APG Flaring in Egypt: Addressing Regulatory Constraints
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
J.Kenneth Klitz
J. Kenneth Klitz i: ;,-_ .. ...... l~ t :. i \ NORTH SEA OIL RESOURCE REQUIREMENTS FOR DEVELOPMENT OF THE U.K. SECTOR From the first exploration wells in 1964 to virtual self sufficiency by 1980, the development of the U. K. North Sea oil fields has been rapid and productive. However, the hostile environment and the sheer scale of the operation have made heavy demands on both natural and human resources. Just how large has this investment of resources been? Has it been justified by the amount of energy recovered? What lessons does the development of the North Sea hold for operators of other offshore fields? Using an approach developed at the International Institute for Applied Systems Analysis, J. Kenneth Klitz attempts to answer these questions. He presents a wealth of detailed information obtained from exhaus tive Iiterature searches and close cooperation with the North Sea oil companies themselves, and uses it to in vestigate the resources needed to construct and operate the various field installations and facilities. From this starting point he then derives the total amounts of re sources required to develop first each field and then the entire U.K. sector. To put this resource expenditure in perspective, the author describes the way in which estimates of North Sea oil reserves have evolved and examines the addi tional yields that may be obtained by using technolog ically advanced oil-recovery methods; also included is an interesting comparison of the "energy economics" of producing either gas or oil from the North Sea. Finally, there are extensive descriptions of the U.K. -
Russian Associated Gas Utilization: Problems And
Russian Associated Gas Utilization: Problems and Prospects А. Knizhnikov, N. Poussenkova Annual Report within the Framework of the Project Environment and Energy: International Context Issue 1 Moscow • 2009 Russian Associated Gas Utilization: Problems and Prospects A.Yu. Knizhnikov – WWF-Russia N.N. Poussenkova – Institute of World Economy and International Relations of the Russian Academy of Sciences Issue 1 (working materials) for the annual review within the framework of the joint project of the Institute of World Economy and International Relations of the Russian Academy of Sciences and WWF-Russia “Environment and Energy. International Context” Please, send your comments on the Review to WWF-Russia: 19-3 Nikoloyamskaya Street, Moscow, 109240 e-mail: [email protected] Moscow, 2009 TABLE OF CONTENTS Russian Associated Gas Utilization: Problems and Prospects ..................................................................................... 2 1. Russian associated gas flaring volumes ....................................................................................................................... 2 2. Environmental and climatic implications of large-scale associated gas flaring .............................................................. 4 3. Financial implications of large-scale associated gas flaring .......................................................................................... 4 4. Potential ways to utilize associated gas ........................................................................................................................ -
Technical Report
TECHNICAL REPORT Nov 30, Potential Cost-Effective Flare & Vent Gas Reduction Opportunities 2015 at Selected Production Facilities in Colombia (Operator No. 1) Prepared For: Petroleum Technology Alliance Canada (PTAC) Suite 400, 500-5th Avenue S.W. Calgary, AB, T2P 3L5 Prepared By: Clearstone Engineering Ltd. 700, 900-6th Avenue S.W. Calgary, AB, T2P 3P2 DISCLAIMER While reasonable effort has been made to ensure the accuracy, reliability and completeness of the information presented herein, this report is made available without any representation as to its use in any particular situation and on the strict understanding that each reader accepts full liability for the application of its contents, regardless of any fault or negligence of Clearstone Engineering Ltd. i EXECUTIVE SUMMARY A limited flare and vent gas measurement program was conducted during the period of 14 to 16 August 2015 at the following selected Operator No. 1 facilities in Colombia: • CCAC.3 Oilfield (Conventional Oil Production) • CCAC.1 Oilfield (Thermal Heavy Oil Production) Supplemental information was provided by the operations centre for each oilfield, including activity data, commodity pricing and production decline rates. The overall purpose of this study was, for the surveyed facilities, to identify and conduct a pre-feasibility assessment of practicable flare and vent gas reduction opportunities in terms of their magnitude, most suitable control option, feasibility, greenhouse gas (GHG) emissions reductions, secondary environmental benefits and energy conservation. The surveyed facilities were selected by Operator No. 1 as being representative of sites likely to offer such opportunities. Key Environmental and Economic Analysis Assumptions All technical, environmental and economic analyses were performed using Clearstone’s web- based source-simulation and data-management application, CSimOnline. -
