A Comparative Trial Report on Rodgersias and Astilboides
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Phenological Responses to Climate in the Alberta Native Flora: Herbarium Specimens Reveal Differential Responsiveness Between Species in Mesic and Xeric Habitats
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2019-03-01 Phenological responses to climate in the Alberta native flora: Herbarium specimens reveal differential responsiveness between species in mesic and xeric habitats Porto, Cassiano Porto, C. (2019). Phenological responses to climate in the Alberta native flora: Herbarium specimens reveal differential responsiveness between species in mesic and xeric habitats (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/109929 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Phenological responses to climate in the Alberta native flora: Herbarium specimens reveal differential responsiveness between species in mesic and xeric habitats by Cassiano Porto A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA MARCH, 2019 © Cassiano Porto 2019 UNIVERSITY OF CALGARY Phenological responses to climate in the Alberta native flora: Herbarium specimens reveal differential responsiveness between species in mesic and xeric habitats by Cassiano Porto A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOLOGICAL SCIENCES Research Supervisor: Dr. -
Appendix 1. Results for the Species Not in Database
Supporting information for: Pärtel, J., Pärtel, M. & Wäldchen, J. 2021. Plant image identification application demonstrates high accuracy in Northern Europe. AoB PLANTS. Appendix 1. Results for the species not in database Taxa not known to the machine learning model, i.e. those on which the classifier was not trained, could not be recognized. The model is unable to determine whether an image belongs to an unknown taxon it has never seen before and will wrongly identify a known taxon with the highest degree of similarity. Typically, the highest degree of similarity is still so low that no suggestions will be given for the user. Here we extracted the best match information directly from the Flora Incognita server but did not use these species in our analyses since the model’s prediction can only be interpreted in a meaningful way for taxa on which it was actually trained. The five unknown species were only found in the database study. Some of them were garden plants, or had a northern or eastern distribution. (1) Draba incana has an arcotmontane distribution which reach its SW border in Estonia, the most similar species in the Flora Incognita database was Arabis hirsuta. (2) Lychnis chalcedonica originates from continental Eurasia but is used as an ornamental garden plant. In Estonia it sometimes spreads to nature. Flora Incognita is focusing on European natural plants, even if many naturalized ones are included. The most similar species found was Phlox paniculata. (3) Moehringia lateriflora is distributed in Eurasia, reaching in its E border in Estonia. The most similar match was Cardamine californica. -
Astilbe Chinensis 'Visions'
cultureconnection perennial solutions Astilbe chinensis ‘Visions’ This deer-resistant variety also attracts hummingbirds and can be utilized in your marketing programs. stilbes are very erect to arching, plume-like flower during the spring or fall. For By Paul Pilon popular shade panicles that rise above the foliage quart production, a crown con- and woodland on slender upright stems. Astilbe sisting of 1-2 eyes, or shoots, is garden perenni- chinensis ‘Visions’ is a showy culti- commonly used. For larger con- als. They form var that forms compact foliage tainers, such as a 1-gal., divisions beautiful mounds of fern-like mounds with green to bronze- containing 2-3 eyes are commonly foliage bearing tiny flowers on green glossy leaves reaching 9-12 used. In most cases, container inches high. Flowering occurs in growers do not propagate astilbe early summer, forming pyramidal- cultivars; rather, they purchase A shaped 14- to 16-inch-tall plumes bareroot divisions or large plug full of small, fragrant, raspberry- liners from growers who special- red flowers. Astilbes are often ize in astilbe propagation. used for cut flowers, as container ‘Visions’ is not a patented culti- items, in mass plantings or small var and can be propagated by any groups, as border plants and as grower. There are two fairly new groundcovers in shade gardens. introductions with the Visions ‘Visions’ can be easily produced name, ‘Vision in Pink’ and ‘Vision in average, medium-wet, well- in Red’; these are patented culti- drained soils across USDA vars. Growers should note that Hardiness Zones 4-9 and AHS unlicensed propagation of these Heat Zones 8-2. -
