Perturbation of Chromatin Structure Globally Affects Localization And

Total Page:16

File Type:pdf, Size:1020Kb

Perturbation of Chromatin Structure Globally Affects Localization And Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors Ignacio Schor, David Llères, Guillermo Risso, Andrea Pawellek, Jernej Ule, Angus Lamond, Alberto Kornblihtt To cite this version: Ignacio Schor, David Llères, Guillermo Risso, Andrea Pawellek, Jernej Ule, et al.. Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors. PLoS ONE, Public Library of Science, 2012, 7 (11), pp.e48084. 10.1371/journal.pone.0048084. hal-03027051 HAL Id: hal-03027051 https://hal.archives-ouvertes.fr/hal-03027051 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors Ignacio E. Schor1.¤a, David Lle`res2.¤b, Guillermo J. Risso1, Andrea Pawellek2, Jernej Ule3, Angus I. Lamond2, Alberto R. Kornblihtt1* 1 Laboratorio de Fisiologı´a y Biologı´a Molecular, Departamento de Fisiologı´a, Biologı´a Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiologı´a, Biologı´a Molecular y Neurociencias, Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Buenos Aires, Argentina, 2 Dundee Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, United Kingdom, 3 Laboratory of Molecular Biology, Medical Research Council, Cambridge, England, United Kingdom Abstract Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper- acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1a, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper- acetylation decreases recruitment of U2AF65 to bulk 39 splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ,20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin structure is essential for efficient co-transcriptional recruitment of general and regulatory splicing factors to pre-mRNA. Citation: Schor IE, Lle`res D, Risso GJ, Pawellek A, Ule J, et al. (2012) Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors. PLoS ONE 7(11): e48084. doi:10.1371/journal.pone.0048084 Editor: Laszlo Tora, Institute of Genetics and Molecular and Cellular Biology, France Received June 13, 2012; Accepted September 19, 2012; Published November 12, 2012 Copyright: ß 2012 Schor et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by Argentina (PICT2010-0202, URL: http://www.agencia.gov.ar/), the University of Buenos Aires (UBACYT-X112, URL: http:// www.uba.ar/), Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas of Argentina (CONICET) (no number, URL: http://www.conicet.gov.ar/web/conicet/ inicio), Howard Hughes Medical Institute (no number, URL: http://www.hhmi.org/) and the European Alternative Splicing Network (EURASNET, European Union Network of Excellence # 518238, URL: http://www.eurasnet.info/). Grants were provided to J.U. by the Medical Research Council (U105185858, URL: http://www. mrc.ac.uk/index.htm). Grants to A.I.L. were provided by Wellcome Trust (073980/Z/03/B, URL: http://www.hhmi.org/). The Scottish Universities Life Sciences Alliance (SULSA, URL: http://www.sulsa.ac.uk/) supports the use of OMX microscope. Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas of Argentina (CONICET, URL: http://www.conicet.gov.ar/web/conicet/inicio) funded a post-doctoral fellowship for I.E.S. and funds a doctoral fellowship for G.R. European Molecular Biology Organization (EMBO, URL: http://www.embo.org/) funded a short-term fellowship for I.E.S. International Union of Biochemistry and Molecular Biology (IUBMB, URL: http://www.iubmb.org/) funded a Wood-Whelan fellowhsip for I.E.S. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] . These authors contributed equally to this work. ¤a Current address: Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany ¤b Current address: Institut de Ge´ne´tique Mole´culaire de Montpellier, Centre national de la recherche scientifique, Universite´ Montpellier I & II, Montpellier, France Introduction between the transcription of genes to form nascent pre-mRNA and the simultaneous processing of these nascent transcripts into Several molecular events related to the flow of the genetic mature mRNA [1,2,3,4]. information occur in the eukaryotic nucleus. These events depend All steps of pre-mRNA processing, including