Selected Aspects of Hydrogen Production Via Catalytic Decomposition of Hydrocarbons
Article Selected Aspects of Hydrogen Production via Catalytic Decomposition of Hydrocarbons Aleksey A. Vedyagin 1,2,* , Ilya V. Mishakov 1,2, Denis V. Korneev 3 , Yury I. Bauman 1,2 , Anton Yu. Nalivaiko 2 and Alexander A. Gromov 2 1 Department of Materials Science and Functional Materials, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave 5, 630090 Novosibirsk, Russia; [email protected] (I.V.M.); [email protected] (Y.I.B.) 2 Catalysis Lab, National University of Science and Technology MISIS, Leninskiy Prospect 4, 119049 Moscow, Russia; [email protected] (A.Y.N.); [email protected] (A.A.G.) 3 School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia; [email protected] * Correspondence: [email protected] Abstract: Owing to the high hydrogen content, hydrocarbons are considered as an alternative source for hydrogen energy purposes. Complete decomposition of hydrocarbons results in the formation of gaseous hydrogen and solid carbonaceous by-product. The process is complicated by the methane formation reaction when the released hydrogen interacts with the formed carbon deposits. The present study is focused on the effects of the reaction mixture composition. Variations in the inlet hydrogen and methane concentrations were found to influence the carbon product’s morphology and the hydrogen production efficiency. The catalyst containing NiO (82 wt%), CuO (13 wt%), and Al2O3 (5 wt%) was prepared via a mechanochemical activating procedure. Kinetics of the catalytic Citation: Vedyagin, A.A.; Mishakov, process of hydrocarbons decomposition was studied using a reactor equipped with McBain balances. I.V.; Korneev, D.V.; Bauman, Y.I.; The effects of the process parameters were explored in a tubular quartz reactor with chromatographic Nalivaiko, A.Y..; Gromov, A.A. -
Angola- APG Utilization Study
Angola Associated Gas U0lizaon Study Perrine Toledano and Belinda ArchiBong Thanks to Thomas Mitro for his thorough peer-review Summary of findings S Regulaon regarding Associated Petroleum Gas (APG) use is s0ll in its nascent stages. However there is an arac0ve fiscal framework Fiscal incen0ve with lower taxaon for APG projects and a no flare policy s0pulang regulaon for APG use that the capex Borne By companies for the storage and delivery of APG to Sonangol is cost recoverable. S In addi0on, an APG use s0pulaon under the produc0on sharing agreements stang that any surplus APG produced By oil companies Ownership of APG not used for field use, must Be given free of charge to Sonangol as well as the state ownership of pipelines might act as an incen0ve for companies to search (possiBly collec0vely) for ways to mone0ze their APG. APG Projects: LNG S All of the major oil players in Angola are involved in gas flaring But the Biggest flarers are also engaged together in the premier Angola LNG plan under a mul0-owner/user scheme fed By APG. S IOCs currently prefer high return export op0ons like LNG to necessary IPP projects for the country, par0cularly since there is no No domes0c market domes0c market for gas in the country (the source of electricity is mostly hydro-Based). S Lack of an independent regulator reflected in weak enforcement of No independent flaring laws, presents a challenge for future APG use in the country. regulator But… However, Sonangol has Been ac0ve in taking a hardline stance on priori0zing APG use even over oil revenue in the country. -
Associated Petroleum Gas Utilisation in Russia
ASSOCIATED PETROLEUM GAS UTILISATION IN RUSSIA ABOUT ASSOCIATED Associated petroleum gas (APG) is the gas dissolved in oil fluids, which contains methane, a common natural gas, and natural gas liquids (NGLs) used as fuel or raw materials for deep conversion. Below is the overview PETROLEUM GAS of all APG utilisation methods focusing on the per unit costs, economic benefits and environmental impacts. HOW IT WORKS After the extraction of oil fluids, they undergo special treatment to remove all by-products, including water, sulphur and associated gas. Without such treatment, the oil will not be allowed into the OILOIL main oil pipeline due to the technical requirements. Once APG has been separated from the oil, it BLENDBLEND needs to be further utilised or disposed of. It is forbidden to simply release the associated gas into atmosphere, as it is highly inflammable and can even explode. ASSOCIATEDASSOCIATED GASGAS APG UTILISATION IN 2005–2015 (BCM) OILOIL 2005 2015 PUMPPUMP Flaring Deep 13% conversion Flaring 40% 27% Deep Injection into the conversion unified gas transmission network of Gazprom 41% 10 11% 15 9 23 34 Injection into the unified gas transmission 4 network of Gazprom 12 Reinjection 7% into oil reservoir 6 14% 8 1 Reinjection 6 into oil reservoir 10 10% Simple Power generation conversion 2% Power generation 8% 15% Simple conversion 12% FLARING HOW IT WORKS The easiest way to dispose of associated gas is to build a flare at the oil field and burn the gas off. METRICS COMPARISON ACROSS UTILISATION METHODS INJECTION INTO THE UNIFIED -
The Challenges of Economic Growth in Norway: Transitioning from the Petroleum Industry to Renewable Energy Industries
