Common Ragweed Ambrosia Artemisiifolia L
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Invasive Species Management Summary Parthenium Hysterophorus
Fall 08 Invasive species management summary Parthenium hysterophorus David Mountain, Bryony Taylor, Julien Godwin September 2016 KNOWLEDGE FOR LIFE Parthenium hysterophorus management summary This report is the Copyright of CAB International, on behalf of the sponsors of this work where appropriate. It presents unpublished research findings, which should not be used or quoted without written agreement from CAB International. Unless specifically agreed otherwise in writing, all information herein should be treated as confidential. Parthenium weed (Parthenium hysterophorus) A search in CABDirect returned very few relevant references for Parthenium hysterophorus IPM, therefore the search term “Parthenium hysterophorus Biocontrol” was used instead and this returned 195 records. Of these the first 50 records were used in the analysis of common approaches. In addition to analysis of the first 50 records, a ‘sample’ analysis was also carried out on the titles of all records returned to assess most common predators and pathogens used for biocontrol in the titles. The summary spreadsheet can be found here Geography Parthenium hysterophorus is native to the southern USA, central and South America. It was reported as a common weeds in Southern Africa in the mid 1980s (CPC) and Vietnam around 1922 (Nguyen Thi Lan et al., 2011). Most commonly studied approaches The most common approach identified from the first 50 records returned using the CAB direct search were using predators to control P. hysterophorus, followed by pathogens (Figure 1). What is not apparent from this search is the extent to which rural communities use hand weeding; hand weeding hazardous as the weed is strongly allogenic and affects humans and livestock. -
Prospects for Biological Control of Ambrosia Artemisiifolia in Europe: Learning from the Past
DOI: 10.1111/j.1365-3180.2011.00879.x Prospects for biological control of Ambrosia artemisiifolia in Europe: learning from the past EGERBER*,USCHAFFNER*,AGASSMANN*,HLHINZ*,MSEIER & HMU¨ LLER-SCHA¨ RERà *CABI Europe-Switzerland, Dele´mont, Switzerland, CABI Europe-UK, Egham, Surrey, UK, and àDepartment of Biology, Unit of Ecology & Evolution, University of Fribourg, Fribourg, Switzerland Received 18 November 2010 Revised version accepted 16 June 2011 Subject Editor: Paul Hatcher, Reading, UK management approach. Two fungal pathogens have Summary been reported to adversely impact A. artemisiifolia in the The recent invasion by Ambrosia artemisiifolia (common introduced range, but their biology makes them unsuit- ragweed) has, like no other plant, raised the awareness able for mass production and application as a myco- of invasive plants in Europe. The main concerns herbicide. In the native range of A. artemisiifolia, on the regarding this plant are that it produces a large amount other hand, a number of herbivores and pathogens of highly allergenic pollen that causes high rates of associated with this plant have a very narrow host range sensitisation among humans, but also A. artemisiifolia is and reduce pollen and seed production, the stage most increasingly becoming a major weed in agriculture. sensitive for long-term population management of this Recently, chemical and mechanical control methods winter annual. We discuss and propose a prioritisation have been developed and partially implemented in of these biological control candidates for a classical or Europe, but sustainable control strategies to mitigate inundative biological control approach against its spread into areas not yet invaded and to reduce its A. -
Identification and Characterization Of
