RIMS-1694 Lie Group-Lie Algebra Correspondences of Unitary Groups in Finite von Neumann Algebras By Hiroshi ANDO and Yasumichi MATSUZAWA May 2010 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan Lie Group-Lie Algebra Correspondences of Unitary Groups in Finite von Neumann Algebras Hiroshi Ando Research Institute for Mathematical Sciences, Kyoto University Kyoto, 606-8502, Japan E-mail:
[email protected] Yasumichi Matsuzawa1;2;∗ 1 Mathematisches Institut, Universit¨atLeipzig Johannisgasse 26, 04103, Leipzig, Germany 2 Department of Mathematics, Hokkaido University Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan E-mail:
[email protected] May 6, 2010 Abstract We give an affirmative answer to the question whether there exist Lie algebras for suitable closed subgroups of the unitary group U(H) in a Hilbert space H with U(H) equipped with the strong operator topology. More precisely, for any strongly closed subgroup G of the unitary group U(M) in a finite von Neumann algebra M, we show that the set of all generators of strongly continuous one-parameter subgroups of G forms a complete topological Lie algebra with respect to the strong resolvent topology. We also characterize the algebra M of all densely defined closed operators affiliated with M from the viewpoint of a tensor category. Keywords. finite von Neumann algebra, unitary group, affiliated operator, measurable operator, strong resolvent topology, tensor category, infinite dimen- sional Lie group, infinite dimensional Lie algebra. Mathematics Subject Classification (2000). 22E65, 46L51. ∗Supported by Research fellowships of the Japan Society for the Promotion of Science for Young Scientists (Grant No.