2013-D1.18-Phd-Marcus-Elfström.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

2013-D1.18-Phd-Marcus-Elfström.Pdf Philosophiae Doctor (PhD) Thesis 2013:47 Department of Ecology and Natural Resource Management Norwegian University of Life Sciences • Universitetet for miljø- og biovitenskap Patterns and mechanisms behind the occurrence of bears close to human settlements Mønster og mekanismer bak forekomsten av bjørner nær bebyggelse Marcus Elfström Patterns and mechanisms behind the occurrence of bears close to human settlements Mønster og mekanismer bak forekomsten av bjørner nær bebyggelse Philosophiae Doctor (Ph.D.) Thesis Marcus Elfström Department of Ecology and Natural Resource Management Norwegian University of Life Sciences Ås 2013 Thesis number 2013:47 ISSN 1503-1667 ISBN 978-82-575-1147-0 PhD supervisors Professor Jon Swenson 1 – main supervisor Professor Ole Hofstad 1 Researcher Ole-Gunnar Støen 1 Associate Professor Andreas Zedrosser 2 1 Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences NO-1432 Ås, Norway 2 Faculty of Arts and Sciences, Department of Environmental and Health Studies, Telemark University College, NO-3800 Bø i Telemark, Norway PhD evaluation committee Associate Professor Nuria Selva Fernández Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, PL-31-120 Krakow, Poland Senior Researcher Ilpo Kojola Finnish Game and Fisheries Research Institute, Oulu Game and Fisheries Research, Tutkijantie 2 E, FIN-90570 Oulu, Finland Committee administrator: Professor Stein Moe Department of Ecology and Natural Resource Management Norwegian University of Life Sciences NO-1432 Ås, Norway ii Table of contents Summary ...................................................................................................................................................... v Sammanfattning ....................................................................................................................................... vii List of papers ............................................................................................................................................. ix Introduction ................................................................................................................................................. 1 Objectives and their rationale .................................................................................................................. 4 Identifying which categories of bears approach settlements and are considered to be problem animals (Papers I, II, III) ..................................................................................................... 4 Explaining the likelihoods that different categories of bears occur near settlements (Paper I) ................................................................................................................................................... 5 Testing the paradigm of food search near people: diet and body condition in relation to settlements and problem bear status (Papers III, IV, V) ............................................................... 5 Materials and methods .............................................................................................................................. 6 Study area ............................................................................................................................................... 6 Study populations .................................................................................................................................. 6 Capture and handling of bears ............................................................................................................ 7 Data collection and analyses ............................................................................................................... 7 Summary of results .................................................................................................................................. 10 Identifying which categories of bears approach settlements and are considered to be problem animals (Papers I, II, III) ................................................................................................... 10 Explaining the likelihoods that different categories of bears occur near settlements (Paper I) ................................................................................................................................................. 14 Testing the paradigm of food search near people: diet and body condition in relation to settlements and problem bear status (Papers III, IV, V) ............................................................. 16 Discussion ................................................................................................................................................. 23 Identifying which categories of bears approach settlements and are considered to be problem animals .................................................................................................................................. 23 Explaining the likelihoods that different categories of bears occur near settlements ........... 23 Testing the paradigm of food search near people: diet and body condition in relation to settlements and problem bear status ................................................................................................ 26 Management implications ................................................................................................................. 28 Future research perspectives ............................................................................................................. 