capping, splicing on the interplay between proteins and nucleic acids that do not act and cleavage/poly-adenylation, are known to occur co-transcrip- in isolation from other molecules, but generally associate in large tionally [5,6], although to a different degree depending on the complexes that harbor many molecular functions. In this way gene. In the case of splicing, organisms as divergent as mammals distinct steps in nuclear processes can be coupled with each other, and yeasts show splicing factor recruitment as soon as their thereby increasing efficiency. A relevant example is the coupling binding sites in the pre-mRNA have been transcribed [7,8,9]. PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e48084 Splicing Factors and Chromatin Structure Such co-transcriptional RNA processing is, however, not strict, [39,42], suggesting a selective pressure which may act to ensure especially considering that the sequence heterogeneity of splice recognition of difficult exons in the large intron environment of sites found in mammals implies a high variability of recruitment many mammalian genes. Despite this accumulated evidence on efficiencies. The presence of splice sites whose sequences fall apart the influence of chromatin on splicing, no study assessing the from the consensus or are partially obstructed by RNA secondary relevance of chromatin structure on the general function of structures can allow alternative splicing events [10,11]. However, splicing factors has been conducted so far. many constitutive exons also have seemingly weak splice sites, Here, we report that relaxation of chromatin structure, implying that other factors are needed for their efficient definition. promoted by different treatments in several mammalian cell lines, These extra factors that participate in both constitutive and consistently results in depletion of pre-mRNA splicing factors from alternative splicing are typically auxiliary proteins (trans acting nucleoplasm and accumulation in nuclear speckles. We demon- factors), such as serine-arginine rich (SR) proteins that bind to strate that this nuclear redistribution is due to general impairment sequences in the pre-mRNA (cis elements known as splicing of splicing function and not caused by global transcription enhancers or splicing silencers) [12,13,14]. inhibition or post-translational modification of the splicing factors. Nuclear architecture is another important factor contributing to Based on the fact that chromatin relaxation does not affect the efficiency and specificity of nuclear
Recommended publications
  • SRSF1 Splicing by Transcription Dynamics
    T Cell Activation Regulates CD6 Alternative Splicing by Transcription Dynamics and SRSF1 This information is current as Vânia G. da Glória, Mafalda Martins de Araújo, Ana of June 23, 2014. Mafalda Santos, Rafaela Leal, Sérgio F. de Almeida, Alexandre M. Carmo and Alexandra Moreira J Immunol 2014; 193:391-399; Prepublished online 2 June 2014; Downloaded from doi: 10.4049/jimmunol.1400038 http://www.jimmunol.org/content/193/1/391 Supplementary http://www.jimmunol.org/content/suppl/2014/05/31/jimmunol.140003 http://www.jimmunol.org/ Material 8.DCSupplemental.html References This article cites 67 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/193/1/391.full#ref-list-1 Subscriptions Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscriptions by Alexandre Carmo on June 23, 2014 Permissions Submit copyright permission requests at: http://www.aai.org/ji/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/cgi/alerts/etoc The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 9650 Rockville Pike, Bethesda, MD 20814-3994. Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology T Cell Activation Regulates CD6 Alternative Splicing by Transcription Dynamics and SRSF1 Vaˆnia G. da Glo´ria,* Mafalda Martins de Arau´jo,†,‡,x Ana Mafalda Santos,† Rafaela Leal,* Se´rgio F. de Almeida,{ Alexandre M. Carmo,†,‖ and Alexandra Moreira* The T cell-surface glycoprotein CD6 is a modulator of cellular responses and has been implicated in several autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and psoriasis.