WRITTEN FINDINGS of the WASHINGTON STATE NOXIOUS WEED CONTROL BOARD 2018 Noxious Weed List Proposal
DRAFT: WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD 2018 Noxious Weed List Proposal Scientific Name: Tussilago farfara L. Synonyms: Cineraria farfara Bernh., Farfara radiata Gilib., Tussilago alpestris Hegetschw., Tussilago umbertina Borbás Common Name: European coltsfoot, coltsfoot, bullsfoot, coughwort, butterbur, horsehoof, foalswort, fieldhove, English tobacco, hallfoot Family: Asteraceae Legal Status: Proposed as a Class B noxious weed for 2018, to be designated for control throughout Washington, except for in Grant, Lincoln, Adams, Benton, and Franklin counties. Images: left, blooming flowerheads of Tussilago farfara, image by Caleb Slemmons, National Ecological Observatory Network, Bugwood.org; center, leaves of T. farfara growing with ferns, grasses and other groundcover species; right, mature seedheads of T. farfara before seeds have been dispersed, center and right images by Leslie J. Mehrhoff, University of Connecticut, Bugwood.org. Description and Variation: The common name of Tussilago farfara, coltsfoot, refers to the outline of the basal leaf being that of a colt’s footprint. Overall habit: Tussilago farfara is a rhizomatous perennial, growing up to 19.7 inches (50 cm tall), which can form extensive colonies. Plants first send up flowering stems in the spring, each with a single yellow flowerhead. Just before or after flowers have formed seeds, basal leaves on long petioles grow from the rhizomes, with somewhat roundish leaf blades that are more or less white-woolly on the undersides. Roots: Plants have long creeping, white scaly rhizomes (Griffiths 1994, Chen and Nordenstam 2011). Rhizomes are branching and have fibrous roots (Barkley 2006). They are also brittle and can break easily (Pfeiffer et al. -
Perennials for Special Purposes
Perennials for Special Purposes Hot & Dry Areas • Sage, Perennial (Artemisia) Newly planted perennials will need regular • Sea Holly (Eryngium) watering until established. • Sea Lavender (Limonium) • Spurge, Cushion (Euphorbia • Aster polychroma) • Baby’s Breath • Statice, German (Gypsophila) (Goniolimon) • Beardtongue • Stonecrop (Sedum) (Penstemon) • Sunflower, False (Heliopsis) • Big Bluestem • Sunflower, Perennial (Helianthus) (Andropogon) • Switch Grass (Panicum) • Bitterroot (Lewisia) • Tickseed (Coreopsis) • Blanketflower (Gaillardia) • Tufted Hair Grass (Deschampsia) • Blue Oat Grass (Helictotrichon) • Yarrow (Achillea) • Cactus, Prickly Pear (Opuntia) • Yucca • Candytuft (Iberis sempervirens) • Cinquefoil (Potentilla) Groundcover for Sun • Coneflower (Echinacea) • Daisy, Painted (Tanacetum) • Baby’s Breath, Creeping • Daisy, Shasta (Leucanthemum x superbum) (Gypsophila repens) • Daylily (Hemerocallis) • Beardtongue, Spreading • Evening Primrose (Oenothera) (Penstemon) • False Indigo (Baptisia) • Bellflower, Spreading • Feather Reed Grass (Calamagrostis) (Campanula) • Fescue, Blue (Festuca glauca) • Cinquefoil (Potentilla) • Flax (Linum) • Cliff Green (Paxistima • Foxtail Lily (Eremurus) canbyi) • Globe Thistle (Echinops) • Cranesbill (Geranium) • Goldenrod (Solidago) • Gentian, Trumpet (Gentiana acaulis) • Helen’s Flower (Helenium) • Globe Daisy (Globularia) • Hens & Chicks (Sempervivum) • Hens & Chicks (Sempervivum) • Ice Plant (Delosperma) • Irish/Scotch Moss (Sagina subulata) • Lamb’s Ears (Stachys byzantina) • Kinnikinnick -
THE ECOLOGICAL FEATURES of FLOWERS and INFLORESCENCES of TWO SPECIES of the GENUS Petasites Miller (ASTERACEAE)
ACTA AGROBOTANICA Vol. 65 (2): 37–46 2012 THE ECOLOGICAL FEATURES OF FLOWERS AND INFLORESCENCES OF TWO SPECIES OF THE GENUS Petasites Miller (ASTERACEAE) Weronika Haratym, Elżbieta Weryszko-Chmielewska Department of Botany, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland e-mail: [email protected] Received: 06.02.2012 Abstract The above-mentioned species are included The structural features of flowers and inflorescences of in bee plants (Bornus, 1989; Lipiń ski, 2010). Petasites hybridus and P. albus were compared. Only individu- Due to their flowering period (III-V), they can provide als producing flower heads with male flowers and few female a source of early spring pollen and nectar to insects flowers were found in the studied populations. Light microsco- which visit their flowers in large numbers under fa- py (LM) and scanning electron microscopy (SEM) were used vourable conditions. Many papers show that plant for examination. material obtained from their leaves and underground