Introduced Forest Trees in New Zealand: Recognition, Role, And

Total Page:16

File Type:pdf, Size:1020Kb

Introduced Forest Trees in New Zealand: Recognition, Role, And NEW ZEALAND FOREST RESEARCH INSTITUTE LIMITED I jid FRI BULLETIN NO. 124 INTRODUCED FOREST TREES IN NEW ZEALAND Recognition, Role, and Seed Source 14. DOUGLAS-FIR Pseudotsuga menziesii (Mirbel) Franco j.T. MILLER AND F.B. KNOWLES This FRI bulletin series was compiled for people with an interest in the introduced trees of New Zealand, such as foresters, farm foresters, nurserymen, and students. It includes: 1. Pinus nigra Arn. - European black pine 2. Pinus contorta Loudon - contorta pine 3. The larches- Larix decidua Miller, Larix kaempferi (Lambert) Carr., Larix x eurolepis A. Henry 4. Pinus mugo Turra - dwarf mountain pine; Pinus uncinata Mirbel - mountain pine 5. Pinus attenuata Lemmon- knobcone pine 6. The spruces- Picea sitchensis (Bang.) Carriere, Picea abies (L.) Karsten, ornamental spruces 7. The silver firs - Abies spp. 8. Pinus pinaster Aiton- maritime pine 9. The cypresses- Cupressus spp.; Chamaecyparis spp. 10. Ponderosa and Jeffrey Pines -Pinus ponderosa P. Lawson et Lawson, Pinusjeifreyi Grev. et Balf. 11. Eucalyptus nitens (Deane et Maiden) Maiden 12. Radiata pine- Pinus radiata D. Don 13. The redwoods- Sequoia sempervirens (D. Don) Endl.- coast redwood, Sequoiadendron giganteum (Lindley) J. Buchholz - giant sequoia, and the related ornamental genera Taxodium and Metasequoia This bulletin was published with.financial assistance from the Foundation of Research, Science and Technology (Contract No. CO 4309), the Agricultural and Marketing Researc:h and Development Trust, Ernslaw One Limited, and the Taupo and Districts Branch of the New Zealand Farm Forestry Association. John Miller and Barbara Knowles are scientists working in the Biotechnology Division of the New Zealand Forest Research Institute (NZ FRI). COVER PHOTOGRAPH: Felling of 60-year-old Douglas-fir at Dusky Forest, West Otago. FRI BULLETIN No. 124 INTRODUCED FOREST TREES IN NEW ZEALAND Recognition, Role, and Seed Source 14. DOUGLAS-FIR Pseudotsuga menziesii (Mirbel) Franco J.T. Miller and F.B. Knowles NEW ZEALAND FOREST RESEARCH INSTITUTE LIMITED I i•J' 1994 Douglas-flr, aged 3~yeus, in Golden Downs Forest, Nelson. The trees are growing well on a relatively exposed site at altitude c. 520 m. The seedlot was collected in the Tapawera-Tadmor district and is thought to be of coastal Oregon ances~. ISSN 0111-8129 ODC 174. 7 Pseudotsuga menziesii (931):232 ©NEW ZEALAND FOREST RESEARCH INSTITUTE LTD 1994 CONTENTS Abstract ........................................................................................................................ 1 Introduction and History ........................................................................................... 1 Natural Distribution and Ecology .............................................................................. 1 History in New Zealand ............................................................................................. 3 Provenance Trials and Seed Source Tests .................................................................. 4 Breeding Programme ................................................................................................. 5 Pests, Diseases and Hazards ..................................................................................... 7 Fungi ............................................................................................................... 7 Insects ............................................................................................................. 9 Frost ................................................................................................................ 9 Wind and exposure ......................................................................................... 10 Other hazards ................................................................................................ 10 Recognition ............................................................................................................. 10 General description of Pseudotsuga .............................................................................. 10 Pseudotsuga menziesii (Mirbel) Franco- Douglas-fir ............................................... 10 Pseudotsuga menziesii var. glauca (Beissner) Franco ....................................... 11 Distinguishing characteristics of Pseudotsuga menziesii.. .................................. 12 Other species ................................................................................................. 12 Role of the Species ................................................................................................... 14 Present Extent ......................................................................................................... 14 Siting ...................................................................................................................... 15 Provenance in relation to site .......................................................................... 16 Establishment ......................................................................................................... 17 Seedling quality .............................................................................................. 17 Planting procedures ........................................................................................ 17 Weed control .................................................................................................. 17 Mycorrhizae .................................................................................................... 