Pulling and Lifting Macroscopic Objects by Light

Total Page:16

File Type:pdf, Size:1020Kb

Pulling and Lifting Macroscopic Objects by Light Pulling and lifting macroscopic objects by light Gui-hua Chen1,2, Mu-ying Wu1, and Yong-qing Li1,2* 1School of Electronic Engineering & Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, P.R. China 2Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353, USA (Received XX Month X,XXX; published XX Month, XXXX) Laser has become a powerful tool to manipulate micro-particles and atoms by radiation pressure force or photophoretic force, but optical manipulation is less noticeable for large objects. Optically-induced negative forces have been proposed and demonstrated to pull microscopic objects for a long distance, but are hardly seen for macroscopic objects. Here, we report the direct observation of unusual light-induced attractive forces that allow pulling and lifting centimeter-sized light-absorbing objects off the ground by a light beam. This negative force is based on the radiometric effect on a curved vane and its magnitude and temporal responses are directly measured with a pendulum. This large force (~4.4 μN) allows overcoming the gravitational force and rotating a motor with four-curved vanes (up to 600 rpm). Optical pulling of macroscopic objects may find nontrivial applications for solar radiation-powered near-space propulsion systems and for understanding the mechanisms of negative photophoretic forces. PACS number: 42.50.Wk, 87.80.Cc, 37.10.Mn In Maxwell’s theory of electromagnetic waves, light carries rotation of the objects, they are insufficient to manipulate the energy and momentum, and the exchange of the energy and objects in vertical direction. momentum in light-matter interaction generates optically-induced Here we report a direct observation of a negative optically- forces acting on material objects. Can a centimeter-sized or larger induced force on centimeter-sized light-absorbing objects on object that can be viewed by naked eye be lifted up by a light beam the order of μN that allows lifting up the object over a and pulled towards the light source? Although optical forces have longitudinal distance of >5 mm in ~40 ms towards the light been widely applied for the manipulation of microscopic objects [1– source by a light beam of 1-W power. This indicates that the 6], they are usually unnoticeable on macroscopic objects because optically-induced force acting on macroscopic objects could be the magnitude of optical forces is generally much weaker than the larger than the object’s weight by changing the surface geometry. gravitational force (FG) of the large objects. Generally, when an Thus, our experiment increases the force per object’s weight object immersed in a gaseous environment is illuminated by by three orders of magnitude compared to previous works. Our light, two types of optically-induced forces are generated by experiment relies on radiometric force FRM that acts on a thin the light-matter interaction. One is radiation pressure force vane with a curved surface structure immersed in a rarefied (FRP) arising from direct momentum transfer between the gas, on which a layer of black absorber is coated to increase object and the incident light [1,2], which is in pN or nN range the absorption. FRM could be classified into two types based and is not enough to lift large objects. The other is on the variation in surface temperature or in heat exchange photophoretic or radiometric force (FRM) due to photo-heating coefficient of the vane, like photophoretic forces acting on effect, in which the photon energy of the incident light is first micro-particles [7,8]. The first type of radiometric force (FΔT) converted into the thermal energy of the object due to light is caused by the temperature difference between two sides of absorption and then asymmetrical momentum transfer the vane, pointing from the hot to the cold side and being between the heated object and the surrounding gas molecules repulsive from the illumination light. The second type of produces FRM [7,8], which can be several orders of magnitude radiometric force (FΔα) is caused by the unbalanced heat larger than the radiation force FRP [9,10]. Optically-induced exchange between two sides of the vane with the gas molecules negative forces have been demonstrated to pull microscopic even if two sides are heated at the same temperature, due to the objects for a long distance [11,12]. The generation of optically- difference in surface geometry or accommodation coefficient. The induced forces on macroscopic objects could trigger a new era of FΔα-force could be attractive or repulsive in the light propagation optomechanical applications. direction [7–9]. Since Crookes’ pioneering work in Surprisingly, only a few experiments reported on the 1870s [15,16], extensive efforts have been made to understand