La Salle International School of Commerce and Digital Economy Final Thesis Graduate in Management of Business and Technology THE CHALLENGES OF ECONOMIC GROWTH IN NORWAY: TRANSITIONING FROM THE PETROLEUM INDUSTRY TO RENEWABLE ENERGY INDUSTRIES Student Promoter Kristin Anette Kjuul Eoin Edward Phillips FINAL PROJECT DEFENCE Meeting of the evaluating panel on this day, the student: Kristin Anette Kjuul Presented their final thesis on the following subject: The Challenges of Economic Growth in Norway: Transitioning from the Petroleum Industry to Renewable Energy Industries At the end of the presentation and upon answering the questions of the members of the panel, this thesis was awarded the following grade: Barcelona, MEMBER OF THE PANEL MEMBER OF THE PANEL PRESIDENT OF THE PANEL The Challenges of Economic Growth in Norway: Transitioning from the Petroleum Industry to Renewable Energy Industries By Kristin Anette Kjuul Abstract This thesis attempts to answer the ways in which the transition from the petroleum industry to renewable energy industries may come about while ensuring sustained economic growth. An historical analysis of the relations between the Norwegian petroleum industry, the state, and private industry has been conducted in order to build a model of the most effective interaction between technology, energy companies and economic growth. Review of existing literature has been carried out to explore the current links between the petroleum industry and the renewable energy industry. Primary research, in the form of surveys and -
Potential Utilization of Iraqi Associated Petroleum Gas As Fuel for SI Engines
Volume 14, Number 3, September. 2020 ISSN 1995-6665 JJMIE Pages 349 - 359 Jordan Journal of Mechanical and Industrial Engineering Potential Utilization of Iraqi Associated Petroleum Gas as Fuel for SI Engines Jehad A. A. Yamina, Eiman Ali Eh Sheetb aMechanical Engineering Department, School of Engineering, The University of Jordan, Amman 11942, Jordan bEnergy and Renewable Energies Technology Center, University of Technology-Iraq, Baghdad 10066, Alsenaa Street, Iraq Received October 19 2019 Accepted August 31 2020 Abstract An engine modelling study was conducted to investigate the relative change in performance and emissions of a 4-stroke, spark-ignition engine using Iraqi Associated Petroleum Gas as fuel. The research was done using a well-verified simulation software Diesel-RK. The data available for Ricardo E6/T variable compression ratio spark-ignition engine was used to conduct this study. The performance of the engine using associated petroleum gas was compared with those for gasoline, natural gas, and the average properties of the natural gas in Europe. The performance parameters studied were engine power, thermal efficiency, oxides of nitrogen, unburned hydrocarbon, and carbon monoxide levels. The study showed that the Iraqi associated petroleum gas could not be used “as is” if the aim is to cut down pollution. The main advantage is the absence of sulfur in the gas, which is present in the gasoline used in Iraq. There is a significant rise in NOx levels, a reduction in UHC, and also a rise in CO levels when using APG fuel. Further, there is an average reduction in engine power of about 10% with the associated gas compared with gasoline. -
Bottom-Up Simulations of Methane and Ethane Emissions from Global Oil and Gas Systems 1980 to 2012
Bottom-up simulations of methane and ethane emissions from global oil and gas systems 1980 to 2012 Supplement Lena Höglund-Isaksson Air Quality and Greenhouse Gases Program International Institute for Applied Systems Analysis A-2361 Laxenburg Austria Email: [email protected] 2015-01-25 Contents SI-1: Steps in the simulation of associated gas flows SI-2: Details on assumptions entering simulations of associated petroleum gas flows in 2010 SI-3: Global and regional production patterns for crude oil and natural gas used in simulations SI-4: Region-specific considerations in simulations of associated gas flows SI-5: Methane emission factors for unintended leakage from oil and gas production SI-6: Literature survey of unintended leakage from production of unconventional gas SI-7: Simulated volumes of associated gas by world regions SI-8: Simulated ethane emissions from global oil and gas production by world regions SI-9: Simulated methane emissions from global oil and gas production by world regions SI-10: Implied methane emission factors for oil and gas production –a comparison to published sources 1 SI-1: Steps in the simulation of associated gas flows Step1: Reported information on associated gas flows and strategies to amend incomplete data EIA (2015a) provides country-specific statistics on oil and gas production for 106 countries producing oil and/or gas in the period 1980 to 2012. The same source provides for 67 countries statistics on the volumes of associated gas reinjected and vented or flared in the period 1990 to 2012 (not complete time-series for all countries). From the same source the volume of associated gas recovered for utilization is derived as the difference between reported volumes of natural gas marketed and dry natural gas produced. -
Analysis and Forecast to 2024 Gas 2019 Analysis and Forecast to 2024 Gas Market Report 2019 Foreword
