Spiders' Webs

Total Page:16

File Type:pdf, Size:1020Kb

Spiders' Webs CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Magazine R364 Quick guide accordingly, the decision rules guiding the animal’s locomotory and manipulative movements can best be described (and analysed) Spiders’ webs as orientation behaviour. Indeed, the web-building Fritz Vollrath behaviour of orb-web-building spiders provides an excellent example of an organism solving a What is a spider’s web? Webs complex task of spatial provide spiders with a means to orientation by the iterated trap their food and, in some application of simple local cases, a place to shelter. Webs behaviour patterns. Thus, one can consist of blends of different silks, model the garden cross spider cleverly combined for Araneus diadematus as a virtual functionality. Take the ‘typical’ orb ‘spider robot’ in order to explore web of the common garden spider and modify the spatial world of (compare the photo on this page), digitized spider webs. Such an which has evolved to take out-of- approach shows that a small plane loads at optimized number of very simple behaviour The orb web of Argiope argentata shows deflections. To be able to do so, patterns are sufficient to generate well the flexibility of web design. Here this web needs to incorporate into accurately the characteristics of a only one ‘arm’ of the typical St Andrews one structure the mechanical real spider’s web. Cross was executed. The function of properties of very different types such a stabilimentum, as it is called, is still unclear: is it there to confuse of silk: the fairly stiff, radius silk How are webs thought to have predators, to attract bees or to firm up threads and the extremely soft, evolved? Spider web structures the web? extensible and sticky capture silk and silks began their co-evolution threads, which are fixed on the about 400 million years ago, at first breaking. This intriguing micro- radii by stringy silk cement. probably as a protein cover to mechanism relies on water Spiders are important and highly protect the animal’s eggs and plasticizing the core fibres of the successful predators. Most of the young. Webs then evolved web, as well as providing surface hundred or so spider families have different functions, including tension to power the windlasses web-building members. Their webs acting as a kind of wall-paper for that roll up into tight balls the range from two-dimensional sheets the animal’s burrow and modifying structural core fibres stretched by to three-dimensional tangles, with the hole into a simple trap by the impact of an insect. These members of ten families building radiating lines that inform the spiders have evolved to produce the familiar orb web. The spider’s lurking spider about things web fibres that have an aqueous web is primarily a trap, mostly for beetling around outside. Even coating, supplied and maintained insects; it retains the contacting such simple lines expand the by hygroscopic compounds to insect and informs the waiting animal’s anatomical phenotype attract the required water spider about the location and many fold by incorporating the molecules from the atmosphere. status of the prey. Whether it is a body into an extensive silken net. Other orb-web spiders, such as static filter or a dynamic net The aerial webs of the ‘modern’ Uloborus spp. in the hackled-band swaying in the wind, the web spiders began to evolve perhaps cribellate family, negotiate the always relays vibratory signals of 200 million years ago and are prey’s kinetic energy in a totally considerable complexity. The great superb examples of ‘extended different way. At considerable cost ecological diversity of the potential anatomy’. These webs also nicely in both time and energy, this prey is reflected in the great illustrate the close interaction of spider combs out its capture silk diversity of web designs. Of these, material and behaviour which to form a loosely twisted, dry rope the orbicular web has attracted clearly are two separately encoded with a mechanical coil-and-spring special attention because of its yet functionally inter-linked that sticks to prey using ubiquity, pleasing geometry, character traits. electrostatic forces. The large obvious functionality and, not least, differences in the economics of its apparent structural simplicity. Why are the mechanical the two systems have led to the properties of spider webs so ecribellate webs out-competing How does the spider create the remarkable? The common garden the cribellate designs in nearly all web pattern? The typical spider spider Araneus diadematus, like ecotopes. web is a fleeting behaviour pattern other orb weavers of the solidified into a lasting record. It is ecribellate families, employs in What is spider silk? Spider silk is the spider’s inherited ‘signature’, each bead of its capture threads a not a single-protein biopolymer. In which — although unlearned — is