observation of optically-induced forces on centimeter-sized the mechanisms of radiometric forces including Maxwell, objects [13–16], involving force magnitude of up to 1–102 nN Reynolds, and Einstein’s work [18–20], but almost all the which was three or more orders of magnitude less than the efforts were focused on the FΔT-force acting on flat vanes that gravity of the target objects. For examples, Magallanes et al requires a temperature difference across or along the recently observed a lateral optical force of ~1 nN on a vane [14,21–23]. There are still some confusions about the birefringence object illuminated with a 1-W incident light, dominant mechanisms in various regimes and causing a lateral displacement of 0.5 mm in ~100 s [13]. Wolfe configurations [16]. Recent applications in near-space et al reported a light-induced transverse force of ~400 nN propulsion systems driven by solar radiation [24–26], acting on a horizontal vane radiometer due to thermal creep micromachines [13,21], and computational techniques [27–29] effect [14]. Crookes demonstrated a radiometric force on black- renewed the interest in FRM. Our experiment deals with the white flat vanes or cup-shaped vanes when illuminated by FΔα-force acting on a curved vane, which doesn’t require a light [15,16], but the magnitude and dynamic properties of Crookes temperature gradient on the vane and is seldom considered radiometric forces have never been directly measured [17]. previously. Although these forces may cause the horizontal motion or 1 The experimental setup is described in detail in the cylinder surface, where Θ0=W0/R in radian, and W0 is the arc supplementary materials (SM). In FIG. 1, we show direct length and R is the radius. FRM is attractive for the illumination observation of a light-induced pulling or pushing force acting on concave side (Θ0>0). FRM is repulsive for the illumination on a thin absorbing curved metal vane. To determine the on convex side (Θ0<0). For a flat vane (Θ0=0), FRM is zero so magnitude and direction of the radiometric force FRM, a single that it is not deflected by the laser beam, and this is a proof of cylindrical vane is suspended with an ultrafine copper wire as no temperature variation between the opposite sides of the a pendulum in a vacuum chamber and illuminated by a light aluminum vane. beam (see SM). The photon energy of the illumination light is In FIG. 2, we show that the attractive radiometric force is absorbed by Black 2.0 paint on one side and transferred by large enough to overcome the gravitational force FG and lift an thermal conduction to metal vane, resulting in both sides of the ultrathin curved gold vane off the ground by the laser vane heated to an identical temperature since the used illumination. FG of the curved gold leaf is estimated to be 1.85 aluminum or gold vanes are excellent conductors. Therefore, μN from the known density and volume of the vane. The vane FRM acting on a curved metal vane is the second type of can be quickly pulled off from the supporting surface and radiometric force caused by unbalanced heat exchange due to lifted up until the top of the vacuum chamber in ~40 ms by the the curved surface geometry. The magnitude of FRM is attractive FRM, see FIG. S1 and Supplementary Video S2. determined by FRM=mgsinθ, where m is the mass of the vane, g is the gravitation acceleration, and θ is the angle displacement. When a laser beam is incident on the concave side of the vane, it is pulled towards the light source (FIGS. 1b and 1c, and Supplementary Video S1). Once the laser is turned off, the vane returns to its equilibrium position. However, when the laser beam is incident on the convex side, the vane is pushed along the light propagation direction (FIG. 1e). Figure 1d shows the dependence of the force magnitude on the gas pressure with a constant laser power. The maximum angle displacement is 0.172 rad at 0.1~0.2 Torr corresponding to FIG. 2. Lifting of a curved vane. (a) An ultrathin curved vane is lifted Knudsen number Kn~0.1, and thus the maximum pulling force when the concave side is illuminated. (b) Time-lapsed images of a is ~4.4 µN from the known density and volume of the vane, cylindrical gold leaf (with 7×7 mm in size and 0.2 µm in thickness) when the laser beam is turned on. The laser power is 1 W at 650 nm λ where Kn= /W is defined as the ratio of the molecular mean and the pressure is 0.3 Torr. free path λ of the surrounding gas to the characteristic length W of the vane [17]. It should be noted that the radiation We interpret the observed negative FRM acting on a curved pressure force (=P/c) is ~2.3 nN, which is smaller than FRM by vane by the combination of pressure force (Fn) and shear force about three orders of magnitude, where P is the absorbing (Ft), in contrast to the area force, edge force, and shear force power of incident laser, and c is the speed of light.