Gas 2019 Analysis and forecast to 2024 Gas 2019 Analysis and forecast to 2024 Gas Market Report 2019 Foreword Foreword In 2018, natural gas played a major role in a remarkable year for energy. Global energy consumption rose at its fastest pace this decade, with natural gas accounting for 45% of the increase, more than any other fuel. Natural gas helped to reduce air pollution and limit the rise in energy-related CO2 emissions by displacing coal and oil in power generation, heating and industrial uses. The global gas narrative varies across regions: cheap and abundant resources in North America; a key contributor to reducing air pollution in the People’s Republic of China; a main feedstock and fuel for industry in emerging Asia; challenged by renewables in Europe; an emerging fuel in Africa and South America. What ties these together is the central position of gas in the global energy mix as one of the key enablers of the energy transition. Natural gas can be part of the solution to a cleaner energy path – both on land and at sea as an alternative marine fuel – but it faces its own challenges. They include ensuring price competitiveness in developing economies, guaranteeing security of supply in increasingly interdependent markets, and continuing the reduction of its environmental footprint, particularly in terms of methane emissions. Natural gas is at the heart of three core areas for the IEA: energy security, clean energy and opening to emerging economies. I hope that this latest edition of the IEA’s outlook for gas markets will help enhance market transparency and enable stakeholders to better understand current and future developments. -
Regulation Under Uncertainty: the Co-Evolution of Industry and Regulation in the Norwegian Offshore Gas and Oil Industry
Regulation under Uncertainty: The Co-evolution of Industry and Regulation in the Norwegian Offshore Gas and Oil Industry Charles Sabel1, Gary Herrigel2 and Peer Hull Kristensen3 December 2014 This project was financed by a generous grant from the Citi Foundation and supported by the SNF - Institute for Research in Economics and Business Administration in Bergen. We are deeply indebted to Knut Thorvaldsen and Bodil Sophia Krohn of Norsk olje & gass and to Anna Vatten and Paul Bang of the PSA for their thoughtful hospitality and remarkable openness. We thank Jon Krokeide, the chairperson of the Drilling Managers Forum, and widely admired in the industry for his technical prowess and keen judgment, for allowing us to observe his working group at work and helping us understand what we saw. Ole Andreas Engen has been a stimulating interlocutor and guide to the strengths and vulnerabilities of the Norwegian or Nordic model of tri-partite regulation. Per Heum’s early enthusiasm for the project bolstered our own resolve at critical points. Without the help and guidance of them all it would have been impossible to enter the closely-knit world of offshore production in Norway. Error is ours alone. 1 Columbia Law School 2 University of Chicago 3 Copenhagen Business School 1. Introduction As production becomes more collaborative, involving key suppliers of complex sub- systems and services in design and production, products and production methods become more innovative but more hazardous. Collaborative production by supply chains connecting independent specialists is highly innovative: Unlike the captive component makers of vertically integrated firms they displace, independent suppliers learn rapidly from pooled experience with a wide range of customers; close cooperation between these competent suppliers and final producers allows rapid improvement in the designs of each.4 But this innovative recombination of knowledge also introduces hidden hazards. -
Jenbacher Gas Engines, Marketing Jenbacher Background
2nd M2M Partnership Expo, 2-5 March 2010, New Delhi, India Stop Flaring and Venting — Utilization of Associated Petroleum Gas with Gas Engines Thomas Elsenbruch, GE Power & Water Jenbacher gas engines, Marketing Jenbacher Background A leading manufacturer of gas-fueled reciprocating engines for power generation. • Acquired by GE in May ’03…100% gas-fueled recips • Manufacturing/HQ in Jenbach, Austria • Employees: 1,800 total; 1,400 in Austria • Power range from 0.25MW to 4MW, 4 platforms / 11 products • Fuel flexibility: Natural gas or a variety of renewable or alternative gases (e.g., landfill gas, biogas, coal mine gas) • Plant configurations: Generator sets, cogeneration systems, container 2/ solutions GE GE Power & Water / Thomas Elsenbruch / 03.-05.03.2010 How to utilize associated gas ? - GE Capability Many solutions for APG utilization are available 3/ Source= EU-Russia technology center (on Internet) GE GE Power & Water / Thomas Elsenbruch / 03.-05.03.2010 Important Gas Properties Heating Value Calorific value and thermal value indicate the energy content of a gas. The former can be differentiated from the later only through the heat of vaporization of the water resulting from combustion, the water is in liquid form after it has already liberated its condensation heat. Methane Number Determinant parameter for knocking resistance of a gas. It is comparable to the Octane Number of gasoline and indicates the percentage methane volume ratio of a methane-hydrogen mixture which, in a test engine and under controlled conditions, indicates the same knocking resistance as the gas to be tested. Laminar Flame Speed Laminar flame speed is the speed at which the oxidation takes place.