18 Silviculture and Management .................................................................................. 19 Growth and Yield ..................................................................................................... 21 Wood Properties ...................................................................................................... 23 Physical properties ......................................................................................... 24 Machining and finishing ................................................................................. 24 Mechanical properties .................................................................................... 25 Timber drying and preservation ...................................................................... 25 Uses of Douglas-fir .................................................................................................. 26 Marketing of Douglas-fir ........................................................................................... 27 Future Role of Douglas-fir in New Zealand ................................................................ 29 Genetic Improvement .............................................................................................. 29 Revised Management Regimes ................................................................................. 30 The End Product ..................................................................................................... 30 Douglas-fir Research Cooperatives ........................................................................... 30 Seed Users' Guide ..................................................................................................... 31 A: Collection, extraction and handling of Douglas-fir seed ........................................ 31 B: Nursery practice .................................................................................................. 32 C: Recommended seed sources ................................................................................ 33 References ............................................................................................................... 36 Acknowledgements .................................................................................................. 38 Appendix: Log Grade Specifications .......................................................................... 38 Seed stand RO 26 at Rotoehu Forest, aged 34 years. This vigorous stand was thinned at age 15 years to 200 stems per hectare. The seed origin is Fort Bragg (low elevation, California). ABSTRACT This booklet, the fourteenth in the Bulletin 124 series provides a general account of Douglas-fir*, Pseudotsuga menziesii, in New Zealand. Topics covered include its natural distribution, its introduction and history in New Zealand, its role as an introduced species, recognition in the field, the significance of pests and diseases, and information on local seed sources. KEYWORDS: Pseudotsuga menziesii, Douglas-fir, seed sources, recognition, silviculture, utilisation, role, provenance trials, New Zealand INTRODUCTION AND HISTORY Douglas-fir, Pseudotsuga menziesii, is native to western North America, where it is one of the most valuable and commercially important timber species. In New Zealand it ranks as the second most important softwood after radiata pine and in 1994 occupies over 60,000 ha, about 5% of the total plantation forest area. Natural Distribution and Ecology Pseudotsuga is a small genus of evergreen conifers occurring naturally in western North America, Japan, Taiwan and China. Included in the past in Picea, Tsuga, Abies and even Pinus, these species were eventually recognised as being sufficiently distinct in botanical characteristics to merit a genus of their own. Although in the past more than twenty species of Pseudotsuga have been described, as few as four are now recognised. These comprise two quite distinct North American species-P. menziesii (Douglas-fir) and P. macrocarpa (bigcone
Recommended publications
  • Spatial Distribution and Historical Dynamics of Threatened Conifers of the Dalat Plateau, Vietnam
    SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM A thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Arts By TRANG THI THU TRAN Dr. C. Mark Cowell, Thesis Supervisor MAY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM Presented by Trang Thi Thu Tran A candidate for the degree of Master of Arts of Geography And hereby certify that, in their opinion, it is worthy of acceptance. Professor C. Mark Cowell Professor Cuizhen (Susan) Wang Professor Mark Morgan ACKNOWLEDGEMENTS This research project would not have been possible without the support of many people. The author wishes to express gratitude to her supervisor, Prof. Dr. Mark Cowell who was abundantly helpful and offered invaluable assistance, support, and guidance. My heartfelt thanks also go to the members of supervisory committees, Assoc. Prof. Dr. Cuizhen (Susan) Wang and Prof. Mark Morgan without their knowledge and assistance this study would not have been successful. I also wish to thank the staff of the Vietnam Initiatives Group, particularly to Prof. Joseph Hobbs, Prof. Jerry Nelson, and Sang S. Kim for their encouragement and support through the duration of my studies. I also extend thanks to the Conservation Leadership Programme (aka BP Conservation Programme) and Rufford Small Grands for their financial support for the field work. Deepest gratitude is also due to Sub-Institute of Ecology Resources and Environmental Studies (SIERES) of the Institute of Tropical Biology (ITB) Vietnam, particularly to Prof.