    [Show full text]
  • People & Ideas
    People & Ideas Alberto Kornblihtt: Coupling alternative splicing with transcription Melina Casadio Kornblihtt studies how gene expression is controlled in mammals and plants. Alberto Kornblihtt was raised in Buenos its alternative exons promotes G9a nuclear Aires, Argentina. His parents both taught localization and neuron differentiation. (mathematics and geography), and his sib- Another aspect of our research re- lings pursued careers in science and teach- lates to chromatin and the nuclear effects ing, attesting to the passion for knowledge of the small RNA machinery. The prev- and education instilled by their parents. alent view is that, in mammalian cells, Kornblihtt always knew that he would be a argonaute proteins only function in the scientist, and he settled on biology in high cytoplasm through a mechanism known school after learning about DNA, RNA, pro- as posttranscriptional gene silencing. This teins, and the genetic code from the plant view neglects the existence of the nuclear taxonomist Rosa Guaglianone. High school mechanism known as transcriptional gene also marked his introduction to Joachim silencing in these cells. However, we Hämmerling’s 1943 experiments, which showed that siRNAs play nuclear roles show that the morphology of the single-cell in the control of alternative pre-mRNA Alberto Kornblihtt. PHOTO COURTESY OF THE BERLIN FEBS MEETING, 2015. alga Acetabularia is controlled by the nu- splicing (2). siRNAs targeting intronic se- cleus. His interest in the regulation of gene quences close to an alternative exon
    [Show full text]
  • RNA Control and Regulation
    This is a free sample of content from Cold Spring Harbor Symposium on Quantitative Biology. Volume LXXXIV: RNA Control and Regulation. Click here for more information on how to buy the book. Foreword The Cold Spring Harbor Symposia on Quantitative Biology series is now in its 84th year, having been initiated by then-Director Reginald Harris back in 1933 when the Symposium lasted a full month! The Cold Spring Harbor Symposia bring together scientists to present and evaluate new data and ideas in rapidly moving areas of biological research. Each year, a topic is chosen at a stage at which general and intensive scrutiny and review are warranted. Many previous Cold Spring Harbor Symposia have addressed different aspects of RNA biology, including Nucleic Acids and Nucleoproteins in 1947, Transcription of Genetic Material in 1970, Mechanisms of Transcription in 1998, The Ribosome in 2001, and Regulatory RNAs in 2006. The enormous progress in the field in the past 15 years led us to conclude that the time was past due for another Symposium squarely focused on RNA. In fact, this is only the second Symposium in its entire history to include RNA in the title of the meeting, which we think conveys how central this molecule is in so many areas of the biology of the cell and increasingly to how we think about treating disease. Topics addressed at the 2019 Symposium included RNA-based structures; RNA modifications; nuclear localization of RNA; quality control and editing; RNA and gene regulation; cotranscriptional splicing; intron–exon boundaries; alternative polyadenylation; transposon control; small noncoding RNAs; long noncoding RNAs; RNA and development; membraneless organelles; phase separation; RNA-based diseases; and novel RNA functions.
    [Show full text]
  • In Red Those Papers That Are Part of the Exam (I.E. One Question Will Be To
    Readings Cotranscriptional RNA processing • The C‐terminal domain of RNA polymerase II couples mRNA processing to transcription.McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL.Nature. 1997 Jan 23;385(6614):357‐61. • An extensive network of coupling among gene expression machines.Maniatis T, Reed R.Nature. 2002 Apr 4;416(6880): 499‐506. Review. • Curr Opin Cell Biol. 2005 Jun;17(3):262‐8.Promoter usage and alternative splicing.Kornblihtt AR. In red those papers that are part of the exam (i.e. one question will be to comment a figure) Readings pre mRNA splicing • Mechanism of Alternative pre mRNA splicing Douglas Black Annu Rev Biochem 2003 • Another step forward for SELEXive splicing.Buratti E, Baralle FE.Trends Mol Med. 2005 Jan;11(1):5‐9. Review. • Listening to silence and understanding nonsense: exonic mutations that affect splicing.Cartegni L, Chew SL, Krainer AR. Nat Rev Genet. 2002 Apr;3 (4):285‐98 • Determinants of SR protein specificity.Tacke R, Manley JL.Curr Opin Cell Biol. 1999 Jun;11(3):358‐62. Review. • Nat Struct Mol Biol. 2009 Sep;16(9):902‐3.When chromatin meets splicing.Kornblihtt AR, Schor IE, Allo M, Blencowe BJ. In red those papers that are part of the exam (i.e. one question will be to comment a figure) Readings polyA and RNA editing • HITS‐CLIP yields genome‐wide insights into brain alternative RNA processing. Licatalosi DD, et al (The CLIP identify NOVA as regulator of Alterantive PolyAdenilation) • Mechanisms and consequences of alternative polyadenylation.Di Giammartino DC, Nishida K, Manley JL.Mol Cell.