The present study shows that the stems of the above- parts (rhizomes, roots) has been used in herbalism -mentioned species differed in height and number of flower he- and medicine since ancient times (Podhajska and ads, but the number of flowers per head was similar. Larger flo- Rivola, 1992; Schaffner, 1996; Siegenha- wers were found on the stems of P. albus. The following features ler and Neuenschwander, 1996; Wildi et al. has been found to play an important role in pollination ecology: the strongly contrasting colours of the floral parts; on the petals, 1998). However, Smith and Culvenor (1981) the occurrence of several types of cells which can increase the as well as Sadowska (2004) note that P. -
Bergenin Glycosides from Rodgersia Aesculifolia
Phytochemistry Letters 13 (2015) 114–118 Contents lists available at ScienceDirect Phytochemistry Letters journal homepage: www.elsevier.com/locate/phytol Bergenin glycosides from Rodgersia aesculifolia a a, b c Hui Zhang , Yanfang Su *, Zhenhai Wu , Xiumei Gao a Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China b College of Life Sciences, Northwest A&F University, Shaanxi 712100, PR China c Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China A R T I C L E I N F O A B S T R A C T Article history: Phytochemical investigation on Rodgersia aesculifolia afforded twenty-three compounds, including three Received 27 March 2015 bergenin glycosides, previously unknown in nature, together with twenty known compounds. Their Received in revised form 20 May 2015 structures were elucidated by the extensive use of 1D and 2D NMR experiments, along with IR and Accepted 26 May 2015 HRESIMS spectra. This is the first report of bergenin glycosides from nature. Available online xxx ã2015 Published by Elsevier B.V. on behalf of Phytochemical Society of Europe. Keywords: Rodgersia aesculifolia Saxifragaceae Bergenin Glycosides Monoterpene disaccharide glycosides Introduction principal component and displays potent biological activities of anti-inflammatory, preventing cough and treating stomach hyper- Rodgersia genus, which belongs to Saxifragaceae family, is acidity and ulcers (Yu et al., 2009; Yuan et al., 1994). Herein composed of 5 species and 3 variations all over the world. In China, described are the isolation and structural elucidation of three new there are about 4 species and 3 variations in Rodgersia, which are bergenin glycosides (1–3) (Fig. -
The Effect of Certain Plant Extracts Containing Pyrrolizidine Alkaloids on Lactuca Sativa Radicle Growth
THE EFFECT OF CERTAIN PLANT EXTRACTS CONTAINING PYRROLIZIDINE ALKALOIDS ON LACTUCA SATIVA RADICLE GROWTH OANA-CRISTINA ŞEREMET*, O.T. OLARU**#, D. BĂLĂLĂU***, SIMONA NEGREŞ* * Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania ** Department of Botany and Cellular Biology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania, #e-mail: [email protected] *** Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania Abstract: Pyrrolizidine alkaloids (PAs) are toxins synthesized by plants, known to be hepatotoxic, genotoxic and carcinogenic. Tussilago farfara (coltsfoot), Petasites hybridus (common butterbur), Senecio vernalis (eastern groundsel) and Symphytum officinale (comfrey) are species traditionally used in phytotherapy that besides the therapeutic compounds contain PAs. The total PAs and the corresponding N-oxides content of the solid plant extracts were measured using Ehrlich’s method with senecionine as a standard substance. The highest content of PAs was found in Senecio vernalis extract (424.92±9.81 mg%), followed by Symphytum officinale extract (150.24±10.35 mg%) and Petasites hybridus extract (0.021±0.00091 mg%). The lowest concentration was found in Tussilago farfara extract (0.0097±0.00072 mg%). In order to assess the toxicity of the extracts on Lactuca sativa, inhibitory concentrations 50% (IC50) of the root elongation were calculated. All extracts inhibited the elongation of the Lactuca sativa radicles. Senecio vernalis extract exhibited the highest toxicity, whilst Symphytum officinale extract, having the second highest concentration of PAs, has the highest IC50. Further studies should be performed in order to determine whether the inhibitory effect is due to the PAs content and how it is influenced by the other components of the extracts. -
Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems. -
Astilbe Thunbergii Reduces Postprandial Hyperglycemia in a Type 2 Diabetes Rat
