A Case Study of Nigeria Emeka Nnanna O

Total Page:16

File Type:pdf, Size:1020Kb

A Case Study of Nigeria Emeka Nnanna O DEVELOPMENT OF A SUSTAINABLE FRAMEWORK TO MANAGE FLARE GAS IN AN OIL AND GAS ENVIRONMENT: A CASE STUDY OF NIGERIA EMEKA NNANNA OJIJIAGWO DOCTOR OF PHILOSOPHY 2017 Development of a Sustainable Framework to Manage Flare Gas in an Oil and Gas Environment: A Case Study of Nigeria Emeka Nnanna Ojijiagwo BSc (Hons), MSc. Faculty of Science and Engineering University of Wolverhampton United Kingdom A thesis submitted in partial fulfilment of the requirement of the University of Wolverhampton for the Degree of Doctor of Philosophy July 2017 DECLARATION I certify that this work has not beenaccepted in substance for any degree, and is not concurrently being submitted for any other degree other than that of Doctor of Philosophy (Ph.D.) being studied at the University of Wolverhampton. I also declare that this work is the result of my investigations, except where otherwise identified by references and that I have not plagiarised the works of others. …………………………… ………………………… Emeka Nnanna Ojijiagwo Date (Student) i DEDICATION This thesis is dedicated to God Almighty for His guidance and direction from beginning to the end of the Ph.D. research. ii ACKNOWLEDGEMENTS I would like to thank God Almighty for His infinite grace, love, wisdom, and strength throughout my Ph.D. programme. Without God, this would have been impossible. I am very grateful to my Director of Studies, Professor Chike F. Oduoza for his constant academic guidance, encouragement, and support. Your understanding and patience were beyond my understanding. I absolutely appreciate. I am also appreciative of my second supervisor, Dr. Nwabueze Emekwuru for his thoughtful supports and contributions towards the completion of this programme. To my loving, caring, and ever understanding parents, HRH Sir and Lady S. Ojijiagwo, words cannot express my sincere gratitude for the spiritual, moral, and financial supports that you have always provided for me. To my sister, Chichi Ojijiagwo you have always been special to me, and in the course of these past four years, you have demonstrated more love: you will always have a special space in my life. I am very grateful to all members of my family for their various supports – Ikenna, Gordon, Uchenna, Uloma, Ugochi, Chinonyerem and Charlyn. God will continue to bless you all. Specially, I want to thank Dr. Emeka H. Amalu for his sincere academic support and kindness. I am also very grateful to the staff of Okoloma gas plant, Afam power station, and Rivers State independent power station, for their special contributions towards this research. God bless you all. Finally, special thanks to my friends and colleagues, who have shown love, support, kindness in various ways. Solomon Adjei, Nengi Odimabo, Bryan McCarthy, Chimene Obunwo, Pastor Kehinde Joshua, Emeka Ogbuehi, Deinsam Ogan, Osarumen Ogbomo, Williams Oko, Kachi Okogbue. I really appreciate. iii ABSTRACT Associated natural gas is produced as a by-product from crude oil exploration and production. When perceived as a non-desirable product, it is wasted during gas flaring. Globally, about 100 Billion Cubic Meters (BCM) of gas is flared annually, leading to release of about 300 million tons of carbon dioxide yearly into the environment. Russia and Nigeria flare more than other countries to the tune of 35.5 and 18.27 BCM, respectively. The consequence of gas flaring has continued to pose significant threats to the environment as well as the economy of oil and gas producing countries. Therefore, this research is aimed at developing a sustainable framework that could enable management of flared gas in an oil and gas environment by generating energy and also minimise environmental impact that arises from gas flaring process. Three major research gaps were identified and they include lack of existing gas flare management framework in Nigeria, lack of economic evaluation of gas to wire (GTW) technology for flared gas reduction and, lack of cordial relationship and understanding between oil and gas producing/flaring companies and electricity producing sectors towards gas flare management. A qualitative research strategy was employed – utilising the single case study approach with embedded units of analysis. Three case study companies were used - one oil and gas producing company, and two electricity-generating companies. Data collection involved semi structured interviews, documentation, observation, and review of relevant literature. Data was analysed using QSR Nvivo version 10. A framework for flared gas reduction was developed based on literature review and also from information made available by experts operating in the oil and gas and electricity sectors. The framework shows inputs from various stakeholders, as well as an evaluation of volume of gas produced, utilized and flared. An economic assessment of GTW technology was carried out to determine the cost effectiveness of the framework. Findings from the study showed that GTW is a viable means of management, and could reduce the total volume of flared gas in Nigeria to 7.1%. This reduces environmental, health and safety hazards. It is also economically profitable. A total capital investment of £1.64b is required in the Nigerian context, with a net profit of £1.26b/year, and has a rate of return of investment of 16.3%. This study has demonstrated that GTW is a sustainable technology for reducing flared gas in Nigeria and other countries facing similar challenges as Nigeria; and capable of minimising adverse environmental and health impact associated with gas flaring. Therefore, the developed framework is also recommended for effective management