IDENTIFICATION AND CHARACTERIZATION OF GLYPHOSATE-RESISTANT COMMON RAGWEED ( Ambrosia artemisiifolia L.) A Thesis presented to The Faculty of the Graduate School University of Missouri-Columbia In Partial Fulfillment of The Requirements for the Degree Master of Science by JUSTIN MICHAEL POLLARD Dr. Reid J. Smeda, Thesis Supervisor May 2007 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled IDENTIFICATION AND CHARACTERIZATION OF GLYPHOSATE-RESISTANT COMMON RAGWEED ( Ambrosia artemisiifolia L.) presented by Justin M. Pollard a candidate for the degree of Masters of Science and hereby certify that, in their opinion, it is worthy of acceptance. Major Professor: Dr. Reid J. Smeda Associate Professor Thesis Committee: Dr. Wayne C. Bailey Associate Professor Dr. Kelly A. Nelson Research Assistant Professor ACKNOWLEDGEMENTS To start, I would to thank my advisor Dr. Reid J. Smeda for allowing me the opportunity to further my education and broaden my horizons. His willingness to provide guidance and support along with friendship has made the preparation of this manuscript possible. Thank you to my committee members, Dr. Wayne C. Bailey and Kelly A. Nelson for all their wonderful guidance and impeccable knowledge. Thank you again. Special thanks to Dr. Brent Sellers for his guidance, knowledge, and friendship. I would also like to thank the Weed Science Department including Dr. Kevin Bradley and Jim Wait for their support. Special thanks are in order for Dr. Mark Ellersieck for all of his statistical guidance. I must also extend thanks to the staff of the Bradford Research and Extension Center for their willingness to lend a hand anytime it was needed and allowing me to conduct my field research. -
Chrysomelidae), a Promising Agent
THERMAL PHYSIOLOGY AND PREDICTED DISTRIBUTION OF ZYGOGRAMMA BICOLORATA (CHRYSOMELIDAE), A PROMISING AGENT FOR THE BIOLOGICAL CONTROL OF THE INVASIVE WEED PARTHENIUM HYSTEROPHORUS IN SOUTH AFRICA HELEN KING Submitted in fulfilment of the academic requirements for the degree of MASTER OF SCIENCE in the Discipline of Entomology School of Biological and Conservation Sciences Faculty of Science and Agriculture University of KwaZulu-Natal Pietermaritzburg 2008 i PREFACE The experimental work described in this dissertation was carried out in the School of Biological and Conservation Sciences, University of KwaZulu-Natal, Pietermaritzburg and at the Cedara Weeds Unit (ARC – Plant Protection Research Institute) from January 2006 to January 2008, under the supervision of Doctor Terence Olckers and co- supervision of Doctor Andrew McConnachie and Professor Colleen Downs. This dissertation, submitted for the degree of Master of Science in the Faculty of Science and Agriculture, University of KwaZulu-Natal, Pietermaritzburg, represents original work by the author and has not otherwise been submitted in any form for any degree or diploma to any University. Where use has been made of the work of others, it is duly acknowledged in the text. …………………………. Helen King January 2008 I certify that the above statement is correct ………………………….. Doctor Terence Olckers Supervisor ………………………….. Doctor Andrew McConnachie Co-supervisor ………………………….. Professor Colleen T. Downs Co-supervisor January 2008 i ii ABSTRACT Parthenium hysterophorus (Asteraceae), classified as an emerging weed in South Africa, has become abundant throughout large parts of southern and eastern Africa. In South Africa it has invaded areas in KwaZulu-Natal, Mpumalanga, the North West Province and Limpopo. A biological control programme against parthenium weed was launched in South Africa in 2003, based on the success achieved in Australia. -
Host Plant Records for North American Ragweed Flies (Diptera: Tephritidae) 1
Vol. 95, No. 2. March & April 1984 51 HOST PLANT RECORDS FOR NORTH AMERICAN RAGWEED FLIES (DIPTERA: TEPHRITIDAE) 1 B.A. Foote2 ABSTRACT: Information is given on host plants and infestation rates for 7 of the 8 North American species of Euaresta. The host plants are either ragweeds of the genus Ambrosia or cockleburs of the genus Xanthium, 2 genera of the tribe Ambrosieae (Compositae). The genus Euaresta is a relatively small taxon within the family Tephritidae of the acalyptrate Diptera. It includes 8 species from America north of Mexico (Quisenberry, 1950; Foote, 1965), as well as several from south of the United States; however, virtually no host data are available for these latter species and some doubt exists as to whether they actually belong to the genus (R.H. Foote, in litt.). Relatively little is known of the life histories or larval feeding habits of the Nearctic species except that they seem to be associated either with cockleburs of the genus Xanthium or ragweeds of the genus Ambrosia (Compositae: Ambrosieae). Marlatt 1 1 the ( 89 ) discussed natural history of E. aequalis(Loew), a seed predator of cocklebur (X. strumarium L.). Foote (1965) reported that larvae of E. bella(Loew) and E. festiva (Loew) attacked the seeds of common ragweed (A. artemisiifolia L.) and giant ragweed (A. trifida L.), respectively. He also listed host plants for selected species of Euaresta and discussed briefly the life cycles of E. bella and E. festiva. Batra (1979) described in considerable detail the courtship behavior and oviposition habits of these two species. Goeden and Ricker (1974a, 1974b, 1976) recorded host for plants E. -