    [Show full text]
  • Nascent RNA and the Coordination of Splicing with Transcription
    Downloaded from http://cshperspectives.cshlp.org/ on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Nascent RNA and the Coordination of Splicing with Transcription Karla M. Neugebauer Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520 Correspondence: [email protected] SUMMARY At each active protein-encoding gene, nascent RNA is tethered to the DNA axis by elongating RNA polymerase II (Pol II) and is continuously altered by splicing and other processing events during its synthesis. This review discusses the development of three major methods that ena- ble us to track the conversion of precursor messenger RNA (pre-mRNA) to messenger RNA (mRNA) products in vivo: live-cell imaging, metabolic labeling of RNA, and RNA-seq of purified nascent RNA. These approaches are complementary, addressing distinct issues of transcription rates and intron lifetimes alongside spatial information regarding the gene posi- tion of Pol II at which spliceosomes act. The findings will be placed in the context of active transcription units, each of which—because of the presence of nascent RNA, Pol II, and features of the chromatin environment—will recruit a potentially gene-specific constellation of RNA binding proteins and processing machineries. Outline 1 Introduction 5 The coordination of splicing with transcription 2 Quantification of splicing relative to transcription using chromatin-based assays 6 Concluding remarks 3 Quantification of splicing rates through References RNA metabolic labeling 4 Quantification of splicing rates through live-cell fluorescence imaging Editors: Thomas R. Cech, Joan A. Steitz, and John F. Atkins Additional Perspectives on RNA Worlds available at www.cshperspectives.org Copyright # 2019 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a032227 Cite this article as Cold Spring Harb Perspect Biol 2019;11:a032227 1 Downloaded from http://cshperspectives.cshlp.org/ on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press K.M.
    [Show full text]
  • 2019 ANNUAL SMA CONFERENCE JUNE 28TH - JULY 1ST, 2019 DISNEYLAND HOTEL in ANAHEIM, CALIFORNIA Dear Families
    2019 ANNUAL SMA CONFERENCE JUNE 28TH - JULY 1ST, 2019 DISNEYLAND HOTEL IN ANAHEIM, CALIFORNIA Dear Families, We are leading the way to a world without spinal muscular atrophy. We fund and direct comprehensive research that drives breakthroughs in treatment and care, and we provide families the support they need for today. The FDA approval of Spinraza in December 2016 and the approval of Zolgensma last month were major steps toward that goal. As a community, we’ve celebrated those long-awaited breakthroughs, all the while recognizing that there remains more to be done. SMA is now changing. Individual needs and even our whole community are changing. We are expanding our research, WELCOME LETTER WELCOME care and support programs, while our commitment and community values remain the same as they have always been. As therapies are approved, research and care are more important than ever. We need to understand and optimize the impact of these therapies, and develop combination approaches and additional therapeutic targets to treat all ages, stages, and types of SMA, especially for teens and adults. One of our most important initiatives in this area is the SMA Care Center Network. The network now has 14 centers, and we will continue to add care centers across the US, to improve care and results, and to increase access to new therapies. We are increasingly shifting our programs to provide customized and local support. Examples of this include the 36 local Summits of Strength that we will have conducted across the country by the end of this year, and over 900 new adult support packages that we have delivered.
    [Show full text]
  • The in Vivo Dynamics of TCERG1, a Factor That Couples Transcriptional Elongation with Splicing
    Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press The in vivo dynamics of TCERG1, a factor that couples transcriptional elongation with splicing NOEMÍ SÁNCHEZ-HERNÁNDEZ,1,4 STÉPHANIE BOIREAU,2 UTE SCHMIDT,2 JUAN PABLO MUÑOZ-COBO,1 CRISTINA HERNÁNDEZ-MUNAIN,3 EDOUARD BERTRAND,2 and CARLOS SUÑÉ1 1Department of Molecular Biology, Instituto de Parasitología y Biomedicina “López Neyra” (IPBLN-CSIC), PTS, Granada 18016, Spain 2Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France 3Department of Cell Biology and Immunology, Instituto de Parasitología y Biomedicina “López Neyra” (IPBLN-CSIC), PTS, Granada 18016, Spain ABSTRACT Coupling between transcription and RNA processing is key for gene regulation. Using live-cell photobleaching techniques, we investigated the factor TCERG1, which coordinates transcriptional elongation with splicing. We demonstrate that TCERG1 is highly mobile in the nucleoplasm and that this mobility is slightly decreased when it is associated with speckles. Dichloro-1-β- D-ribofuranosylbenzimidazole (DRB) but not α-amanitin treatment reduced the mobility of TCERG1, which suggests interaction with paused transcription elongation complexes. We found that TCERG1 mobility is rapid at the transcription site (TS) of a reporter that splices post-transcriptionally and that TCERG1 is recruited to the active TS independent of the CTD of RNAPII, thus excluding phosphorylated CTD as a requirement for recruiting this factor to the TS. Importantly, the mobility of TCERG1 is reduced when the reporter splices cotranscriptionally, which suggests that TCERG1 forms new macromolecular complexes when splicing occurs cotranscriptionally. In this condition, spliceostatin A has no effect, indicating that TCERG1 rapidly binds and dissociates from stalled spliceosomal complexes and that the mobility properties of TCERG1 do not depend on events occurring after the initial spliceosome formation.
