
    [Show full text]
  • New Species from the Deep Pacific Suggest That Carnivorous Sponges Date Back to the Early Jurassic. Some Deep-Sea Poecilosclerid
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Nature Precedings New species from the deep Pacific suggest that carnivorous sponges date back to the Early Jurassic. Jean Vacelet1 & Michelle Kelly2 1Centre d’Océanologie de Marseille, Aix-Marseille Université, CNRS UMR 6540 DIMAR, Station Marine d’Endoume, rue Batterie des Lions, 13007 Marseille, France ([email protected]) 2National Centre for Aquatic Biodiversity and Biosecurity, National Institute of Water & Atmospheric Research Ltd, P. O. Box 109-695, Newmarket, Auckland, New Zealand ([email protected]) Some deep-sea poecilosclerid sponges (Porifera) have developed a carnivorous feeding habit that is very surprising in sponges1. As shown by the typical morphology of their spicules, they most probably evolved from “normal sponges” under the difficult conditions of a deep-sea environment. Such evolution, which implies the loss of the diagnostic character of the phylum Porifera, i.e. a filter feeding habit through a complex aquiferous system, should be of great interest in the understanding of the origin of metazoans. Some scenarios, based on the hypothesis of the paraphyly of Porifera, allege that metazoans could derive from a sponge filter-feeding body plan. A difficulty, however, is to imagine the transition from a sponge grade of organization to other organization plans2. Carnivorous sponges demonstrate that a functional, non filter-feeding animal may derive from a conventional sponge body plan, albeit nothing is known of the age of this evolution. Here we report that newly discovered species of Chondrocladia from the deep Pacific display special spicules that were previously recorded only as isolated spicules from sediment dating back to the Early Jurassic and Miocene periods.
    [Show full text]
  • Carnivorous Sponges of the Atlantic and Arctic Oceans
    &DUQLYRURXVVSRQJHVRIWKH$WODQWLFDQG $UFWLF2FHDQV 3K\ORJHQ\WD[RQRP\GLVWULEXWLRQDQGPLFURELDODVVRFLDWLRQVRIWKH &ODGRUKL]LGDH 'HPRVSRQJLDH3RHFLORVFOHULGD -RQ7KRPDVVHQ+HVWHWXQ Dissertation for the degree of philosophiae doctor (PhD) at the University of Bergen 'LVVHUWDWLRQGDWH1RYHPEHUWK © Copyright Jon Thomassen Hestetun The material in this publication is protected by copyright law. Year: 2016 Title: Carnivorous sponges of the Atlantic and Arctic Oceans Phylogeny, taxonomy, distribution and microbial associations of the Cladorhizidae (Demospongiae, Poecilosclerida) Author: Jon Thomassen Hestetun Print: AiT Bjerch AS / University of Bergen 3 Scientific environment This PhD project was financed through a four-year PhD position at the University of Bergen, and the study was conducted at the Department of Biology, Marine biodiversity research group, and the Centre of Excellence (SFF) Centre for Geobiology at the University of Bergen. The work was additionally funded by grants from the Norwegian Biodiversity Centre (grant to H.T. Rapp, project number 70184219), the Norwegian Academy of Science and Letters (grant to H.T. Rapp), the Research Council of Norway (through contract number 179560), the SponGES project through Horizon 2020, the European Union Framework Programme for Research and Innovation (grant agreement No 679849), the Meltzer Fund, and the Joint Fund for the Advancement of Biological Research at the University of Bergen. 4 5 Acknowledgements I have, initially through my master’s thesis and now during these four years of my PhD, in all been involved with carnivorous sponges for some six years. Trying to look back and somehow summarizing my experience with this work a certain realization springs to mind: It took some time before I understood my luck. My first in-depth exposure to sponges was in undergraduate zoology, and I especially remember watching “The Shape of Life”, an American PBS-produced documentary series focusing on the different animal phyla, with an enthusiastic Dr.