Recommended publications
  • 30. Electromagnetic Waves and Optics
    30. Electromagnetic waves and optics www.ariel.ac.il Ԧ 1 푊 Power per unit area and points Poynting vector: 푆 = 퐸 × 퐵 has units [ 2] 휇0 푚 in the direction of propagation 1 푆Ԧ = 퐸 × 퐵 휇0 퐸 퐸 퐵 푆Ԧ http://www.ariel.ac.il/ 퐵 푆Ԧ Intensity is time averaged norm of Poynting vector: 1 푇 퐼 = 푆 = ׬ 푆Ԧ 푑푡 푎푣 푇 0 퐸 푥, 푡 = 퐸 cos 푘푥 − 휔푡 푦 0 1 푆Ԧ = 퐸 × 퐵 퐸0 휇 퐵 푥, 푡 = cos 푘푥 − 휔푡 0 푧 푐 Intensity is time averaged norm of Poynting vector: 2 1 푇 Ԧ 퐸0 푇 2 퐼 = 푆푎푣 = ׬ 푆 푑푡 = ׬ cos 푘푥 − 휔푡 푑푡 푇 0 푐휇0 0 퐸 푥, 푡 = 퐸 cos 푘푥 − 휔푡 푦 0 1 푆Ԧ = 퐸 × 퐵 퐸0 휇 퐵 푥, 푡 = cos 푘푥 − 휔푡 0 푧 푐 Intensity is time averaged norm of Poynting vector: 푇 푇 1 퐸2 퐸2 푐퐵2 Ԧ 0 2 0 0 푊 퐼 = 푆푎푣 = න 푆 푑푡 = න cos 푘푥 − 휔푡 푑푡 = = units [ ൗ 2] 푇 푐휇0 2푐휇0 2휇0 푚 0 0 1 2 1 1 2 Energy density 푢 = 휀표퐸 + 퐵 2 2 휇0 퐸푦 푥, 푡 = 퐸0cos 푘푥 − 휔푡 퐸 Electric field Magnetic field 0 퐵푧 푥, 푡 = cos 푘푥 − 휔푡 energy density energy density 푐 1 2 1 1 2 2 Energy density 푢 = 휀표퐸 + 퐵 = 휀표퐸 2 2 휇0 퐸푦 푥, 푡 = 퐸0cos 푘푥 − 휔푡 퐸 Electric field Magnetic field 0 퐵푧 푥, 푡 = cos 푘푥 − 휔푡 energy density energy density 푐 퐸 (퐵 = = 휀 휇 퐸) 푐 표 0 1 2 1 1 2 2 Energy density 푢 = 휀표퐸 + 퐵 = 휀표퐸 2 2 휇0 퐸푦 푥, 푡 = 퐸0cos 푘푥 − 휔푡 퐸 Electric field Magnetic field 0 퐵푧 푥, 푡 = cos 푘푥 − 휔푡 energy density energy density 푐 1 푇 1 Average energy density 푢 = ׬ 휀 퐸2푑푡 = 휀 퐸2 푎푣 푇 0 표 2 표 0 1 2 1 1 2 2 Energy density 푢 = 휀표퐸 + 퐵 = 휀표퐸 2 2 휇0 퐸푦 푥, 푡 = 퐸0cos 푘푥 − 휔푡 퐸 Electric field Magnetic field 0 퐵푧 푥, 푡 = cos 푘푥 − 휔푡 energy density energy density 푐 2 1 푇 2 1 2 퐸0 ( = Average energy density 푢푎푣 = ׬ 휀표퐸 푑푡 = 휀표퐸0 = 휀표휇0푐퐼 (Intensity = 퐼 푇 0 2 2푐휇0 퐼 퐽 푢 = units:
    [Show full text]
  • Radiometric Actuators for Spacecraft Attitude Control
    Radiometric Actuators for Spacecraft Attitude Control Ravi Teja Nallapu Amit Tallapragada Jekan Thangavelautham Space and Terrestrial Robotic Space and Terrestrial Robotic Space and Terrestrial Robotic Exploration Laboratory Exploration Laboratory Exploration Laboratory Arizona State University Arizona State University Arizona State University 781 E. Terrace Mall, Tempe, AZ 781 E. Terrace Mall, Tempe, AZ 781 E. Terrace Mall, Tempe, AZ [email protected] [email protected] [email protected] Abstract—CubeSats and small satellites are emerging as low- cost tools to perform astronomy, exoplanet searches and earth With this in mind, a new device to control the orientation of observation. These satellites can be dedicated to pointing at a spacecraft is presented in this paper and exploits targets for weeks or months at a time. This is typically not radiometric forces. To understand how this actuator works, possible on larger missions where usage is shared. Current let’s look at the Crooke’s Radiometer [1, 2] which consists satellites use reaction wheels and where possible