    [Show full text]
  • Range-Wide Chloroplast and Mitochondrial DNA Imprints Reveal Multiple Lineages and Complex Biogeographic History for Douglas-Fir
    Tree Genetics & Genomes (2011) 7:1025–1040 DOI 10.1007/s11295-011-0392-4 ORIGINAL PAPER Range-wide chloroplast and mitochondrial DNA imprints reveal multiple lineages and complex biogeographic history for Douglas-fir Xiao-Xin Wei & Jean Beaulieu & Damase P. Khasa & Jesús Vargas-Hernández & Javier López-Upton & Barry Jaquish & Jean Bousquet Received: 6 December 2010 /Revised: 15 March 2011 /Accepted: 29 March 2011 /Published online: 21 April 2011 # Springer-Verlag 2011 Abstract The contemporary genetic structure of species cpDNA lineages corresponding to the Pacific Coast, the offers key imprints of how organisms responded to past Rocky Mountains, and Mexico were observed. The split geological and climatic events, which have played a crucial time of the two lineages from the Rockies lineage was role in shaping the current geographical distribution of dated back to 8.5 million years (Ma). The most recent north-temperate organisms.Inthisstudy,range-wide common ancestors of Mexican and coastal populations patterns of genetic variation were examined in Douglas-fir were estimated at 3.2 and 4.8 Ma, respectively. The (Pseudotsuga menziesii), a dominant forest tree species northern populations of once glaciated regions were distributed from Mexico to British Columbia in western characterized by a high level of genetic diversity, indicating North America. Two organelle DNA markers with con- a large zone of contact between ancestral lineages. A trasting modes of inheritance were genotyped for 613 possible northern refugium was also inferred. The Mexican individuals from 44 populations. Two mitotypes and 42 lineage, which appeared established by southward migration chlorotypes were recovered in this survey. Both genomes from the Rockies lineage, was characterized by the lowest showed significant population subdivision, indicative of genetic diversity but highest population differentiation.
    [Show full text]
  • Identification of the Sex Pheromone of the Common Forest Looper Pseudocoremia Suavis
    Identification of the Sex Pheromone of the Common Forest Looper Pseudocoremia suavis A.R. Gibb, D.M. Suckling, A. M. El-Sayed, B. Bunn, D. Comeskey, H. Jactel, L. Berndt, D. Steward, R. Franich and E. G. Brockerhoff June 2004 Research report commissioned by New Zealand Forest Health Research Collaborative HortResearch Client Report No. 9733 HortResearch Contract No. 18035 HortResearch Corporate Office 120 Mt Albert Road, Private Bag 92 169 AUCKLAND, NZ Tel: +64-9-815 4200 Fax: +64-9-815 4201 Dr D.M. Suckling, A.R. Gibb, A.M. El-Sayed Canterbury Research Centre Gerald Street, PO. Box 51 LINCOLN, NZ Tel: +64-3-325 6600 Fax: +64-3-325 6063 B. Bunn, D. Comeskey Palmerston North Research Centre Tennent Drive, Private Bag 11 030 PALMERSTON NORTH, NZ Tel: +64-6-356 8080 Fax: +64-6-354 66731 E. G. Brockerhoff, L. Berndt Forest Research P.O. Box 29237, Fendalton, CHRISTCHURCH, NZ Tel: +64-3-364 2949 Fax: +64-3-364 2812 D. Steward, R. Franich Forest Research Private Bag 3020 ROTORUA, NZ Tel: +64-7-343 5899 Fax: +64-7-348 0952 H. Jactel Laboratory of Forest Entomology, INRA, 69 Route d'Arcachon, 33612, Cestas, Cedex, France. Fax: 33-5-56 68 05 46 Frontispiece: An adult male common forest looper Pseudocoremia suavis This report has been prepared by The Horticulture and Food Research Institute of New Zealand Ltd (HortResearch) which has its Head Office at Mt Albert Research Centre, Private Bag 92 169, Auckland and has been approved by: __________________________ __________________________ Research Scientist Team Leader, Bioprotection Date: 28th June
    [Show full text]
  • Pinaceae Lindl
    Pinaceae Lindl. Abies Mill. Cathaya Chun & Kuang Cedrus Trew Keteleeria Carrière Larix Mill. Nothotsuga H.H.Hu ex C.N.Page Picea Mill. Pinus L. Pseudolarix Gordon Pseudotsuga Carrière Tsuga (Endl.) Carrière VEGETATIVE KEY TO SPECIES IN CULTIVATION Jan De Langhe (29 July 2015 - 29 January 2016) Vegetative identification key. Introduction: This key is based on vegetative characteristics, and therefore also of use when cones are absent. - Use a 10× hand lens to evaluate stomata, bud, leaf scar, leaf apex and pubescence in general. - Look at the entire plant and especially the most healthy shoots. Young specimens, shade, coning, top crown and strong shoots give an atypical view. - Beware of hybridisation, especially with plants raised from seed other than wild origin. Taxa treated in this key: see page 5. Names referred to synonymy: see page 5. Misapplied names: see page 5. References: - JDL herbarium - living specimens, in various arboreta, botanic gardens and collections - literature: Bean, W.J. & Clarke, D.L. - (1981-1988) - Pinaceae in Bean's Trees and Shrubs hardy in the British Isles - and online edition Debreczy, Z., Racz, I. - (2011) - Pinaceae in Conifers around the world - 2 VOL., 1089p. Eckenwalder, J.E. - (2009) - Pinaceae in Conifers of the world, 719p. Farjon, A - (1990) - Pinaceae, 330p. Farjon, A - (2010) - Pinaceae in A Handbook of The World's Conifers - 2 VOL., 1111p. Fu, L., Li, N., Elias, T.S., Mill, R.R. - (1999) - Pinaceae in Flora of China, VOL.4, p.11-59 - and online edition Grimshaw, J. & Bayton, R. - (2009) - Pinaceae in New Trees, 976p. Havill, N.P., Campbell, C., Vining, T.F., Lepage, B., Bayer,R.J.