of flared gas in such countries. iv TABLE OF CONTENTS DECLARATION ......................................................................................................................... i DEDICATION ........................................................................................................................... ii ACKNOWLEDGEMENTS ...................................................................................................... iii ABSTRACT .............................................................................................................................. iv TABLE OF CONTENTS ........................................................................................................... v LIST OF FIGURES ................................................................................................................... xi LIST OF TABLES .................................................................................................................. xiv LIST OF ABBREVIATIONS ................................................................................................. xvi CHAPTER ONE – INTRODUCTION TO STUDY .................................................................. 1 1.1 BACKGROUND OF THE STUDY..................................................................................1 1.2 RESEARCH SCOPE AND MOTIVATION ....................................................................2 1.3 RESEARCH QUESTIONS ...............................................................................................4 1.4 AIM ...................................................................................................................................4 1.5 OBJECTIVES ...................................................................................................................4 1.6 RESEARCH DESIGN ......................................................................................................5 1.7 CHAPTER SUMMARY ...................................................................................................8 CHAPTER TWO: REVIEW OF GAS FLARING, ENFORCEMENT AND MONITORING POLICIES, ADVERSE IMPACT AND MANAGEMENT TECHNOLOGIES ......... 9 2.1 INTRODUCTION .............................................................................................................9 2.2 GAS FLARING AND FLARING IN SOME SELECTED COUNTRIES .......................9 2.2.1 Gas Flaring In Norway ............................................................................................13 2.2.2 Gas Flaring In Netherlands ......................................................................................16 2.2.3 Gas Flaring In Qatar ................................................................................................17 2.2.4 Gas Flaring In Ecuador ............................................................................................18 2.2.5 Gas Flaring In Russia ..............................................................................................20 2.3 OVERVIEW OF NIGERIA AND THE NIGER DELTA ..............................................22 v 2.4 GAS FLARING IN NIGERIA (NIGER DELTA REGION) ..........................................25 2.4.1 Nigerian Government and Gas Flaring: The Legal Framework ..............................26 2.4.2 Institutional Framework for Gas Flare Management in Nigeria .............................28 2.5 RECOMMENDATIONS ON GAS FLARE REGULATION FOR NIGERIA ..............29 2.6 ENFORCEMENT AND MONITORING OF GAS FLARE SITES IN NIGERIA ........31 2.6.1 Legislation ...............................................................................................................31 2.6.2 Monitoring ...............................................................................................................32 2.6.3 Enforcement.............................................................................................................33 2.7 ADVERSE IMPACT OF GAS
Recommended publications
  • Gas Flaring Emission Contributes to Global Warming
    Département de Department of Civil and Environmental Génie Energétique et Environnement Engineering INSA Luleå University of Technology Lyon, France Luleå, Sweden Gas Flaring Emission Contributes to Global Warming Bruno GERVET Supervisor: Prof. Bo Nordell March 2007 Renewable Energy Research Group Division of Architecture and Infrastructure Luleå University of Technology SE-97187 Luleå, Sweden Gas Flaring Emission Contributes to Global Warming 1. Net Heat Generation from Gas Flaring 1.1. Background Although global warming is scientifically accepted, its cause is still disputed. Nordell (2003) suggested a most natural explanation; that this warming is a result of heat emissions from the global consumption of non-renewable energy. Global warming means that heat has been accumulating in air, ground, and water since 1880. During the same period heat was released into the atmosphere by heat dissipation from the global use of fossil fuel and nuclear power. Any such thermal pollution must contribute to the warming. A comparison of accumulated and emitted heat show that heat emissions explains 55% of the global warming. Moreover, the amount of emitted heat is underestimated, since the non-commercial use of fossil fuel is not included, e.g. gas flares, underground coal fires, oil used in production of plastics, and also biofuel (wood) consumed at a greater rate than the growth. Here, the task was to estimate the heating caused by one of the non-commercial energy sources, the flaring of gas. 1.2. Definition The flared gas is gas burnt off as unusable waste gas or flammable gas, which is released by pressure relief valves during unplanned over-pressuring of plant equipment.