microscopic ‘windlass’ mechanism addition to the spidroins, its main modified predictably by the that allows supreme extendibility protein constituents, the typical environment. The web is many while absorbing the high kinetic spider dragline silk contains many times the spider’s size; energy of the prey without different organic and inorganic Current Biology Vol 15 No 10 R365 components, such as Is there a commercial future for neurotransmitter peptides, glyco- webs and silks? To manufacture proteins, lipids, sugars, such silks ‘the spider’ way, we phosphates, calcium, potassium need, firstly, to copy its extrusion and sulphur. Nevertheless, at and spinning system; several present only the spidroins are patents have been taken out for considered when analysing and methods of doing this, and a modelling a silk fibre’s mechanical number of research labs are properties (except for the capture working on the problem, which is silk mechanism). Spidroin proteins far from trivial. Secondly we need are highly repetitive in their main Zygiella x-notata’s frozen behaviour to have a good spinning section and rich in the amino acids pattern. Note the spiral-free signal thread feedstock, known as the ‘dope’. alanine and glycine. leading to a silken retreat where the To this effect, spidroin genes have spider can wait, hidden and protected, a Functionally, silks can be been expressed in various typical feature for the webs of spiders in viewed as a ‘filled rubber’, in this genus. organisms that are easily cultured, which crystallites provide the such as microorganisms as well as strength and a matrix provides the throughout the duct, and that a in higher plants and even in the elasticity: in combination, these combination of solvent (water) milk of goats. Nevertheless, many two components give the silk its extrusion and subsequent important functional aspects of the toughness. Dragline silks are thus acidification helps the process of natural molecules need to be nan-composites; for example the alignment and folding. The cuticle better understood before they can major ampullate silks of Nephila of the gland’s duct facilitates the be spun for best effect. In any spiders are a composite material rapid removal of water and case, once a reliable and cheap of amorphous-disordered glycine- provides the proton pump for the expression system is up and rich α-regions interspersed with acid bath. In this way the spider running, then both the artificial crystalline-ordered domains of uses a liquid crystalline spinning spinning dopes and the extruders antiparallel alanine-rich β-regions. process which, in terms of human can be tested and optimized. Only engineering, is highly advanced. by tuning both to act in synergy How is silk spun? At present we The details of the extrusion will we be able to manufacture do not know the precise process are crucial determinants of fibres that match spider threads mechanisms by which different the mechanical qualities of the silk. and take advantage of their silk proteins fold and assemble in millions of years of co-evolution of the ‘spinning ducts’ of the various What tools are used to study feed-stocks and extrusion and diverse spider glands. Some silk? Simple stretching of a silk systems. initial insights have been gained, thread on a tensile test rig can however, into the silk pathway of provide a lot of information about Where can I find out more? one typical spider silk: the the underlying structure of the Craig, C. (2004). Spider webs and silks. dragline silk produced by the material ‘silk’. The extension curve Oxford University Press, Oxford. Foelix, R. (1996). Biology of Spiders, major ampullate glands of the allows us to look behind the Oxford University Press, Oxford. golden silk spider Nephila spp. physical parameters of modulus, Kaplan, D.L., Adams, W.W., Viney, C., Here, as in all other spider silks, strength, extensibility and and Farmer, B.L. (1994). Silk the liquid crystalline silk feedstock toughness to the molecular forces Polymers: Materials Science and Biotechnology. (ACS Books, is prepared by specialist cells in involved. The shape of the Washington). the gland wall and stored in the stress–strain curve resolves even Krink, T., and Vollrath, F. (1999). Using lumen. As with most other silks, small changes in the molecular a virtual robot to model the use of this precursor silk is then interactions of a thread, be they regenerated legs in a web spider. Anim. Behav. 57, 223–241. converted into the solid fibre by the result of modifications in the Vollrath, F., and Knight, D.P. (2004). extrusion through the tubular feedstock (molecular Biology and technology of silk taper of a duct, where the substitutions), alterations in the production. Vol 2, 873-894. In enormously long (200–400 kDa) spinning conditions (spinning Biotechnology of biopolymers: from silk molecules first unfold and are temperature and speed) or the synthesis to patents.