1 Author’s pre-print manuscript of the following article 2 3 Astilbe thunbergii reduces postprandial hyperglycemia in a type 2 diabetes rat 4 model via pancreatic alpha-amylase inhibition by highly condensed 5 procyanidins. 6 7 Bioscience, Biotechnology, and Biochemistry, 2017, accepted. 8 Check the published version from the bellow link. 9 10 Taylers & Francis Online 11 DOI:10.1080/09168451.2017.1353403 12 http://www.tandfonline.com/doi/full/10.1080/09168451.2017.1353403 13 14 15 1 16 E. Kato et al. 17 Anti-diabetic effect of Astilbe thunbergii 18 19 Research Article 20 Astilbe thunbergii reduces postprandial hyperglycemia in a type 2 diabetes 21 rat model via pancreatic alpha-amylase inhibition by highly condensed 22 procyanidins. 23 Eisuke Kato1*, Natsuka Kushibiki1, Yosuke Inagaki2, Mihoko Kurokawa2, Jun 24 Kawabata1 25 1Laboratory of Food Biochemistry, Division of Applied Bioscience, Graduate School 26 of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan 27 2Q'sai Co., Ltd., Kusagae, Fukuoka, Fukuoka 810-8606, Japan 28 29 *Corresponding author 30 Tel/Fax: +81 11 706 2496; 31 E-mail address: [email protected] (E. Kato) 32 2 33 Abstract 34 Type 2 diabetes mellitus (T2DM) is a common global health problem. Prevention 35 of this disease is an important task, and functional food supplements are 36 considered an effective method. Astilbe thunbergii extract (AT) was found to be a 37 potent pancreatic α-amylase inhibitor. AT treatment in a T2DM rat model 38 reduced post-starch administration blood glucose levels. Activity-guided 39 isolation revealed procyanidin as the active component with IC50 = 1.7 µg/mL 40 against porcine pancreatic α-amylase. -
2019 Program WELCOME
THE SCOTT ARBORETUM OF SWARTHMORE COLLEGE www.scottarboretum.org 2019 Program WELCOME Welcome TABLE OF CONTENTS Greetings! Welcome to the 2019 Scott Arboretum Selections: Spring Sale. Download this handbook at scottarboretum.org. WELCOME 2 Schedule of the Sale 3 Special Offer Special Friends 4 10% discount on sales $100 and over, applies to plants only. Planting Container Grown Plants 10 Meaning of our Labels 12 Refund Policy Plant List 13 ALL SALES ARE FINAL; NO EXCHANGES OR REFUNDS. We are not able to offer refunds or exchanges since this is a special once-a- year event. Thank you! Many thanks to those volunteers who have contributed their efforts to this sale. A special thank you to Alan Kruza and Eve Thryum whose unwavering support and passion for the plants makes this sale possible. 2 SCHEDULE OF THE SALE Scott Arboretum Selections: Spring Sale Schedule: Friday, May 10 Special Friends Preview Party 5:30 to 7:30 pm To become a Special Friend to attend our Preview Party, call the Scott Arboretum Offices at 610- 328-8025. Saturday, May 11 Members Shopping 10 am – noon Members must show their membership card for early admission. If you have lost or misplaced your card, or would like to become a member, please call 610-328-8025. Open to the public – free noon – 3 pm 3 SPECIAL FRIENDS Julia and Vincent Auletta Our sincere appreciation to William D. Conwell Charles and Rosemary Philips these Special Friends of the Scott Laura Axel Arboretum Selections Sales, whose Harold Sweetman Alice Reilly support helps underwrite the cost of these vital fund-raising events. -
Table of Contents
WELCOME TO LOST HORIZONS 2015 CATALOGUE Table of Contents Welcome to Lost Horizons . .15 . Great Plants/Wonderful People . 16. Nomenclatural Notes . 16. Some History . 17. Availability . .18 . Recycle . 18 Location . 18 Hours . 19 Note on Hardiness . 19. Gift Certificates . 19. Lost Horizons Garden Design, Consultation, and Construction . 20. Understanding the catalogue . 20. References . 21. Catalogue . 23. Perennials . .23 . Acanthus . .23 . Achillea . .23 . Aconitum . 23. Actaea . .24 . Agastache . .25 . Artemisia . 25. Agastache . .25 . Ajuga . 26. Alchemilla . 26. Allium . .26 . Alstroemeria . .27 . Amsonia . 27. Androsace . .28 . Anemone . .28 . Anemonella . .29 . Anemonopsis . 30. Angelica . 30. For more info go to www.losthorizons.ca - Page 1 Anthericum . .30 . Aquilegia . 31. Arabis . .31 . Aralia . 31. Arenaria . 32. Arisaema . .32 . Arisarum . .33 . Armeria . .33 . Armoracia . .34 . Artemisia . 34. Arum . .34 . Aruncus . .35 . Asarum . .35 . Asclepias . .35 . Asparagus . .36 . Asphodeline . 36. Asphodelus . .36 . Aster . .37 . Astilbe . .37 . Astilboides . 38. Astragalus . .38 . Astrantia . .38 . Aubrieta . 39. Aurinia . 39. Baptisia . .40 . Beesia . .40 . Begonia . .41 . Bergenia . 41. Bletilla . 41. Boehmeria . .42 . Bolax . .42 . Brunnera . .42 . For more info go to www.losthorizons.ca - Page 2 Buphthalmum . .43 . Cacalia . 43. Caltha . 44. Campanula . 44. Cardamine . .45 . Cardiocrinum . 45. Caryopteris . .46 . Cassia . 46. Centaurea . 46. Cephalaria . .47 . Chelone . .47 . Chelonopsis . ..