    [Show full text]
  • The Economics of Natural Gas Flaring in US Shale
    Working Paper The Economics of Natural Gas Flaring in U.S. Shale: An Agenda for Research and Policy Mark Agerton, Ph.D. Nonresident Scholar, Center for Energy Studies, Baker Institute for Public Policy Assistant Professor, Agricultural and Resource Economics, University of California, Davis Ben Gilbert, Ph.D. Assistant Professor, Economics and Business, Colorado School of Mines Faculty Fellow, Payne Institute for Public Policy Gregory B. Upton Jr., Ph.D. Assistant Professor-Research Center for Energy Studies, Louisiana State University © 2020 by Rice University’s Baker Institute for Public Policy. This material may be quoted or reproduced without prior permission, provided appropriate credit is given to the author and the Baker Institute. Wherever feasible, papers are reviewed by outside experts before they are released. However, the research and views expressed in this paper are those of the individual researcher(s) and do not necessarily represent the views of the Baker Institute for Public Policy. July 22, 2020 Abstract Flaring of natural gas associated with U.S. unconventional tight oil production is a significant environmental and policy issue for the sector. We marshal granular data to identify the bottlenecks in the oil and gas value chain that physically cause upstream flaring at the well. Motivated by this descriptive analysis, we further analyze the economic reasons for flaring, market distortions that could exacerbate it, and the cost to society of flaring. We lay out an agenda for researchers and policymakers charged with understanding and regulating flaring. ‡ 1 1 Introduction When and why do companies flare natural gas? In this paper, we lay out a research and policy agenda around natural gas flaring by U.S.
    [Show full text]
  • Gas Flaring Reduction in the Indonesian Oil and Gas Sector – Technical and Economic Potential of Clean Development Mechanism (CDM) Projects
    Gas Flaring Reduction in the Indonesian Oil and Gas Sector – Technical and Economic Potential of Clean Development Mechanism (CDM) projects Gustya Indriani HWWA-Report 253 Hamburgisches Welt-Wirtschafts-Archiv (HWWA) Hamburg Institute of International Economics 2005 ISSN 0179-2253 The HWWA is a member of: • Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (WGL) • Arbeitsgemeinschaft deutscher wirtschaftswissenschaftlicher Forschungsinstitute (ARGE) • Association d‘Instituts Européens de Conjoncture Economique (AIECE) Gas Flaring Reduction in the Indonesian Oil and Gas Sector – Technical and Economic Potential of Clean Development Mechanism (CDM) Projects Gustya Indriani I thank Dr. Axel Michaelowa of the Programme International Climate Policy for re- search supervision. The CDM Capacity Building Programme of GTZ provided travel funding for data collection in Indonesia. The report was submitted as Masters Thesis under the International Master Program in Environmental Engineering at Technical University of Hamburg-Harburg under the supervision of Prof. Dr. rer. Nat. Ulrich Förstner and Prof. Dr.-Ing. Wilfried Schneider. HWWA REPORT Editorial Board: Prof. Dr. Thomas Straubhaar Dr. Klaus Kwasniewski Dr. Konrad Lammers Dr. Eckhardt Wohlers Hamburgisches Welt-Wirtschafts-Archiv (HWWA) Hamburg Institute of International Economics Öffentlichkeitsarbeit Neuer Jungfernstieg 21 20347 Hamburg Phone: +49-040-428 34 355 Fax: +49-040-428 34 451 e-mail: [email protected] Internet: http://www.hwwa.de/ Gustya Indriani Gang Repeh-rapih no 28, Muararajeun Beun Bandung 40122, Indonesia Phone: +62 22 7207507 e-mail: [email protected] Abstract Indonesia currently ranks as the world’s 17th oil and 6th gas producer, but its production levels are slowly declining. In Indonesia, the oil companies may extract, process and market associated gas jointly with the State Oil and Gas Board.