30 References ................................................................................................................................................. 31 Acknowledgements ................................................................................................................................. 45 Papers I - V have separate page numbers iii iv Summary Bears near settlements are considered to be a problem, because they may damage property and because people are afraid of them. The most accepted explanation for why some bears occur near settlements is that they associate people with easily accessible foods (i.e. food- conditioning). However, we found a similar composition and quality of the Scandinavian brown bears’ diet close to settlements compared to the same when in remote areas. Also, there was no correlation between the occurrence of problem brown bears and food conditions in either southern or northern Europe, and the body condition of problem and nonproblem bears was similar. These results give little support for food search or food shortage to explain the occurrence of problem brown bears near settlements in Europe. We found further that adult males denned farther from settlements and plowed roads than other categories of brown bears, that problem brown bears are younger than nonproblem bears, and that brown bears are generally younger in areas with higher human density in both southern and northern Europe. Females with young had a diet containing less protein and they showed a lower use of slaughter remains than other brown bear categories in south- central Sweden, supporting the hypothesis that the distribution of predation-vulnerable bears is affected to some degree by a despotic behavior of dominant bears. However, subadult bears showed no dietary deviance from adult males, suggesting no effects from interference competition. A literature review of brown bears, and American and Asiatic black bears revealed that subadults and females with cubs are overrepresented in areas near settlements in North America, Europe and Japan. This pattern likely occurs because bears are distributed despotically due to interference competition and/or avoidance of aggression or predation, and settlements may function as refuges for predation-vulnerable bears against dominant conspecifics. Thus, we suggested that habituation and food conditioning are proximate v responses, as a result of bears’ despotic distribution which is the ultimate mechanism. Attractant management is important, but failure to consider interactions among bears may lead to only treating the symptoms of habituation or conditioning. Bears seeking refuge near settlements may not be viewed as ‘unnatural’, but rather as an example of an adaptive behavior to avoid dominant conspecifics, which use habitats farther from people. vi Sammanfattning Björnar nära bebyggelse upplevs som problematiska därför att de kan orsaka skador och för att människor är rädda för dem. Den mest accepterade förklaringen till varför björnar uppehåller sig nära bebyggelse är att de har lärt sig att associera mänsklig aktivitet med lättillgänglig föda (en s.k. födobetingad respons). Men vi fann i Skandinavien en liknande sammansättning och näringsinnehåll i brunbjörnars diet nära bebyggelse jämfört med när samma björnar uppehöll sig i avlägsen terräng. Vi fann heller ingen korrelation mellan antalet problembjörnar och säsongsmässig födotillgång i varken södra eller norra Europa, och konditionsstatus var liknande mellan problembjörnar och övriga brunbjörnar. Dessa resultat indikerar andra bakomliggande orsaker än att problembjörnar primärt skulle söka föda nära bebyggelse eller uppleva en dålig födotillgång i avlägsen terräng. Vi kan konstatera att vuxna hanar vid övervintring placerar sina iden längre från bebyggelse och plogade vägar än andra kategorier av brunbjörnar, att problembjörnar är yngre än övriga brunbjörnar, och att brunbjörnar generellt är yngre
Recommended publications
  • Ultimate and Proximate Mechanisms Underlying the Occurrence of Bears
    bs_bs_banner Mammal Review ISSN 0305-1838 REVIEW Ultimate and proximate mechanisms underlying the occurrence of bears close to human settlements: review and management implications Marcus ELFSTRÖM* Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Pb. 5003, NO-1432 Ås, Norway. E-mail: [email protected] Andreas ZEDROSSER Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Pb. 5003, NO-1432 Ås, Norway, and Institute of Wildlife Biology and Game Management, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Applied Life Sciences, Gregor-Mendel-Str. 33, 1180 Vienna, Austria. E-mail: [email protected] Ole-Gunnar STØEN Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Pb. 5003, NO-1432 Ås, Norway. E-mail: [email protected] Jon E. SWENSON Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Pb. 5003, NO-1432 Ås, Norway, and Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway. E-mail: [email protected] Keywords ABSTRACT despotic, food conditioning, human habituation, naivety, predation refuge 1. Large carnivores (LCs), such as bears (Ursidae), are commonly believed to occur near human settlements because they have a learned tolerance of humans *Correspondence author. (human habituation) and because they associate humans with accessible high- quality foods (food conditioning). Young bears and females with cubs are often Submitted: 28 March 2012 overrepresented among ‘problem’ bears near settlements. Returned for revision: 23 May 2012 Revision accepted: 9 July 2012 2. We review the mechanisms underlying the occurrence of brown and black Editor: KH bears (Ursus arctos, Ursus americanus, Ursus thibetanus) near settlements, and con- sider four hypotheses designed to separate ultimate and proximate mechanisms.