magneto- torquers to control attitude. However, these actuators can of 4 thin plates, called vanes, each colored black and white induce jitter due to various sources. In this work, we introduce on its opposite surfaces. These vanes are suspended from a a new class of actuators that exploit radiometric forces induced spindle such that opposite colors faces each other. This by gasses on surface with a thermal gradient. Our work shows setup is now placed in a low-pressure vessel containing that a CubeSat or small spacecraft mounted with radiometric trace gasses of nitrogen or argon (Figure 1).
    [Show full text]
  • HISTORY Nuclear Medicine Begins with a Boa Constrictor
    HISTORY Nuclear Medicine Begins with a Boa Constrictor Marshal! Brucer J Nucl Med 19: 581-598, 1978 In the beginning, a boa constrictor defecated in and then analyzed the insoluble precipitate. Just as London and the subsequent development of nuclear he suspected, it was almost pure (90.16%) uric medicine was inevitable. It took a little time, but the acid. As a thorough scientist he also determined the 139-yr chain of cause and effect that followed was "proportional number" of 37.5 for urea. ("Propor­ inexorable (7). tional" or "equivalent" weight was the current termi­ One June week in 1815 an exotic animal exhibi­ nology for what we now call "atomic weight.") This tion was held on the Strand in London. A young 37.5 would be used by Friedrich Woehler in his "animal chemist" named William Prout (we would famous 1828 paper on the synthesis of urea. Thus now call him a clinical pathologist) attended this Prout, already the father of clinical pathology, be­ scientific event of the year. While he was viewing a came the grandfather of organic chemistry. boa constrictor recently captured in South America, [Prout was also the first man to use iodine (2 yr the animal defecated and Prout was amazed by what after its discovery in 1814) in the treatment of thy­ he saw. The physiological incident was common­ roid goiter. He considered his greatest success the place, but he was the only person alive who could discovery of muriatic acid, inorganic HC1, in human recognize the material. Just a year earlier he had gastric juice.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20060001569A1 (19) United States (12) Patent Application Publication (10) Pub. N0.: US 2006/0001569 A1 Scandurra (43) Pub. Date: Jan. 5, 2006 (54) RADIOMETRIC PROPULSION SYSTEM Publication Classi?cation (76) Inventor: Marco Scandurra, Cambridge, MA (51) 110.0. 