    [Show full text]
  • Noaa 21009 DS1.Pdf
    Energy Strategy Reviews 20 (2018) 156e162 Contents lists available at ScienceDirect Energy Strategy Reviews journal homepage: www.ees.elsevier.com/esr The potential role of natural gas flaring in meeting greenhouse gas mitigation targets * Christopher D. Elvidge a, , Morgan D. Bazilian b, Mikhail Zhizhin c, d, Tilottama Ghosh c, Kimberly Baugh c, Feng-Chi Hsu c a Earth Observation Group, NOAA National Centers for Environmental Information, United States b Payne Institute, Colorado School of Mines, United States c Cooperative Institute for Research in the Environmental Sciences, University of Colorado, United States d Russian Space Science Institute, Moscow, Russian Federation article info abstract Article history: In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas Received 2 May 2017 reduction targets presented by those countries in their nationally determined contributions (NDC) under Received in revised form the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting 22 December 2017 from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential Accepted 29 December 2017 role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three Available online 8 March 2018 categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dom- Keywords: fl fl VIIRS inates with 90.6% of all aring. Global aring represents less than 2% of the NDC reduction target. fl fl Gas flaring However, most gas aring is concentrated in a limited set of countries, leaving the possibility that aring Nightfire reduction could contribute a sizeable portion of the NDC targets for specific countries.
    [Show full text]
  • Russian Associated Gas Utilization: Problems And
    Russian Associated Gas Utilization: Problems and Prospects А. Knizhnikov, N. Poussenkova Annual Report within the Framework of the Project Environment and Energy: International Context Issue 1 Moscow • 2009 Russian Associated Gas Utilization: Problems and Prospects A.Yu. Knizhnikov – WWF-Russia N.N. Poussenkova – Institute of World Economy and International Relations of the Russian Academy of Sciences Issue 1 (working materials) for the annual review within the framework of the joint project of the Institute of World Economy and International Relations of the Russian Academy of Sciences and WWF-Russia “Environment and Energy. International Context” Please, send your comments on the Review to WWF-Russia: 19-3 Nikoloyamskaya Street, Moscow, 109240 e-mail: [email protected] Moscow, 2009 TABLE OF CONTENTS Russian Associated Gas Utilization: Problems and Prospects ..................................................................................... 2 1. Russian associated gas flaring volumes ....................................................................................................................... 2 2. Environmental and climatic implications of large-scale associated gas flaring .............................................................. 4 3. Financial implications of large-scale associated gas flaring .......................................................................................... 4 4. Potential ways to utilize associated gas ........................................................................................................................
    [Show full text]
  • Technical Report
    TECHNICAL REPORT Nov 30, Potential Cost-Effective Flare & Vent Gas Reduction Opportunities 2015 at Selected Production Facilities in Colombia (Operator No. 1) Prepared For: Petroleum Technology Alliance Canada (PTAC) Suite 400, 500-5th Avenue S.W. Calgary, AB, T2P 3L5 Prepared By: Clearstone Engineering Ltd. 700, 900-6th Avenue S.W. Calgary, AB, T2P 3P2 DISCLAIMER While reasonable effort has been made to ensure the accuracy, reliability and completeness of the information presented herein, this report is made available without any representation as to its use in any particular situation and on the strict understanding that each reader accepts full liability for the application of its contents, regardless of any fault or negligence of Clearstone Engineering Ltd. i EXECUTIVE SUMMARY A limited flare and vent gas measurement program was conducted during the period of 14 to 16 August 2015 at the following selected Operator No. 1 facilities in Colombia: • CCAC.3 Oilfield (Conventional Oil Production) • CCAC.1 Oilfield (Thermal Heavy Oil Production) Supplemental information was provided by the operations centre for each oilfield, including activity data, commodity pricing and production decline rates. The overall purpose of this study was, for the surveyed facilities, to identify and conduct a pre-feasibility assessment of practicable flare and vent gas reduction opportunities in terms of their magnitude, most suitable control option, feasibility, greenhouse gas (GHG) emissions reductions, secondary environmental benefits and energy conservation. The surveyed facilities were selected by Operator No. 1 as being representative of sites likely to offer such opportunities. Key Environmental and Economic Analysis Assumptions All technical, environmental and economic analyses were performed using Clearstone’s web- based source-simulation and data-management application, CSimOnline.