    [Show full text]
  • Ecology of Forest Insect Invasions
    Biol Invasions (2017) 19:3141–3159 DOI 10.1007/s10530-017-1514-1 FOREST INVASION Ecology of forest insect invasions E. G. Brockerhoff . A. M. Liebhold Received: 13 March 2017 / Accepted: 14 July 2017 / Published online: 20 July 2017 Ó Springer International Publishing AG 2017 Abstract Forests in virtually all regions of the world trade. The dominant invasion ‘pathways’ are live plant are being affected by invasions of non-native insects. imports, shipment of solid wood packaging material, We conducted an in-depth review of the traits of ‘‘hitchhiking’’ on inanimate objects, and intentional successful invasive forest insects and the ecological introductions of biological control agents. Invading processes involved in insect invasions across the insects exhibit a variety of life histories and include universal invasion phases (transport and arrival, herbivores, detritivores, predators and parasitoids. establishment, spread and impacts). Most forest insect Herbivores are considered the most damaging and invasions are accidental consequences of international include wood-borers, sap-feeders, foliage-feeders and seed eaters. Most non-native herbivorous forest insects apparently cause little noticeable damage but some species have profoundly altered the composition and ecological functioning of forests. In some cases, Guest Editors: Andrew Liebhold, Eckehard Brockerhoff and non-native herbivorous insects have virtually elimi- Martin Nun˜ez / Special issue on Biological Invasions in Forests nated their hosts, resulting in major changes in forest prepared by a task force of the International Union of Forest composition and ecosystem processes. Invasive preda- Research Organizations (IUFRO). tors (e.g., wasps and ants) can have major effects on forest communities. Some parasitoids have caused the Electronic supplementary material The online version of this article (doi:10.1007/s10530-017-1514-1) contains supple- decline of native hosts.
    [Show full text]
  • Vietnamese Conifers and Some Problems of Their Sustainable Utilization Ke Loc Et Al
    Vietnamese conifers and some problems of their sustainable utilization Ke Loc et al. Vietnamese conifers and some problems of their sustainable utilization Phan Ke Loc 1, 2, Nguyen Tien Hiep 2, Nguyen Duc To Luu 3, Philip Ian Thomas 4, Aljos Farjon 5, L.V. Averyanov 6, J.C. Regalado, Jr. 7, Nguyen Sinh Khang 2, Georgina Magin 8, Paul Mathew 8, Sara Oldfield 9, Sheelagh O’Reilly 8, Thomas Osborn 10, Steven Swan 8 and To Van Thao 2 1 University of Natural Science, Vietnam National University, Hanoi; 2 Institute of Ecology and Biological Resources; 3 Vietnam Central Forest Seed Company; 4 Royal Botanic Garden Edinburgh; 5 Royal Botanic Gardens, Kew; 6 Komarov Botanical Institute; 7 Missouri Botanical Garden; 8 Fauna & Flora International; 9 Global Trees Campaign; 10 Independent Consultant Introduction Vietnam is now recognized as one of the top ten global conifer conservation ‘hotspots’, as defined by the Conifer Specialist Group of the World Conservation Union (IUCN). Vietnam’s conifer flora has approximately 34 species that are indigenous to the country, making up about 5% of conifers known worldwide. Although conifers represent only less than 0.3% of the total number of higher vascular plant species of Vietnam, they are of great ecological, cultural and economic importance. Most conifer wood is prized for its high value in house construction, furniture making, etc. The decline of conifer populations in Vietnam has caused serious concern among scientists. Threats to conifer species are substantial and varied, ranging from logging (both commercial and subsistence), land clearing for agriculture, and forest fire. Over the past twelve years (1995-2006), Vietnam Botanical Conservation Program (VBCP), a scientific cooperation between the Missouri Botanical Garden in Saint Louis and the Institute of Ecology and Biological Resources in Hanoi, has conducted various studies on this important group of plants in order to gather baseline information necessary to make sound recommendations for their conservation and sustainable use.