    [Show full text]
  • Author's Accepted Manuscript
    Author’s Accepted Manuscript This is the accepted version of the following article: Rakka, M., Bilan, M., Godinho, A., Movilla, J., Orejas, C., & Carreiro-Silva, M. (2019). First description of polyp bailout in cold-water octocorals under aquaria maintenance. Coral Reefs, 38(1), 15-20, which has been published in final form at https://doi.org/10.1007/s00338-018-01760- x. This article may be used for non-commercial purposes in accordance with Springer Terms and Conditions for Use of Self-Archived Versions 1 First description of polyp bail-out in cold-water octocorals under aquaria maintenance Maria Rakka1,2,3, Meri Bilan1,2,3, Antonio Godinho1,2,3,Juancho Movilla4,5, Covadonga Orejas4, Marina Carreiro-Silva1,2,3 1 MARE – Marine and Environmental Sciences Centre and Centre of the Institute of Marine Research 2 IMAR – University of the Azores, Rua Frederico Machado 4, 9901-862 Horta, Portugal 3 OKEANOS Research Unit, Faculty of Science and Technology, University of the Azores, 9901-862, Horta, Portugal 4 Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Moll de Ponent s/n, 07015 Palma, Spain 5 Instituto de Ciencias del Mar (ICM-CSIC). Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain Corresponding author: Maria Rakka, [email protected], +351915407062 2 Abstract Cnidarians, characterized by high levels of plasticity, exhibit remarkable mechanisms to withstand or escape unfavourable conditions including reverse development which describes processes of transformation of adult stages into early developmental stages with higher mobility. Polyp bail-out is a stress-escape response common among scleractinian species, consisting of massive detachment of live polyps and subsequent death of the mother colony.
    [Show full text]
  • Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
    'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C.
    [Show full text]
  • Download Full Article 2.4MB .Pdf File
    Memoirs of Museum Victoria 71: 217–236 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars EIVIND OUG1,* (http://zoobank.org/urn:lsid:zoobank.org:author:EF42540F-7A9E-486F-96B7-FCE9F94DC54A), TORKILD BAKKEN2 (http://zoobank.org/urn:lsid:zoobank.org:author:FA79392C-048E-4421-BFF8-71A7D58A54C7) AND JON ANDERS KONGSRUD3 (http://zoobank.org/urn:lsid:zoobank.org:author:4AF3F49E-9406-4387-B282-73FA5982029E) 1 Norwegian Institute for Water Research, Region South, Jon Lilletuns vei 3, NO-4879 Grimstad, Norway ([email protected]) 2 Norwegian University of Science and Technology, University Museum, NO-7491 Trondheim, Norway ([email protected]) 3 University Museum of Bergen, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway ([email protected]) * To whom correspondence and reprint requests should be addressed. E-mail: [email protected] Abstract Oug, E., Bakken, T. and Kongsrud, J.A. 2014. Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars. Memoirs of Museum Victoria 71: 217–236. Early descriptions of species from Norwegian waters are reviewed, with a focus on the basic requirements for re- assessing their characteristics, in particular, by clarifying the status of the original material and locating sampling sites. A large number of polychaete species from the North Atlantic were described in the early period of zoological studies in the 18th and 19th centuries.
    [Show full text]
  • An Updated Checklist of the Scaleworm Harmothoe (Annelida, Polynoidae) from South America, with Two New Records from Brazil
    An updated checklist of the scaleworm Harmothoe (Annelida, Polynoidae) from South America, with two new records from Brazil JOSÉ ERIBERTO DE ASSIS1, 3,*, THAÍS KANANDA DA SILVA SOUZA3, JOSÉ ROBERTO BOTELHO DE SOUZA2 & MARTIN LINDSEY CHRISTOFFERSEN3 1 Departamento de Educação Básica, Prefeitura Municipal de Bayeux, Rua Santa Tereza, CEP 58306-070, Bayeux, Paraíba. 2 Departamento de Zoologia, Centro Biociências – UFPE. Av. Prof. Morais Rego, 1235, Recife, Pernambuco, Brasil. CEP: 50670–901. 3 Laboratório e Coleção de Invertebrados Paulo Young, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, 58059–900, João Pessoa, Paraíba, Brasil. * Corresponding author: [email protected] ----------------------------------------------------------------------------------------------------------------------- ORCIDs JEDA: https://orcid.org/0000-0002-1522-2904 TKDSS: https://orcid.org/0000-0002-4518-0864 JRBDS: https://orcid.org/0000-0002-0144-3992 MLC: https://orcid.org/0000-0001-8108-1938 ----------------------------------------------------------------------------------------------------------------------- Abstract. The family Polynoidae includes a group of scale worms which is abundant in several marine environments, and many members are associated with other invertebrates. The genus Harmothoe is one of the largest in number of species within the polynoids, with more than 150 described species. We summarize in a checklist information relative to 23 nominal species of Harmothoe from South America, with valid names, synonyms and original citations, discuss possible taxonomic problems, and provide illustrations of specimens from the northeastern coast of Brazil. Redescriptions of two species based on new specimens collected along the littoral of the State of Pernambuco, northeastern Brazil, are included. Harmotthoe fuscapinae and Harmothoe lanceocirrata are reported for the first time for Brazilian waters. Key words: Scale worms, polynoids; South Atlantic, new records.