    [Show full text]
  • SAIB - 52Th Annual Meeting Argentine Society for Biochemistry and Molecular Biology
    52th Annual Meeting Argentine Society for Biochemistry and Molecular Biology LII Reunión Anual Sociedad Argentina de Investigación en Bioquímica y Biología Molecular Pabellón Argentina. Universidad Nacional de Córdoba November 7-10, 2016 BIOCELL 40 (Suppl.1) 2016 - SAIB - 52th Annual Meeting Argentine Society for Biochemistry and Molecular Biology LII Reunión Anual Sociedad Argentina de Investigación en Bioquímica y Biología Molecular November 7th–10th, 2016 Córdoba, República Argentina Pabellón Argentina Universidad Nacional de Cordoba Cover Page: Confocal microscopy images of Arabidopsis thaliana root are displayed in the cover. The selected roots are expressing a GFP reporter of a mitotic cyclin (CYCB1;1-GFP, green), also they are counterstained with propidium iodide (IP, red) to display the cell structure. In order to follow the progression through the cell cycle phases, the root cells were synchronized in S phase using HU, and after pictures were taken every 2 hours. This type of experiment was also used to generate RNA samples to analyze the dynamics of different gene expression during the cell cycle. Inside the circle, which shows the cell cycle phases, images of cells expressing a histone fused to the fluorescent protein VENUS and stained with IP, are displayed. Those images allow following the steps of mitosis in vivo inside the root ( PL-P56: Identification of cell cycle regulators inplants, by Goldy, C; Ercoli, MF; Vena, R; Palatnik, J, Rodriguez, Ramiro E.) Diseño de tapa: Natalia Monjes 1 BIOCELL 40 (Suppl.1) 2016 MEMBERS OF THE SAIB BOARD José Luis Bocco President CIBICI-CONICET Facultad de Ciencias Químicas Universidad Nacional de Córdoba Silvia Moreno Vicepresident IQUIBICEN-CONICET Facultad de Cs Exactas y Naturales Universidad de Buenos Aires Carlos Andreo Past President CEFOBI-CONICET Facultad de Cs Bioquímicas y Farm.
    [Show full text]
  • Transcription and Mrna Processing Get Even Closer
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 120, 163–166, January 28, 2005, Copyright ©2005 by Elsevier Inc. DOI 10.1016/j.cell.2005.01.002 The Spanish Connection: Meeting Review Transcription and mRNA Processing Get Even Closer Manuel Ares, Jr.1,* and Nick J. Proudfoot2,* place before elongation can fully proceed (Figure 1A). 1Department of Molecular Cell At early elongation, the C-terminal domain (CTD) of the and Developmental Biology Pol II large subunit (Rpb1) becomes phosphorylated on University of California, Santa Cruz serine 5 positions within its characteristic heptad re- Santa Cruz, California 95064 peats. Ser5 phosphorylation at CTD recruits the mRNA 2Sir William Dunn School of Pathology capping complex, which adds a cap to the initial nascent University of Oxford transcript. Ser5 phosphorylation is also associated with South Parks Road specific nucleosomal marks at the 5Ј end of the gene, Oxford OX1 3RE such as histone H3 lysine 4 trimethylation (Hampsey United Kingdom and Reinberg, 2003). Several presentations dwelt on new aspects of cou- pling during early transcription elongation. John Lis (Cornell University, New York) described the presence The synthesis of mRNA by RNA polymerase II appears of the elongation factor TFIIS on RNA polymerase II that coupled to numerous RNA-processing events, based is paused at the beginning of Drosophila heat shock on physical or functional connections revealed by bio- genes prior to heat induction. During normal elongation, chemical or genetic tests. New findings were pre- TFIIS is thought to promote cleavage of those tran- sented at a recent meeting in Spain that begin to illumi- scripts whose 3Ј ends are misaligned in the polymerase nate the mechanisms underlying the connections active site, thus allowing polymerase to escape tran- between mRNA processing and specific steps in tran- script arrest (Fish and Kane, 2002).