001s 3/02 (2006.01) 601K 15/00 (2006.01) Correspondence Address: (52) Us. 01. ............................................... ..342/351;374/1 STANLEY H. KREMEN 4 LENAPE LANE (57) ABSTRACT EAST BRUNSWICK, NJ 08816 (US) Ahighly ef?cient propulsion system for ?ying, ?oating, and Appl. No.: ground vehicles that operates in an atmosphere under stan (21) 11/068,470 dard conditions according to radiornetric principles. The Filed: Feb. 22, 2005 propulsion system comprises specially fabricated plates that (22) exhibit large linear thrust forces upon application of a Related US. Application Data temperature gradient across edge surfaces. Several ernbodi rnents are presented. The propulsion system has no moving (60) Provisional application No. 60/521,774, ?led on Jul. parts, does not use Working ?uids, and does not burn 1, 2004. hydrocarbon fuels. 1O 13 12 \ 11 Patent Application Publication Jan. 5, 2006 Sheet 1 0f 16 US 2006/0001569 A1 FIG. 2 Patent Application Publication Jan. 5, 2006 Sheet 2 0f 16 US 2006/0001569 A1 25 2X - FIG. 6 Patent Application Publication Jan. 5, 2006 Sheet 3 0f 16 US 2006/0001569 A1 27 0000000. I.N... 000000. FIG. 7 FIG. 8 FIG. 9 ~ FIG. 10 34 39 QI 40/? 9: 38 35 FIG. 11 Patent Application Publication Jan. 5, 2006 Sheet 4 0f 16 US 2006/0001569 A1 42 43/ FIG. 12 Patent Application Publication Jan.
    [Show full text]
  • Capítulo 21 21
    Capítulo 21 21 Universidade Estadual de Campinas Instituto de Física “Gleb Wataghin” Instrumentação para Ensino – F 809 RADIÔMETRO DE CROOKES III Aluno: Everton Geiger Gadret Orientadora: Profª. Dra. Mônica Alonso Cotta Coordenador: Prof. Dr. José Joaquim Lunazzi 21-1 Introdução O radiômetro é um instrumento capaz de medir radiação. Ao incidir sobre as palhetas do radiômetro, a luz faz com que se inicie um movimento de rotação das palhetas em torno do eixo da haste que o sustenta (figura 1). Quando observou pela primeira vez o movimento, Maxwell imaginou estar observando um experimento que comprovava sua previsão a respeito da pressão de radiação que uma onda eletromagnética exerce sobre a matéria. Ledo engano, pois o movimento ocorria no sentido inverso ao previsto por sua teoria. Até os dias de hoje, acredita-se que o fenômeno que ocorre tem natureza termodinâmica, sendo o movimento gerado por correntes de convecção do meio geradas pelo aquecimento desigual das faces das palhetas. A solução correta para o fenômeno foi dada qualitativamente por Osborne Reynolds. Em 1879 Reynolds submeteu um artigo à Royal Society no qual considerava o que chamou de “transpiração térmica” e também discutiu a teoria do radiômetro. Ele chamou de “transpiração térmica” o fluxo de gás através de palhetas porosas caudado pela diferença de pressão entre os lados da palheta. Se o gás está inicialmente à mesma pressão dos dois lados, há um fluxo de gás do lado mais frio para o lado mais quente, resultando em uma pressão maior do lado quente se as palhetas não se movessem. O equilíbrio é alcançado quando a razão entre as pressões de cada lado é a raiz quadrada da razão das temperaturas absolutas.