Species List for Garey Park-Inverts
Species List for Garey Park-Inverts Category Order Family Scientific Name Common Name Abundance Category Order Family Scientific Name Common Name Abundance Arachnid Araneae Agelenidae Funnel Weaver Common Arachnid Araneae Thomisidae Misumena vatia Goldenrod Crab Spider Common Arachnid Araneae Araneidae Araneus miniatus Black-Spotted Orbweaver Rare Arachnid Araneae Thomisidae Misumessus oblongus American Green Crab Spider Common Arachnid Araneae Araneidae Argiope aurantia Yellow Garden Spider Common Arachnid Araneae Uloboridae Uloborus glomosus Featherlegged Orbweaver Uncommon Arachnid Araneae Araneidae Argiope trifasciata Banded Garden Spider Uncommon Arachnid Endeostigmata Eriophyidae Aceria theospyri Persimmon Leaf Blister Gall Rare Arachnid Araneae Araneidae Gasteracantha cancriformis Spinybacked Orbweaver Common Arachnid Endeostigmata Eriophyidae Aculops rhois Poison Ivy Leaf Mite Common Arachnid Araneae Araneidae Gea heptagon Heptagonal Orbweaver Rare Arachnid Ixodida Ixodidae Amblyomma americanum Lone Star Tick Rare Arachnid Araneae Araneidae Larinioides cornutus Furrow Orbweaver Common Arachnid Ixodida Ixodidae Dermacentor variabilis American Dog Tick Common Arachnid Araneae Araneidae Mangora gibberosa Lined Orbweaver Uncommon Arachnid Opiliones Sclerosomatidae Leiobunum vittatum Eastern Harvestman Uncommon Arachnid Araneae Araneidae Mangora placida Tuft-legged Orbweaver Uncommon Arachnid Trombidiformes Anystidae Whirligig Mite Rare Arachnid Araneae Araneidae Mecynogea lemniscata Basilica Orbweaver Rare Arachnid Eumesosoma roeweri -
Arthropods Associated with Above-Ground Portions of the Invasive Tree, Melaleuca Quinquenervia, in South Florida, Usa
300 Florida Entomologist 86(3) September 2003 ARTHROPODS ASSOCIATED WITH ABOVE-GROUND PORTIONS OF THE INVASIVE TREE, MELALEUCA QUINQUENERVIA, IN SOUTH FLORIDA, USA SHERYL L. COSTELLO, PAUL D. PRATT, MIN B. RAYAMAJHI AND TED D. CENTER USDA-ARS, Invasive Plant Research Laboratory, 3205 College Ave., Ft. Lauderdale, FL 33314 ABSTRACT Melaleuca quinquenervia (Cav.) S. T. Blake, the broad-leaved paperbark tree, has invaded ca. 202,000 ha in Florida, including portions of the Everglades National Park. We performed prerelease surveys in south Florida to determine if native or accidentally introduced arthro- pods exploit this invasive plant species and assess the potential for higher trophic levels to interfere with the establishment and success of future biological control agents. Herein we quantify the abundance of arthropods present on the above-ground portions of saplings and small M. quinquenervia trees at four sites. Only eight of the 328 arthropods collected were observed feeding on M. quinquenervia. Among the arthropods collected in the plants adven- tive range, 19 species are agricultural or horticultural pests. The high percentage of rare species (72.0%), presumed to be transient or merely resting on the foliage, and the paucity of species observed feeding on the weed, suggests that future biological control agents will face little if any competition from pre-existing plant-feeding arthropods. Key Words: Paperbark tree, arthropod abundance, Oxyops vitiosa, weed biological control RESUMEN Melaleuca quinquenervia (Cav.) S. T. Blake ha invadido ca. 202,000 ha en la Florida, inclu- yendo unas porciones del Parque Nacional de los Everglades. Nosotros realizamos sondeos preliminares en el sur de la Florida para determinar si los artópodos nativos o accidental- mente introducidos explotan esta especie de planta invasora y evaluar el potencial de los ni- veles tróficos superiores para interferir con el establecimento y éxito de futuros agentes de control biológico. -