    [Show full text]
  • Cure SMA Awards 10 New Grants in Basic Research
    BASIC RESEARCH DRUG DISCOVERY CLINICAL TRIALS CLINICAL CARE RESEARCHER MEETING LATEST ADVANCES COMPASS A Publication Dedicated to Research Updates | SUMMER 2017 Cure SMA Awards 10 New Grants in Basic Research In this issue of Compass, we are proud to Our hope is that Spinraza is just the leading edge of a robust drug pipeline, with a breadth and depth that reflects our goal announce over $1.03 million in new funding. of treatments for all ages, stages, and types of SMA. We’ve seen many advances in recent years, from new techniques Basic Research Grants in gene therapy, which Cure SMA is funding with an award Basic research is the first step in our comprehensive research to Nationwide Children’s Hospital through our transla- model. We fund basic research to investigate the biology and tional grant program, to drugs that affect muscle and nerve cause of SMA, in order to identify the most effective strategies function that could be used in combination with drugs like for drug discovery. We also use this funding to develop tools Spinraza that target the underlying genetics of SMA. We’re that facilitate SMA research. actively working on additional treatments that target the underlying genetics of SMA as well as therapies that target Without basic research, the SMA drug pipeline would not other systems, pathways, and processes affected by SMA. Our continue to grow and diversify. We need both a breadth and goal is a combination of therapeutic approaches that can be a depth of options in our quest for a maximally effective SMA tailored to each individual SMA patient.
    [Show full text]
  • Communicative & Integrative Biology Playing Inside the Genes
    This article was downloaded by: [Universidad de Buenos Aires] On: 18 August 2015, At: 10:06 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London, SW1P 1WG Communicative & Integrative Biology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/kcib20 Playing inside the genes Ignacio E. Schora & Alberto R. Kornblihtta a Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE‑CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Published online: 31 Aug 2009. To cite this article: Ignacio E. Schor & Alberto R. Kornblihtt (2009) Playing inside the genes, Communicative & Integrative Biology, 2:4, 341-343, DOI: 10.4161/cib.2.4.8550 To link to this article: http://dx.doi.org/10.4161/cib.2.4.8550 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Versions of published Taylor & Francis and Routledge Open articles and Taylor & Francis and Routledge Open Select articles posted to institutional or subject repositories or any other third-party website are without warranty from Taylor & Francis of any kind, either expressed or implied, including, but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement. Any opinions and views expressed in this article are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis.
    [Show full text]
  • Making and Breaking the Message
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2003-11-13 Making and breaking the message David A. Mangus University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Microbiology Commons, and the Molecular Genetics Commons Repository Citation Mangus DA, van Hoof A. (2003). Making and breaking the message. Open Access Articles. https://doi.org/10.1186/gb-2003-4-11-346. Retrieved from https://escholarship.umassmed.edu/oapubs/ 608 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Meeting report Making and breaking the message comment David A Mangus* and Ambro van Hoof† Addresses: *Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA. †Department of Microbiology and Molecular Genetics, University of Texas Health Sciences Center, 6431 Fannin JFB 1.700, Houston, TX 77030, USA. Correspondence: David A Mangus. E-mail: [email protected] reviews Published: 21 October 2003 Genome Biology 2003, 4:346 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2003/4/11/346 © 2003 BioMed Central Ltd reports Thomas Walz (Harvard Medical School, Boston, USA) all A report on the Cold Spring Harbor Laboratory meeting indicate that the active spliceosome (C complex) has three ‘Eukaryotic mRNA Processing’, Cold Spring Harbor, USA, 20- domains of density surrounding a central cavity.
    [Show full text]