    [Show full text]
  • Ihtc14-22023
    Proceedings of the 14th International Heat Transfer Conference IHTC14 August 08-13, 2010, Washington, DC, USA IHTC14-22023 REYNOLDS, MAXWELL AND THE RADIOMETER, REVISITED Holger Martin Thermische Verfahrenstechnik, Karlsruhe Institute of Technology (KIT) Karlsruhe, Germany ABSTRACT later by G. Hettner, goes through a maximum. Albert Einstein’s In 1969, S. G. Brush and C. W. F. Everitt published a approximate solution of the problem happens to give the order historical review, that was reprinted as subchapter 5.5 Maxwell, of magnitude of the forces in the maximum range. Osborne Reynolds, and the radiometer, in Stephen G. Brush’s famous book The Kind of Motion We Call Heat. This review A comprehensive formula and a graph of the these forces covers the history of the explanation of the forces acting on the versus pressure combines all the relevant theories by Knudsen vanes of Crookes radiometer up to the end of the 19th century. (1910), Einstein (1924), Maxwell (1879) (and Hettner (1926), The forces moving the vanes in Crookes radiometer (which are Sexl (1928), and Epstein (1929) who found mathematical not due to radiation pressure, as initially believed by Crookes solutions for Maxwells creeping flow equations for non- and Maxwell) have been recognized as thermal effects of the isothermal spheres and circular discs, which are important for remaining gas by Reynolds – from his experimental and thermophoresis and for the radiometer). theoretical work on Thermal Transpiration and Impulsion, in 1879 – and by the development of the differential equations The mechanism of Thermal Creeping Flow will become of describing Thermal Creeping Flow, induced by tangential increasing interest in micro- and submicro-channels in various stresses due to a temperature gradient on a solid surface by new applications, so it ought to be known to every graduate Maxwell, earlier in the same year, 1879.
    [Show full text]
  • Forces, Light and Waves Mechanical Actions of Radiation
    Forces, light and waves Mechanical actions of radiation Jacques Derouard « Emeritus Professor », LIPhy Example of comets Cf Hale-Bopp comet (1997) Exemple of comets Successive positions of a comet Sun Tail is in the direction opposite / Sun, as if repelled by the Sun radiation Comet trajectory A phenomenon known a long time ago... the first evidence of radiative pressure predicted several centuries later Peter Arpian « Astronomicum Caesareum » (1577) • Maxwell 1873 electromagnetic waves Energy flux associated with momentum flux (pressure): a progressive wave exerts Pressure = Energy flux (W/m2) / velocity of wave hence: Pressure (Pa) = Intensity (W/m2) / 3.10 8 (m/s) or: Pressure (nanoPa) = 3,3 . I (Watt/m2) • NB similar phenomenon with acoustic waves . Because the velocity of sound is (much) smaller than the velocity of light, acoustic radiative forces are potentially stronger. • Instead of pressure, one can consider forces: Force = Energy flux x surface / velocity hence Force = Intercepted power / wave velocity or: Force (nanoNewton) = 3,3 . P(Watt) Example of comet tail composed of particles radius r • I = 1 kWatt / m2 (cf Sun radiation at Earth) – opaque particle diameter ~ 1µm, mass ~ 10 -15 kg, surface ~ 10 -12 m2 – then P intercepted ~ 10 -9 Watt hence F ~ 3,3 10 -18 Newton comparable to gravitational attraction force of the sun at Earth-Sun distance Example of comet tail Influence of the particles size r • For opaque particles r >> 1µm – Intercepted power increases like the cross section ~ r2 thus less strongly than gravitational force that increases like the mass ~ r3 Example of comet tail Influence of the particles size r • For opaque particles r << 1µm – Solar radiation wavelength λ ~0,5µm – r << λ « Rayleigh regime» – Intercepted power varies like the cross section ~ r6 thus decreases much stronger than gravitational force ~ r3 Radiation pressure most effective for particles size ~ 1µm Another example Ashkin historical experiment (1970) A.