Biological Invasions and Its Management in China, Invading Nature - Springer Series in Invasion Ecology 13, DOI 10.1007/978-981-10-3427-5 250 Index
Index A Ampullaria gigas, apple snail, 58 Acacia auriculiformis, 136 Angiostrongylus cantonensis, 34 Acacia mangium, 136 Aphis citricolor, 134 Actinote anteas, butterfly, 135, 138 Aquaculture, 78, 87, 92, 94, 95 Actinote thalia pyrrha, butterfly, 135 Arbuscular mycorrhizal fungi. See Fungi Adaptation, ecological adaptability. See also Artemisia annua, 168 Evolution Assiminea violacea, 192 A. philoxeroides, 165–166 F. bidentis, 156–157 genetic diversity and, 7 B light conditions, A. adenophora, 117 Bacteria, 6, 9–10, 16, 18, 28, 71, 119, 146, low/high temperatures, apple snails, 37, 39 156, 191, 232 phenotypic plasticity, 165 Biodiversity, species diversity Radopholus similis, 25 resistance to invasions, invasibility, rapid adaptive evolution, Mikania community, 68, 82, 241 micrantha, 132 threats/effects to (invasion impacts), 52, red-eared turtles, 50, 56–68, 72 55, 87, 92, 94, 100–101, 112, 114, 133, salinity stress, 68, 157, 189 145, 154, 164, 176, 189, 191 S. alterniflora, 189 Biotic resistance, 82 S. canadensis, 146 Birds, 101, 193–196 water hyacinth, 178–179 Brevipalpus phoenicis, 134, 138 Agasicles hygrophila, 166–168 Bursaphelenchus mucronatus, 7 Ageratina adenophora, Crofton weed, Bursaphelenchus xylophilus, pinewood 112–124, 243 nematode, 3–19 Allelochemicals, 119, 123, 145, 156 Allelopathy allelopathic effects, 102, 118–119, 122, 134, 145–146, 156, 164, 168 C Alternanthera philoxeroides, alligator weed, Carbon 163–170 carbon assimilation, 118 Alternaria alternata, 120 carbon fluxes, 195 Alternaria eichhornia, pathoggenic fungi, 182 carbon stocks, 194, 195 Alternaria tenuissima, pathogenic fungus, 157 soil carbon cycling, 195 Ambrosia artemisiifolia, common ragweed, soil organic carbon, 146 99–106, 243 Carp, 41, 84, 87 Amorpha frutiocosa, 105 Cercospora piaropi, 182 © Springer Nature Singapore Pte Ltd. -
Parthenium Hysterophorus
Parthenium hysterophorus Ragweed parthenium, false ragweed, Santa Maria Parthenium hysterophorus L. Family: Asteraceae Description: Annual herb to 3 ft tall, branched, hairy, faint longitudinal stripes on stems. Leaves 8 inches long by 4 inches wide, deeply lobed. Flower heads small, many, white. Greek: parthenos, virgin, in reference to only the female flowers being fertile; hysterophorus, old generic name of similar meaning(5, 70). Distribution: Tropical American origin. Common in mesic pastures, roadsides, and waste areas on Kauaÿi, Oÿahu, Molokaÿi, Maui, and Hawai‘i(70). Occurs in south- ern USA to southern Brazil and northern Argentina. In- troduced accidentally into India in 1956 and now in- fests most of India, where it is called “congressweed” after the white cap that is the symbol of the Congress political party. Found in southern China, Taiwan, Viet- lelopathic (suppressive) and causes dermatitis and other nam, some Pacific islands, and some African countries. allergic reactions in humans and livestock, especially Introduced into Queensland, Australia, in the 1940s with horses. Reduces beef production by A$16.5 million an- aircraft parts and in 1958 in grass seed from Texas. Did nually in Queensland(1). Spreading into pastures and not spread quickly until 1970s. Now covers 420,000 roadsides in Hawai‘i. acres, or 10% of Queensland. Also infests New South Wales and Northern Territory, Australia(1). It is on the Management: Effective herbicides include 2,4-D, list of Australia’s 20 most unwanted weeds(10). High water atrazine, hexazinone, and metsulfuron(1). Triclopyr is ef- requirement. Does best in neutral to high pH soils, less fective on most Asteraceae. -
Alien Leaf Beetles of European Russia: Native Ranges, Invasion History, Biology and Vectors of Dispersal