    [Show full text]
  • Yellowstone Grizzly Bears: Ecology and Conservation of an Icon of Wildness
    YELLOWSTONE GRIZZLY BEARS ecology and conservation of an ICON OF WILDNESS EDITED BY P.J. White, Kerry A. Gunther, and Frank T. van Manen YELLOWSTONE GRIZZLY BEARS Yellowstone Grizzly Bears: Ecology and Conservation of an Icon of Wildness Editors P. J. White, Kerry A. Gunther, and Frank T. van Manen Contributing Authors Daniel D. Bjornlie, Amanda M. Bramblett, Steven L. Cain, Tyler H. Coleman, Jennifer K. Fortin-Noreus, Kevin L. Frey, Mark A. Haroldson, Pauline L. Kamath, Eric G. Reinertson, Charles T. Robbins, Daniel J. Thompson, Daniel B. Tyers, Katharine R. Wilmot, and Travis C. Wyman Managing Editor Jennifer A. Jerrett YELLOWSTONE FOREVER, YELLOWSTONE NATIONAL PARK AND U.S. GEOLOGICAL SURVEY, NORTHERN ROCKY MOUNTAIN SCIENCE CENTER Yellowstone Forever, Yellowstone National Park 82190 Published 2017 Contents Printed in the United States of America All chapters are prepared solely by officers or employees of the United States Preface ix government as part of their official duties and are not subject to copyright protection Daniel N. Wenk, Superintendent, Yellowstone National Park in the United States. Foreign copyrights may apply. National Park Service (NPS) photographs are not subject to copyright protection in the United States. Foreign Introduction xv copyrights may apply. However, because this work may contain other copyrighted images or other incorporated material, permission from the copyright holder may be P. J. White, Kerry A. Gunther, and Frank T. van Manen necessary. Cover and half title images: www.revealedinnature.com by Jake Davis. Chapter 1: The Population 1 Library of Congress Cataloging-in-Publication Data P. J. White, Kerry A. Gunther, and Travis C.
    [Show full text]
  • Central European Vegetation
    Plant Formations in the Central European BioProvince Peter Martin Rhind Central European Beech Woodlands Beech (Fagus sylvatica) woods form the natural climax over much of Central Europe where the soils are relatively dry and can extend well into the uplands in the more southern zones. In the north, however, around Sweden it is confined to the lowlands. Beech woodlands are often open with a poorly developed shrub layer, Characteristic ground layer species may include various helleborines such as Cephalanthera damasonium, C. longifolia and C. rubra and sedges such as Carex alba, whilst in others, grasses like Sesleria caerlea or Melica uniflora may predominate, but in some of the more acidic examples, Luzula luzuloides is likely to dominate. There are also a number of endemic ground layer species. For example, in Carpathian beech woods endemics such as Dentaria glandulosa (Brassicaceae), Symphytum cordata (Boraginaceae) and the fern Polystichum braunii (Dryopteridaceae) may be encountered. Fine examples of primeaval beech woods can be found in the limestone Alps of lower Austria including the famous ‘Rothwald’ on the southeastern slopes of Dürrentein near Lunz. These range in altitude from about 940-1480 m. Here the canopy is dominated by Fagus sylvatica together with Acer pseudoplatanus, Picea abies, Ulmus glabra, and on the more acidic soils by Abies alba. Typical shrubs include Daphne mezereum, Lonicera alpigena and Rubus hirtus. At ground level the herb layer is very rich supporting possibly up to a 100 species of vascular plants. Examples include Adenostyles alliariae, Asplenium viridis, Campanula scheuchzeri, Cardamine trifolia, Cicerbita alpina, Denteria enneaphyllos, Euphorbia amygdaloides, Galium austriacum, Homogyne alpina, Lycopodium annotinum, Mycelis muralis, Paris quadrifolia, Phyteuma spicata, Prenanthes purpurea, Senecio fuchsii, Valeriana tripteris, Veratrum album and the central European endemic Helliborus niger (Ranunculaceae).