Recommended publications
  • Howard Associate Professor of Natural History and Curator Of
    INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM).
    [Show full text]
  • Ontogenetic Changes in the Web of Epeirotypus Sp. (Araneae, Theridiosomatidae) Author(S): William G
    American Arachnological Society Ontogenetic Changes in the Web of Epeirotypus sp. (Araneae, Theridiosomatidae) Author(s): William G. Eberhard Source: Journal of Arachnology, Vol. 14, No. 1 (Spring, 1986), pp. 125-128 Published by: American Arachnological Society Stable URL: http://www.jstor.org/stable/3705562 . Accessed: 07/09/2011 09:12 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Arachnological Society is collaborating with JSTOR to digitize, preserve and extend access to Journal of Arachnology. http://www.jstor.org 1986. The Journal of Arachnology 14:125 Suzuki, S. 1976a. Cytotaxonomy in some species of the genus Leiobunum (Opiliones, Arachnida). Proc. Japan Acad., 52:134-136. Suzuki, S. 1976b. The genus Leiobunum C. L. Koch of Japan and adjacent countries (Leiobunidae, Opiliones, Arachnida). J. Sci. Hiroshima Univ., Ser. B, Div. 1, 26:187-260. Tsurusaki, N. 1982. Chromosomes of the Japanese gagrellid, Paraumbogrella huzitai Suzuki (Gagrellidae, Opiliones, Arachnida). Bull. British Arachnol. Soc, 5:397-398. Tsurusaki, N. 1985. Taxonomic revision of the Leiobunum curvipalpe-group (Arachnida, Opiliones, Phalangiidae). I. hikocola-, hiasai-, kohyai-, and platypenis- subgroups. J. Fac Sci., Hokkaido Univ., Ser. VI, Zool., 24:1-42. Nobuo Tsurusaki, Zoological Institute, Faculty of Science, Hokkaido University, Sapporo 060, Japan and Robert G.
    [Show full text]
  • Common Kansas Spiders
    A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas.
    [Show full text]
  • Hybrid Spider Silk with Inorganic Nanomaterials
    nanomaterials Review Hybrid Spider Silk with Inorganic Nanomaterials Aleksandra P. Kiseleva 1, Grigorii O. Kiselev 1, Valeria O. Nikolaeva 1, Gulaim Seisenbaeva 2 , Vadim Kessler 2,* , Pavel V. Krivoshapkin 1 and Elena F. Krivoshapkina 1,* 1 SCAMT Institute, ITMO University, Lomonosova St. 9, 191002 Saint Petersburg, Russia; [email protected] (A.P.K.); [email protected] (G.O.K.); [email protected] (V.O.N.); [email protected] (P.V.K.) 2 Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007 Uppsala, Sweden; [email protected] * Correspondence: [email protected] (V.K.); [email protected] (E.F.K.); Tel.: +46-186-71-541 (V.K.); +7-981-951-18-92 (E.F.K.) Received: 12 August 2020; Accepted: 14 September 2020; Published: 16 September 2020 Abstract: High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components.