    [Show full text]
  • Selected Aspects of Hydrogen Production Via Catalytic Decomposition of Hydrocarbons
    Article Selected Aspects of Hydrogen Production via Catalytic Decomposition of Hydrocarbons Aleksey A. Vedyagin 1,2,* , Ilya V. Mishakov 1,2, Denis V. Korneev 3 , Yury I. Bauman 1,2 , Anton Yu. Nalivaiko 2 and Alexander A. Gromov 2 1 Department of Materials Science and Functional Materials, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave 5, 630090 Novosibirsk, Russia; [email protected] (I.V.M.); [email protected] (Y.I.B.) 2 Catalysis Lab, National University of Science and Technology MISIS, Leninskiy Prospect 4, 119049 Moscow, Russia; [email protected] (A.Y.N.); [email protected] (A.A.G.) 3 School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia; [email protected] * Correspondence: [email protected] Abstract: Owing to the high hydrogen content, hydrocarbons are considered as an alternative source for hydrogen energy purposes. Complete decomposition of hydrocarbons results in the formation of gaseous hydrogen and solid carbonaceous by-product. The process is complicated by the methane formation reaction when the released hydrogen interacts with the formed carbon deposits. The present study is focused on the effects of the reaction mixture composition. Variations in the inlet hydrogen and methane concentrations were found to influence the carbon product’s morphology and the hydrogen production efficiency. The catalyst containing NiO (82 wt%), CuO (13 wt%), and Al2O3 (5 wt%) was prepared via a mechanochemical activating procedure. Kinetics of the catalytic Citation: Vedyagin, A.A.; Mishakov, process of hydrocarbons decomposition was studied using a reactor equipped with McBain balances. I.V.; Korneev, D.V.; Bauman, Y.I.; The effects of the process parameters were explored in a tubular quartz reactor with chromatographic Nalivaiko, A.Y..; Gromov, A.A.
    [Show full text]
  • Angola- APG Utilization Study
    Angola Associated Gas U0lizaon Study Perrine Toledano and Belinda ArchiBong Thanks to Thomas Mitro for his thorough peer-review Summary of findings S Regulaon regarding Associated Petroleum Gas (APG) use is s0ll in its nascent stages. However there is an arac0ve fiscal framework Fiscal incen0ve with lower taxaon for APG projects and a no flare policy s0pulang regulaon for APG use that the capex Borne By companies for the storage and delivery of APG to Sonangol is cost recoverable. S In addi0on, an APG use s0pulaon under the produc0on sharing agreements stang that any surplus APG produced By oil companies Ownership of APG not used for field use, must Be given free of charge to Sonangol as well as the state ownership of pipelines might act as an incen0ve for companies to search (possiBly collec0vely) for ways to mone0ze their APG. APG Projects: LNG S All of the major oil players in Angola are involved in gas flaring But the Biggest flarers are also engaged together in the premier Angola LNG plan under a mul0-owner/user scheme fed By APG. S IOCs currently prefer high return export op0ons like LNG to necessary IPP projects for the country, par0cularly since there is no No domes0c market domes0c market for gas in the country (the source of electricity is mostly hydro-Based). S Lack of an independent regulator reflected in weak enforcement of No independent flaring laws, presents a challenge for future APG use in the country. regulator But… However, Sonangol has Been ac0ve in taking a hardline stance on priori0zing APG use even over oil revenue in the country.
    [Show full text]
  • Associated Petroleum Gas Utilisation in Russia
    ASSOCIATED PETROLEUM GAS UTILISATION IN RUSSIA ABOUT ASSOCIATED Associated petroleum gas (APG) is the gas dissolved in oil fluids, which contains methane, a common natural gas, and natural gas liquids (NGLs) used as fuel or raw materials for deep conversion. Below is the overview PETROLEUM GAS of all APG utilisation methods focusing on the per unit costs, economic benefits and environmental impacts. HOW IT WORKS After the extraction of oil fluids, they undergo special treatment to remove all by-products, including water, sulphur and associated gas. Without such treatment, the oil will not be allowed into the OILOIL main oil pipeline due to the technical requirements. Once APG has been separated from the oil, it BLENDBLEND needs to be further utilised or disposed of. It is forbidden to simply release the associated gas into atmosphere, as it is highly inflammable and can even explode. ASSOCIATEDASSOCIATED GASGAS APG UTILISATION IN 2005–2015 (BCM) OILOIL 2005 2015 PUMPPUMP Flaring Deep 13% conversion Flaring 40% 27% Deep Injection into the conversion unified gas transmission network of Gazprom 41% 10 11% 15 9 23 34 Injection into the unified gas transmission 4 network of Gazprom 12 Reinjection 7% into oil reservoir 6 14% 8 1 Reinjection 6 into oil reservoir 10 10% Simple Power generation conversion 2% Power generation 8% 15% Simple conversion 12% FLARING HOW IT WORKS The easiest way to dispose of associated gas is to build a flare at the oil field and burn the gas off. METRICS COMPARISON ACROSS UTILISATION METHODS INJECTION INTO THE UNIFIED
    [Show full text]
  • Natural Gas Flaring and Venting: State and Federal Regulatory Overview, Trends, and Impacts