    [Show full text]
  • Number 3, Spring 1998 Director’S Letter
    Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m.
    [Show full text]
  • Methods for Measuring Frost Tolerance of Conifers: a Systematic Map
    Review Methods for Measuring Frost Tolerance of Conifers: A Systematic Map Anastasia-Ainhoa Atucha Zamkova *, Katherine A. Steele and Andrew R. Smith School of Natural Sciences, Bangor University, Bangor LL57 2UW, Gwynedd, UK; [email protected] (K.A.S.); [email protected] (A.R.S.) * Correspondence: [email protected] Abstract: Frost tolerance is the ability of plants to withstand freezing temperatures without unrecov- erable damage. Measuring frost tolerance involves various steps, each of which will vary depending on the objectives of the study. This systematic map takes an overall view of the literature that uses frost tolerance measuring techniques in gymnosperms, focusing mainly on conifers. Many different techniques have been used for testing, and there has been little change in methodology since 2000. The gold standard remains the field observation study, which, due to its cost, is frequently substituted by other techniques. Closed enclosure freezing tests (all non-field freezing tests) are done using various types of equipment for inducing artificial freezing. An examination of the literature indicates that several factors have to be controlled in order to measure frost tolerance in a manner similar to observation in a field study. Equipment that allows controlling the freezing rate, frost exposure time and thawing rate would obtain results closer to field studies. Other important factors in study design are the number of test temperatures used, the range of temperatures selected and the decrements between the temperatures, which should be selected based on expected frost tolerance of the tissue and species. Citation: Atucha Zamkova, A.-A.; Steele, K.A.; Smith, A.R.
    [Show full text]
  • Zoologische Mededelingen 78-02
    A new species of the genus Aleiodes Wesmael from New Zealand (Hymenoptera: Braconidae: Rogadinae) C. van Achterberg, L. Berndt, E. Brockerhoff & J. Berry Achterberg, C. van, L. Berndt, E. Brockerhoff & J. Berry. A new species of the genus Aleiodes Wesmael from New Zealand (Hymenoptera: Braconidae: Rogadinae). Zool. Med. Leiden 78 (19), 31.xii.2004: 301-311, figs 1-40.— ISSN 0024-0672. C. van Achterberg, Afdeling Entomologie (Hymenoptera), Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 RA Leiden, The Netherlands (e-mail: [email protected]). L. Berndt & E. Brockerhoff, Forest Research, P.O. Box 29237, Fendalton, Christchurch 8004, New Zealand (e-mail: [email protected] / [email protected]). J. Berry, New Zealand Arthropod Collection, Landcare Research, Private Bag 92170, Auckland, New Zealand (e-mail: [email protected]). Key words: Hymenoptera; Braconidae; Rogadinae; Aleiodes; New Zealand; Australasian; Oriental; East Palaearctic; new species; distribution; partial key; Geometridae; Ennominae; Declana floccosa; Pseudo- coremia suavis; Pseudocoremia fenerata. A new species of the genus Aleiodes Wesmael, 1838 (Braconidae: Rogadinae: Rogadini), A. declanae spec. nov. from New Zealand is described and illustrated. It has been reared from Declana floccosa Walker, Cleora scriptaria (Walker), Pseudocoremia suavis Butler and P. fenerata Felder & Rogenhofer (Geometridae: Ennominae). Introduction The second and third authors have been involved in compiling information on the parasitoids of an ennomine geometrid, Pseudocoremia suavis Butler, 1879, which had several large scale outbreaks in pine forests in New Zealand. One of the most common parasitoids proved to be an Aleiodes Wesmael, 1838 (Hymenoptera: Braconidae: Roga- dinae: Rogadini), which turned out to be a new species according to research by the first and last authors.