    [Show full text]
  • Evolution of the Orb-Weaving Spiders
    Issues in Evolution Project - Fall 2016 Evolution of the Orb - Weaving Spiders Angela Harvey Braselton, Georgia, USA Miami University Ohio Global Field Program Introduction Orb weavers are spiders that spin geometric webs consistin g of several different types of silk for the frame, the radial lines, and the sticky spiral capture threads (Hormiga & Griswold, 2014). These are the webs that most people think of when they hear the word “spider”. Orb weavers are part of the group of spid ers known as Orbiculariae, an informal group containing the superfamilies Deinopoidea and Araneoidea (Brunetta & Craig, 2010; Hormiga & Griswold, 2014). The unique nature of the webs, the behaviors involved, and the chemical composition of the silks produ ced by these spiders gives an interesting view of their evolution (Tian & Lewis, 2005). Spiders are classified as arachnids, but spiders are the only arachnids to have abdominal spinnerets, allowing them more control of their silk (see Appendices 1 & 2). Both male and female spiders use silk throughout their lifetimes (Brunetta & Craig, 2010). This is unique in the world of arthropods, making spider silk useful in identifying and tracking spider relationships by studying the molecular proteins of the s ilk, the purpose of the silk, and the behaviors that accompany those purposes (Dimitrov et al., 2012). Prehistory As the aquatic arthropods moved out of the sea onto land more than 450 million years ago, many made their homes underground to avoid predators, help stave off dehydration, and reduce the effects of ultraviolet radiation. Plants were sparse and fairly small in this era, giving little protection.
    [Show full text]
  • Common Spiders of the Chicago Region 1 the Field Museum – Division of Environment, Culture, and Conservation
    An Introduction to the Spiders of Chicago Wilderness, USA Common Spiders of the Chicago Region 1 The Field Museum – Division of Environment, Culture, and Conservation Produced by: Jane and John Balaban, North Branch Restoration Project; Rebecca Schillo, Conservation Ecologist, The Field Museum; Lynette Schimming, BugGuide.net. © ECCo, The Field Museum, Chicago, IL 60605 USA [http://fieldmuseum.org/IDtools] [[email protected]] version 2, 2/2012 Images © Tom Murray, Lynette Schimming, Jane and John Balaban, and others – Under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (non-native species listed in red) ARANEIDAE ORB WEAVERS Orb Weavers and Long-Jawed Orb Weavers make classic orb webs made famous by the book Charlotte’s Web. You can sometimes tell a spider by its eyes, most have eight. This chart shows the orb weaver eye arrangement (see pg 6 for more info) 1 ARANEIDAE 2 Argiope aurantia 3 Argiope trifasciata 4 Araneus marmoreus Orb Weaver Spider Web Black and Yellow Argiope Banded Argiope Marbled Orbweaver ORB WEAVERS are classic spiders of gardens, grasslands, and woodlands. The Argiope shown here are the large grassland spiders of late summer and fall. Most Orb Weavers mature in late summer and look slightly different as juveniles. Pattern and coloring can vary in some species such as Araneus marmoreus. See the link for photos of its color patterns: 5 Araneus thaddeus 6 Araneus cingulatus 7 Araneus diadematus 8 Araneus trifolium http://bugguide.net/node/view/2016 Lattice Orbweaver Cross Orbweaver Shamrock Orbweaver 9 Metepeira labyrinthea 10 Neoscona arabesca 11 Larinioides cornutus 12 Araniella displicata 13 Verrucosa arenata Labyrinth Orbweaver Arabesque Orbweaver Furrow Orbweaver Sixspotted Orbweaver Arrowhead Spider TETRAGNATHIDAE LONG-JAWED ORB WEAVERS Leucauge is a common colorful spider of our gardens and woodlands, often found hanging under its almost horizontal web.