    [Show full text]
  • Researchers Turn Classic Children's Toy Into Tiny Motor 30 June 2010, by Eric Betz
    Researchers Turn Classic Children's Toy Into Tiny Motor 30 June 2010, By Eric Betz from the radiometer, leaving a thin, low-pressure atmosphere inside. The air molecules near the black surface get warm, while the air molecules on the silver side of the blade stay cool. That creates a strong temperature difference between the two sides. It’s this temperature difference that causes the air to flow and makes the propeller spin, generating a miniscule amount of power, but enough to be useful. By modifying the design and applying a high- tech coating to the blades, they were able to remove the bulb and make it small enough to navigate human arteries. “When there is a temperature difference between the gas and the room, there’s a flow of air,” said Li- Pictured above is a Crookes radiometer -- also known as Hsin Han, of the University of Texas at Austin who the light mill -- which consists of an airtight glass bulb, headed up the team of researchers. “We needed a containing a partial vacuum. Inside are a set of vanes tiny little motor to place at the end of a catheter, which are mounted on a spindle. The vanes rotate when and we realized we could build a micromotor much exposed to light, with faster rotation for more intense smaller for cheaper—and with less effort—using this light, providing a quantitative measurement of method.” electromagnetic radiation intensity. The approach is part of an effort to get high quality, 3D-images from inside arteries and blood vessels using a technique called optical coherence Researchers at the University of Texas at Austin tomography (OCT).
    [Show full text]
  • By Philip Gibbs
    How does a light-mill work? By Philip Gibbs Abstract: This answer to the Frequently Asked Question first appeared in the Usenet Physics FAQ in 1997. In 1873, while investigating infrared radiation and the element thallium, the eminent Victorian experimenter Sir William Crookes developed a special kind of radiometer, an instrument for measuring radiant energy of heat and light. Crookes's Radiometer is today marketed as a conversation piece called a light-mill or solar engine. It consists of four vanes, each of which is blackened on one side and silvered on the other. These are attached to the arms of a rotor which is balanced on a vertical support in such a way that it can turn with very little friction. The mechanism is encased inside a clear glass bulb that has been pumped out to a high, but not perfect, vacuum. When sunlight falls on the light-mill, the vanes turn with the black surfaces apparently being pushed away by the light. Crookes at first believed this demonstrated that light radiation pressure on the black vanes was turning it around, just like water in a water mill. His paper reporting the device was refereed by James Clerk Maxwell, who accepted the explanation Crookes gave. It seems that Maxwell was delighted to see a demonstration of the effect of radiation pressure as predicted by his theory of electromagnetism. But there is a problem with this explanation. Light falling on the black side should be absorbed, while light falling on the silver side of the vanes should be reflected. The net result is that there is twice as much radiation pressure on the metal side as on the black.
    [Show full text]
  • Sir William Crookes (1832-1919) Published on Behalf of the New Zealand Institute of Chemistry in January, April, July and October
    ISSN 0110-5566 Volume 82, No.2, April 2018 Realising the hydrogen economy: economically viable catalysts for hydrogen production From South America to Willy Wonka – a brief outline of the production and composition of chocolate A day in the life of an outreach student Ngaio Marsh’s murderous chemistry Some unremembered chemists: Sir William Crookes (1832-1919) Published on behalf of the New Zealand Institute of Chemistry in January, April, July and October. The New Zealand Institute of Chemistry Publisher Incorporated Rebecca Hurrell PO Box 13798 Email: [email protected] Johnsonville Wellington 6440 Advertising Sales Email: [email protected] Email: [email protected] Printed by Graphic Press Editor Dr Catherine Nicholson Disclaimer C/- BRANZ, Private Bag 50 908 The views and opinions expressed in Chemistry in New Zealand are those of the individual authors and are Porirua 5240 not necessarily those of the publisher, the Editorial Phone: 04 238 1329 Board or the New Zealand Institute of Chemistry. Mobile: 027 348 7528 Whilst the publisher has taken every precaution to ensure the total accuracy of material contained in Email: [email protected] Chemistry in New Zealand, no responsibility for errors or omissions will be accepted. Consulting Editor Copyright Emeritus Professor Brian Halton The contents of Chemistry in New Zealand are subject School of Chemical and Physical Sciences to copyright and must not be reproduced in any Victoria University of Wellington form, wholly or in part, without the permission