bioRxiv preprint doi: https://doi.org/10.1101/252510; this version posted January 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Alien leaf beetles of European Russia: native ranges, invasion history, biology and vectors of dispersal Andrzej O. Bieńkowski A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskiy Prospect, 119071 Moscow, Russia e-mail: [email protected] Marina J. Orlova-Bienkowskaja (corresponding author) A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskiy Prospect, 119071 Moscow, Russia e-mail: [email protected] Acknowledgements We would like to thank N.V. Okhrimenko, R.N. Ishin, G.O. Japoshvili, A.G. Koval, T.A. Mogilevich, P.V. Romantsov, Y.N. Kovalenko, P.N. Petrov, A.I. Prikhodko, A.B. Ruchin, G.A. Korostov, V.I. Filippov, E.V. Iljina, N.E. Nikolaeva and M.M. Dolgin for the possibility to study specimens from their collections, to S.Ya. Reznik, V.V. Martynov, M.E. Sergeev, S.A. Mosyakin, A.G. Moseyko, H. Özdikmen for valuable information on leaf beetle distribution and to A.S. Konstantinov for valuable remarks on the manuscript. The study was supported by Russian Science Foundation, Project No 16-14-10031. Disclosure statement No potential conflict of interest was reported by the authors. Funding This work was supported by Russian Science Foundation under Grant 16-14-10031. -
FRUIT FLY GENERA SOUTH of the UNITED STATES (Diptera: Tephritidae)
1.0 1/11/2.5 2.2 1.1 1.1 111111.25 11111 1.4 111111.6 11111 1.25 111111.4 111111.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A NATIDNAL BUREAU OF STANDAROS-1963-A i 6~~ ~_. - (; ~> I' \, ," '" <> Q -i'. .D « 0" ',' '" p P 'J -:. y~.' /'.',,": :$, ,/ -l,; .C ~ r;;;:. ';. ,~ .., .. , {~ 0 , FRUIT FLY GENERA SOLJTH OF TH E UNITED STATES (Diptera: Tephritidae) by RICHARD H. FOOTE F\ UNITED STATES TECHNICAL PREPARED BY I\U.~), DEPARTMENT OF BULLETIN SCIENCE AND ~ AGRICULTURE NUMBER 1600 EDUCATION ADMINISTRATION ABSTRACT Foote, Richard H. 1980. Fruit fly genera south of the United States. U.S. Department of Agriculture, Technical Bulletin 1600,79 pp. The 88 genera of fruit flies in Mexico, Central America, the West Indies, and South America are discussed. Keys to all genera are pre sented, and a synonymy, diagnosis, and discussion of each genus follow. Included for each genus is information about its distribution, its rela tionship to other genera, its composition in terms of the species belong ingto it, aids to its recognition, and references for identifying its species. Several diagnostic characteristics and the wing of at least one species in almost every genus have been illustrated. Four genera, previously re garded as valid, have been synonymized with others, and three addi tional genera, long recorded from the region, are shown not to occur in the New World or to belong to other fly families. Fruit flies comprise the most economically important family of plant-inhabiting Diptera, consid ering the potential for agricultu"'al damage by species of such genera as Anast-repha, Ceratitis, Dacu.s, andRhagoletis. -
The Additive Effect of a Stem Galling Moth and a Competitive Plant On
Biological Control 150 (2020) 104346 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon The additive effect of a stem galling moth and a competitive plant on T parthenium weed under CO2 enrichment ⁎ Asad Shabbira,b, , K. Dhileepanc, M.P. Zaluckid, Steve W. Adkinsb a The University of Sydney, School of Life and Environmental Sciences, Camden 2570, Australia b School of Agriculture & Food Sciences, The University of Queensland, Gatton 4343, Australia c Biosecurity Queensland, Department of Agriculture and Fisheries, Ecosciences Precinct, Boggo Road, Dutton Park 4102, Australia d School of Biological Sciences, The University of Queensland, St Lucia 4072, Australia GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Keywords: Parthenium weed (Parthenium hysterophorus) is a highly invasive plant that has invaded many parts of world Plant competition including Australia. The present study reports on the effects of rising [CO2] on the performance of one of its Biological weed control biological control agents, stem-galling moth (Epiblema strenuana) when combined with a competitive plant, Epiblema strenuana buffel grass (Cenchrus cilliaris). The study was carried out under controlled environment facilities during Parthenium hysterophorus −1 2010–11. P. hysterophorus when grown under elevated [CO2] of 550 µmol mol , produced a greater biomass Climate change − (27%), attained greater stature (31%), produced more branches (45%) and seeds plant 1 (20%), than those −1 grown at ambient [CO2] of 380 µmol mol .Buffel grass reduced the biomass and seed production of P. hys- terophorus plants by 33% and 22% under ambient [CO2] and by 19% and 17% under elevated [CO2], respec- tively. The combined effect of buffel grass and E.