    [Show full text]
  • Redalyc.Catalogue of Eucosmini from China (Lepidoptera: Tortricidae)
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Zhang, A. H.; Li, H. H. Catalogue of Eucosmini from China (Lepidoptera: Tortricidae) SHILAP Revista de Lepidopterología, vol. 33, núm. 131, septiembre, 2005, pp. 265-298 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45513105 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 265 Catalogue of Eucosmini from 9/9/77 12:40 Página 265 SHILAP Revta. lepid., 33 (131), 2005: 265-298 SRLPEF ISSN:0300-5267 Catalogue of Eucosmini from China1 (Lepidoptera: Tortricidae) A. H. Zhang & H. H. Li Abstract A total of 231 valid species in 34 genera of Eucosmini (Lepidoptera: Tortricidae) are included in this catalo- gue. One new synonym, Zeiraphera hohuanshana Kawabe, 1986 syn. n. = Zeiraphera thymelopa (Meyrick, 1936) is established. 28 species are firstly recorded for China. KEY WORDS: Lepidoptera, Tortricidae, Eucosmini, Catalogue, new synonym, China. Catálogo de los Eucosmini de China (Lepidoptera: Tortricidae) Resumen Se incluyen en este Catálogo un total de 233 especies válidas en 34 géneros de Eucosmini (Lepidoptera: Tor- tricidae). Se establece una nueva sinonimia Zeiraphera hohuanshana Kawabe, 1986 syn. n. = Zeiraphera thymelopa (Meyrick, 1938). 28 especies se citan por primera vez para China. PALABRAS CLAVE: Lepidoptera, Tortricidae, Eucosmini, catálogo, nueva sinonimia, China. Introduction Eucosmini is the second largest tribe of Olethreutinae in Tortricidae, with about 1000 named spe- cies in the world (HORAK, 1999).
    [Show full text]
  • Douglas-Fir What Science Can Tell Us – an Option for Europe
    Douglas-fir What Science Can Tell Us – an option for Europe Heinrich Spiecker, Marcus Lindner and Johanna Schuler (editors) What Science Can Tell Us 9 2019 What Science Can Tell Us Lauri Hetemäki, Editor-In-Chief Georg Winkel, Associate Editor Pekka Leskinen, Associate Editor Minna Korhonen, Managing Editor The editorial office can be contacted at [email protected] Layout: Grano Oy / Jouni Halonen Printing: Grano Oy Disclaimer: The views expressed in this publication are those of the authors and do not necessarily represent those of the European Forest Institute. ISBN 978-952-5980-65-3 (printed) ISBN 978-952-5980-66-0 (pdf) Douglas-fir What Science Can Tell Us – an option for Europe Heinrich Spiecker, Marcus Lindner and Johanna Schuler (editors) Funded by the Horizon 2020 Framework Programme of the European Union This publication is based upon work from COST Action FP1403 NNEXT, supported by COST (European Cooperation in Science and Technology). www.cost.eu Contents Preface ................................................................................................................................9 Acknowledgements...........................................................................................................11 Executive summary ...........................................................................................................13 1. Introduction ...................................................................................................................17 Heinrich Spiecker and Johanna Schuler 2. Douglas-fir
    [Show full text]
  • “Pseudocathaya” Metamorphosis in a Living Fossil?
    “Pseudocathaya” Metamorphosis in a living fossil? CHRIS CALLAGHAN of the Australian Bicentennial Arboretum reports the finding of an intriguing new conifer in the Pinaceae related to the living fossil Cathaya argyrophylla from China and, pending valid publication, provisionally named “Pseudocathaya cyanescens” here. Returning to the mist-shrouded mountain during spring, I was astounded to find what under normal circumstances I’d consider a tree ofCathaya argyrophylla (Cathay silver fir or yin shan), a conifer I know first-hand and more fully since writing the synopsis of the genus (Callaghan 2007). That is, while it resembled this living fossil, one of the notable differences was that from its branches and trunk hung the most extraordinary blue cones, unlike any I had ever seen (for photos of typical cones of Cathaya argyrophylla see Van Hoey Smith 2010). My camera went into overdrive as I recorded numerous pictures, some I’ve selected for these pages, depicting the growth of these remarkable cones, the early stages of which were located only after some diligent searching. Absorbed in examining a further two of these trees located nearby and a fourth some distance away which fortunately was found with delayed ‘flowering’, I and my Chinese companions failed to notice the onset of a dense mist which now enveloped the mountain. Soon torrential rain was lashing the 63 mountain, making further examination impossible for this visit and forcing a hasty retreat by all as the trees rapidly receded into the rain-streaked mist. On returning home with my precious photos, I began the process of trying to determine what these trees may represent.
    [Show full text]