    [Show full text]
  • Numerical Simulation of the Crookes Radiometer
    Numerical Simulation of the Crookes Radiometer Luc Mieussens, Guillaume Dechristé Institut de Mathématiques de Bordeaux Université de Bordeaux Séminaire de mécanique des fluides numériques, Institut Henri Poincaré January 25–26, 2016 Crookes radiometer invented by W. Crookes (1874) • rarefied gas effect (Kn 0:1): disappears in vacuum or with • dense gases ≈ Reynolds, Maxwell: light• heated vanes ! temperature difference in ! white side the gas temperature Tw black side force (radiometric forces) temperature Tb>Tw ! Radiometric forces renewed interest: possible application for microflows (MEMS) • this talk: a numerical tool for 3D simulations of the Crookes • radiometer (based on the Boltzmann equation) other applications: any rarefied flow with moving obstacles • (e.g. vacuum pumps) Outline 1 Origin of the radiometric forces 2 Kinetic model 3 Numerical method 4 2D Simulations 5 Extensions Origin of the radiometric forces Crookes: radiation pressure ("radiometer”) • Reynolds 1874: pressure difference in the gas • gas pressure difference white side temperature Tw pb>pw black side temperature Tb>Tw “area” effect Origin of the radiometric forces Reynolds and Maxwell 1879: edge effect • white side temperature Tw black side Tb temperature Tb>Tw Tw temperature gradient Origin of the radiometric forces Reynolds and Maxwell 1879: edge effect • white side temperature Tw black side Tb temperature Tb>Tw Tw temperature gradient Origin of the radiometric forces Reynolds and Maxwell 1879: edge effect • white side temperature Tw black side Tb temperature Tb>Tw Tw temperature gradient Origin of the radiometric forces Reynolds and Maxwell 1879: edge effect • white side temperature Tw radiometric force black side Tb temperature Tb>Tw Tw temperature gradient Origin of the radiometric forces Reynolds and Maxwell 1879: edge effect • white side temperature Tw radiometric force black side Tb temperature Tb>Tw Tw temperature gradient Origin of the radiometric forces recent works: • • Gimelshein, Muntz, Selden, Ketsdever, Alexeenko, etc.
    [Show full text]
  • Nobel Lecture: Optical Tweezers and Their Application to Biological Systems
    65 Optical Tweezers and their Application to Biological Systems Nobel Lecture, December 8, 2018 by Arthur Ashkin* Bell Laboratories, Holmdel, NJ, USA. it is a pleasure to present this summary of my 2018 Physics Nobel Lecture [1] that was delivered in Stockholm, Sweden, on December 8, 2018 by my fellow Bell Labs scientist and friend René-Jean Essiambre. This summary is presented chronologically as in the Lecture. It starts with my fascination with light as a youngster and goes on to the invention of the optical tweezer and its applications to biological systems, the work that was recognized with a Nobel Prize. Along the way, I provide simple and intuitive explanations of how the optical tweezer can be understood to work. This document is a personal recollection of events that led me to invent the optical tweezer. It should not be interpreted as being complete in the historical attribution of the scientifc discoveries discussed here. CROOKES RADIOMETER: THERMAL EFFECTS I have always been fascinated by the forces that light can exert on objects. I started to play with a Crookes radiometer [2] in my early teenage years and tried all kinds of experiments with it. I learned that thermal efects can explain the motion of the Crookes radiometer. * Arthur Ashkin's Nobel Lecture was delivered by René-Jean Essiambre. 66 THE NOBEL PRIZES Figure 1. Crookes radiometer: a) side view b) top view showing the direction of rotation. Thermal effects are responsible for the rotation of the vanes. Black surfaces absorb light which heats up the surface. In contrast, metallic surfaces refect light with negligible heat generation.
    [Show full text]