    [Show full text]
  • For Cage Aquaculture
    Strengthening and supporting further development of aquaculture in the Kingdom of Saudi Arabia PROJECT UTF/SAU/048/SAU Guidelines on Environmental Monitoring for Cage Aquaculture within the Kingdom of Saudi Arabia Cover photograph: Aerial view of the floating cage farm of Tharawat Sea Company, Medina Province, Kingdom of Saudi Arabia. (courtesy Nikos Keferakis) Guidelines on environmental monitoring for cage aquaculture within the Kingdom of Saudi Arabia RICHARD ANTHONY CORNER FAO Consultant The Technical Cooperation and Partnership between the Ministry of Environment, Water and Agriculture in the Kingdom of Saudi Arabia and the Food and Agriculture Organization of the United Nations The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), or of the Ministry of Environment, Water and Agriculture in the Kingdom of Saudi Arabia concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, or the Ministry in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reect the views or policies of FAO, or the Ministry. ISBN 978-92-5-109651-2 (FAO) © FAO, 2017 FAO encourages the use, reproduction and dissemination of material in this information product.
    [Show full text]
  • 2018 Bibliography of Taxonomic Literature
    Bibliography of taxonomic literature for marine and brackish water Fauna and Flora of the North East Atlantic. Compiled by: Tim Worsfold Reviewed by: David Hall, NMBAQCS Project Manager Edited by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] APEM Ltd. Date of Issue: February 2018 Bibliography of taxonomic literature 2017/18 (Year 24) 1. Introduction 3 1.1 References for introduction 5 2. Identification literature for benthic invertebrates (by taxonomic group) 5 2.1 General 5 2.2 Protozoa 7 2.3 Porifera 7 2.4 Cnidaria 8 2.5 Entoprocta 13 2.6 Platyhelminthes 13 2.7 Gnathostomulida 16 2.8 Nemertea 16 2.9 Rotifera 17 2.10 Gastrotricha 18 2.11 Nematoda 18 2.12 Kinorhyncha 19 2.13 Loricifera 20 2.14 Echiura 20 2.15 Sipuncula 20 2.16 Priapulida 21 2.17 Annelida 22 2.18 Arthropoda 76 2.19 Tardigrada 117 2.20 Mollusca 118 2.21 Brachiopoda 141 2.22 Cycliophora 141 2.23 Phoronida 141 2.24 Bryozoa 141 2.25 Chaetognatha 144 2.26 Echinodermata 144 2.27 Hemichordata 146 2.28 Chordata 146 3. Identification literature for fish 148 4. Identification literature for marine zooplankton 151 4.1 General 151 4.2 Protozoa 152 NMBAQC Scheme – Bibliography of taxonomic literature 2 4.3 Cnidaria 153 4.4 Ctenophora 156 4.5 Nemertea 156 4.6 Rotifera 156 4.7 Annelida 157 4.8 Arthropoda 157 4.9 Mollusca 167 4.10 Phoronida 169 4.11 Bryozoa 169 4.12 Chaetognatha 169 4.13 Echinodermata 169 4.14 Hemichordata 169 4.15 Chordata 169 5.
    [Show full text]