    Office of Oil and Natural Gas Office of Fossil Energy Natural Gas Flaring and Venting: State and Federal Regulatory Overview, Trends, and Impacts June 2019 NATURAL GAS FLARING AND VENTING: STATE AND FEDERAL REGULATORY OVERVIEW, TRENDS, AND IMPACTS 1 Executive Summary The purpose of this report by the Office of Fossil that is permitted, as described in the “Analysis of Energy (FE) of the U.S. Department of Energy State Policies and Regulations” section of this report. (DOE) is to inform the states and other stakeholders Domestically, flaring has become more of an issue on natural gas flaring and venting regulations, the with the rapid development of unconventional, level and types of restrictions and permissions, tight oil and gas resources over the past two and potential options available to economically decades, beginning with shale gas. Unconventional capture and utilize natural gas, if the economics development has brought online hydrocarbon warrant. While it is unlikely that the flaring and resources that vary in their characteristics and limited venting of natural gas during production proportions of natural gas, natural gas liquids and and handling can ever be entirely eliminated, both crude oil. While each producing region flares gas for industry and regulators agree that there is value in various reasons, the lack of a direct market access developing and applying technologies and practices for the gas is the most prevalent reason for ongoing to economically recover and limit both practices. flaring. Economics can dictate that the more valuable FE’s objective is to accelerate the development of oil be produced and the associated gas burned modular conversion technologies that, when coupled (or reinjected) to facilitate that production.
    [Show full text]
  • Best Practices for the Reduction of Black Carbon and Methane
    December 2012 BEST PRACTICES FOR REDUCTION OF METHANE AND BLACK CARBON FROM ARCTIC OIL AND GAS PRODUCTION CONTENTS EXECUTIVE SUMMARY............................................................................................. i 1. INTRODUCTION AND METHODOLOGY.................................................................. 1 2. CH4 & BLACK CARBON EMISSIONS IN THE OIL AND GAS SECTOR....................... 2 3. GAS FLARING & VENTING....................................................................................... 3 3.1 INCREASE GAS UTILIZATION...................................................................................... 4 3.2 OPTIMIZE COMBUSTION CONDITIONS..................................................................... 6 3.3 REDUCE GAS VENTING.............................................................................................. 7 4. METHANE EMISSIONS............................................................................................. 8 4.1 DEHYDRATION AND FLOW ASSURANCE RELATED SOURCES..................................... 8 4.2 PNEUMATIC CONTROL DEVICES................................................................................ 10 4.3 STORAGE AND LOADING OF HYDROCARBON PRODUCTS......................................... 11 4.4 FUGITIVE METHANE EMISSIONS............................................................................... 15 4.5 CENTRIFUGAL COMPRESSORS.................................................................................. 17 4.6 RECIPROCATING COMPRESSORS..............................................................................
    [Show full text]
  • Potential Utilization of Iraqi Associated Petroleum Gas As Fuel for SI Engines
    Volume 14, Number 3, September. 2020 ISSN 1995-6665 JJMIE Pages 349 - 359 Jordan Journal of Mechanical and Industrial Engineering Potential Utilization of Iraqi Associated Petroleum Gas as Fuel for SI Engines Jehad A. A. Yamina, Eiman Ali Eh Sheetb aMechanical Engineering Department, School of Engineering, The University of Jordan, Amman 11942, Jordan bEnergy and Renewable Energies Technology Center, University of Technology-Iraq, Baghdad 10066, Alsenaa Street, Iraq Received October 19 2019 Accepted August 31 2020 Abstract An engine modelling study was conducted to investigate the relative change in performance and emissions of a 4-stroke, spark-ignition engine using Iraqi Associated Petroleum Gas as fuel. The research was done using a well-verified simulation software Diesel-RK. The data available for Ricardo E6/T variable compression ratio spark-ignition engine was used to conduct this study. The performance of the engine using associated petroleum gas was compared with those for gasoline, natural gas, and the average properties of the natural gas in Europe. The performance parameters studied were engine power, thermal efficiency, oxides of nitrogen, unburned hydrocarbon, and carbon monoxide levels. The study showed that the Iraqi associated petroleum gas could not be used “as is” if the aim is to cut down pollution. The main advantage is the absence of sulfur in the gas, which is present in the gasoline used in Iraq. There is a significant rise in NOx levels, a reduction in UHC, and also a rise in CO levels when using APG fuel. Further, there is an average reduction in engine power of about 10% with the associated gas compared with gasoline.
    [Show full text]