    [Show full text]
  • Spider Genomes Provide Insight Into Composition and Evolution of Venom and Silk
    ARTICLE Received 7 Aug 2013 | Accepted 31 Mar 2014 | Published 6 May 2014 DOI: 10.1038/ncomms4765 OPEN Spider genomes provide insight into composition and evolution of venom and silk Kristian W. Sanggaard1,2,*, Jesper S. Bechsgaard3,*, Xiaodong Fang4,5,*, Jinjie Duan6, Thomas F. Dyrlund1, Vikas Gupta1,6, Xuanting Jiang4, Ling Cheng4, Dingding Fan4, Yue Feng4, Lijuan Han4, Zhiyong Huang4, Zongze Wu4, Li Liao4, Virginia Settepani3, Ida B. Thøgersen1,2, Bram Vanthournout3, Tobias Wang3, Yabing Zhu4, Peter Funch3, Jan J. Enghild1,2, Leif Schauser7, Stig U. Andersen1, Palle Villesen6,8, Mikkel H. Schierup3,6, Trine Bilde3 & Jun Wang4,5,9 Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. 1 Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
    [Show full text]
  • Eight Legged Encounters Eileen A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Eileen Hebets Publications Papers in the Biological Sciences 11-2014 Eight Legged Encounters Eileen A. Hebets University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscihebets Part of the Animal Sciences Commons, Behavior and Ethology Commons, Biology Commons, Entomology Commons, and the Genetics and Genomics Commons Hebets, Eileen A., "Eight Legged Encounters" (2014). Eileen Hebets Publications. 73. http://digitalcommons.unl.edu/bioscihebets/73 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eileen Hebets Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EIGHT-LEGGED ENCOUNTERS By Eileen A. Hebets, University of Nebraska; Funded by NSF TABLE OF CONTENTS CLASSIFICATION & TAXONOMY STATIONS I. WHAT IS AN ARTHROPOD? page 4 a. The goal of this station is to introduce the audience to some basic information about “arthropods”. Who are they? How and why are they grouped together? Answers to these questions are achieved through a sorting game with plastic animals. II. CREATE A CHELICERATE page 14 a. This station introduces the audience to the basic characteristics of chelicerates (a group which they have learned about from Station I) by allowing them to build their own chelicerate out of clay. III. ASSEMBLE AN ARACHNID page 16 a. Arachnids are surprisingly diverse, with 11 different living orders! This station introduces the audience to the diversity of body types found within the 11 living arachnid orders through a coloring activity.
    [Show full text]
  • Spiders Did Not Repeatedly Gain, but Repeatedly Lost, Foraging Webs
    Spiders did not repeatedly gain, but repeatedly lost, foraging webs Jonathan A. Coddington1, Ingi Agnarsson1,2, Chris A. Hamilton3 and Jason E. Bond4 1 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA 2 Department of Biology, University of Vermont, Burlington, VT, United States of America 3 Department of Entomology, Plant Pathology, & Nematology, University of Idaho, Moscow, ID, United States of America 4 Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States of America ABSTRACT Much genomic-scale, especially transcriptomic, data on spider phylogeny has accumu- lated in the last few years. These data have recently been used to investigate the diverse architectures and the origin of spider webs, concluding that the ancestral spider spun no foraging web, that spider webs evolved de novo 10–14 times, and that the orb web evolved at least three times. These findings in fact result from a particular phylogenetic character coding strategy, specifically coding the absence of webs as logically equivalent, and homologous to, 10 other observable (i.e., not absent) web architectures. ``Absence'' of webs should be regarded as inapplicable data. To be analyzed properly by character optimization algorithms, it should be coded as ``?'' because these codes—or their equivalent—are handled differently by such algorithms. Additional problems include critical misspellings of taxon names from one analysis to the next (misspellings cause some optimization algorithms to drop terminals, which affects taxon sampling and results), and mistakes in spider natural history. In sum, the method causes character optimization algorithms to produce counter-intuitive results, and does not distinguish absence from secondary loss.
    [Show full text]
  • Common Spiders (Arachnida: Araneae) in the Wichita Mountains and Surrounding Areas
    Common Spiders (Arachnida: Araneae) in the Wichita Mountains and Surrounding Areas Angel A. Chiri Entomologist and abdomen) and does not include legs. Introduction Although this guide is primarily for spiders, harvestmen, scorpions, ticks, and sun spiders are Spiders belong in the Phylum Arthropoda, Class briefly mentioned. Arachnida, Order Araneae. These common arachnids are found in grasslands, forests, orchards, cultivated fields, backyards, gardens, empty lots, parks, and homes. There are some 570 genera and 3,700 species of spiders in North America, north of Mexico. According to an Oklahoma State University checklist at least some 187 genera and 432 species were recorded in the state. Cokendolpher and Bryce (1980) examined arachnid specimens collected at the Wichita Mountains Wildlife Refuge by various groups between 1926 and 1978. Their work yielded a total of 182 arachnid species, of which 170 were spiders. Figure 1. Texas brown tarantula, Aphonopelma hentzi, male Many spiders are common and distinctive, often seen resting on their webs or crawling on the Summary of Structure and Function ground during the warmer months. The larger orb-weavers, for instance, are readily noticed in Being arthropods, spiders have a rigid external late summer and early fall because of their size skeleton, or exoskeleton, and jointed legs. The and conspicuousness. Others are uncommon or spider body consists of two segments, the seldom seen because of their secretive habits or cephalothorax (anterior segment) and the small size. For instance, some spiders that live abdomen (posterior segment), joined by a short, in leaf litter are minute, cryptic, and seldom thin, flexible pedicel. The dorsal part of the noticed without the use of special collecting cephalothorax is the carapace.
    [Show full text]
  • Capture Silk Scaffold Production in the Cribellar Web Spider
    Capture Silk Scaffold Production in the Cribellar Web Spider Yan SUN Dankook University - Cheonan Campus Seung-Min LEE Dankook University - Cheonan Campus Bon-Jin KU Dankook University - Cheonan Campus Eun-Ah PARK Dankook University - Cheonan Campus Myung-Jin Moon ( [email protected] ) Dankook University - Cheonan Campus https://orcid.org/0000-0001-9628-4818 Research Article Keywords: Cribellum, scaffold, silk, spider, spigot Posted Date: May 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-478775/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Applied Microscopy on July 13th, 2021. See the published version at https://doi.org/10.1186/s42649-021-00061-y. Page 1/17 Abstract Spider capture silk is a kind of natural scaffold material that outperforms almost any synthetic material in its combination of strength and elasticity. Among the various kinds of silk threads, the cribellar thread is the most primitive type of prey-capturing thread found in spider webs. We analyze the functional organization of the sieve-like cribellum spigots and a specialized comb bristles of calamistrum for capture thread production in the titanoecid spider Nurscia albofasciata. It's outer surface of the cribellum is covered with thousands of tiny spigots, and this cribellum plate produces the non-sticky threads which composed of thousands of nest nanobers. Average length of the cribellum spigot in N. albofasciata is 10 µm, and each cribellate spigot appeared as singular, long shafts with pagoda-like tiered tips.
    [Show full text]
  • Studies on the Geometrical Design of Spider Webs for Reinforced Composite Structures
    Article Studies on the Geometrical Design of Spider Webs for Reinforced Composite Structures Yohannes Regassa 1,* , Hirpa G. Lemu 2,* , Belete Sirabizuh 1 and Samuel Rahimeto 3 1 Mechanical Engineering Department, College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia; [email protected] 2 Department of Mechanical and Structural Engineering and Materials Science, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 FORUS, N-4036 Stavanger, Norway 3 Artificial Intelligence Center, P.O. Box 40782, Addis Ababa, Ethiopia; [email protected] * Correspondence: [email protected] (Y.R.); [email protected] (H.G.L.) Abstract: Spider silk is an astonishingly tough biomaterial that consists almost entirely of large proteins. Studying the secrets behind the high strength nature of spider webs is very challenging due to their miniature size. In spite of their complex nature, researchers have always been inspired to mimic Nature for developing new products or enhancing the performance of existing technologies. Accordingly, the spider web can be taken as a model for optimal fiber orientation for composite materials to be used in critical structural applications. In this study an attempt is made to analyze the geometrical characteristics of the web construction building units such as spirals and radials. As a measurement tool, we have used a developed MATLAB algorithm code for measuring the node to node of rings and radials angle of orientation. Spider web image samples were collected randomly from an ecological niche with black background sample collection tools.
    [Show full text]