    [Show full text]
  • Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
    Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in
    [Show full text]
  • Status of Japanese Black Bear
    STATUSOF JAPANESEBLACK BEAR TOSHIHIROHAZUMI, Wildlife Management Office, Inc., 1-8-18 TeraodaiTama-ku, Kawasaki 214, Japan Abstract.This reportreviews the statusof Japaneseblack bear (Selenarctos thibetanus japonicus), and proposes a conservationplan for this species. Ten thousandblack bears are estimatedto live in Japanas estimatedby distributionof dataand densityestimates of 0.11-0.18 bears/km2.Annual harvest is morethan 2,000. Morethan 1,000 bears are killed as pestson plantationsfor depredations on agriculturalproducts and otherbear-human conflicts throughout the activebear season. The governmentdoes not manageblack bears on the biologicalbasis of huntingseasons, numbers, sex, or age at harvest. Highcommercial value of gallbladderthreatens Japanese bears as in otherAsian countries. Bearhabitat was diminishedby timbercutting for resourcesduring the WorldWar II period. (Therapid economic growth of Japanhas been inadvertentlyconsuming bear habitatall over the world.) For the conservationof bears, socialeducation is necessaryalong with proper managementof huntingand habitat on a biologicalbasis. Int. Conf. Bear Res. and Manage.9(1):145-148 In Japan the government has no approachto legally can be generally separated into the northeasternhigh conserve wildlife; there is no governmentsystem in the snow area and the southwesternlow snow area. Environment Agency to manage bears. Increasing Black bears use vegetation from the hills near wildlife damages to human products requirethat a new villages to the alpine zone more than 3,000 m in policy be developed. altitude. Their food habits are omnivorous but mainly Since the 1970s, biologists have demonstratedthe herbivorous. They eat grasses, sedges, herbs, and buds critical situationof the Japaneseblack bear. Excessive in spring; berries and nuts in summer and fall. The numbers of nuisance kills as pest animals and careless acorns of Fagus, Quercus, and Castanea are key food timber cutting heightens the sense of crisis.
    [Show full text]
  • Red List of Vascular Plants of the Czech Republic: 3Rd Edition
    Preslia 84: 631–645, 2012 631 Red List of vascular plants of the Czech Republic: 3rd edition Červený seznam cévnatých rostlin České republiky: třetí vydání Dedicated to the centenary of the Czech Botanical Society (1912–2012) VítGrulich Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected] Grulich V. (2012): Red List of vascular plants of the Czech Republic: 3rd edition. – Preslia 84: 631–645. The knowledge of the flora of the Czech Republic has substantially improved since the second ver- sion of the national Red List was published, mainly due to large-scale field recording during the last decade and the resulting large national databases. In this paper, an updated Red List is presented and compared with the previous editions of 1979 and 2000. The complete updated Red List consists of 1720 taxa (listed in Electronic Appendix 1), accounting for more then a half (59.2%) of the native flora of the Czech Republic. Of the Red-Listed taxa, 156 (9.1% of the total number on the list) are in the A categories, which include taxa that have vanished from the flora or are not known to occur at present, 471 (27.4%) are classified as critically threatened, 357 (20.8%) as threatened and 356 (20.7%) as endangered. From 1979 to 2000 to 2012, there has been an increase in the total number of taxa included in the Red List (from 1190 to 1627 to 1720) and in most categories, mainly for the following reasons: (i) The continuing human pressure on many natural and semi-natural habitats is reflected in the increased vulnerability or level of threat to many vascular plants; some vulnerable species therefore became endangered, those endangered critically threatened, while species until recently not classified may be included in the Red List as vulnerable or even endangered.
    [Show full text]
  • Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy- Fruited Plants?
    RESEARCH ARTICLE Do Small Canopy Gaps Created by Japanese Black Bears Facilitate Fruiting of Fleshy- Fruited Plants? Kazuaki Takahashi1*, Kaori Takahashi2¤a, Izumi Washitani3¤b 1 Faculty of Tourism and Environmental Studies, Nagano University, Ueda, Nagano, Japan, 2 Division of Gene Research, Department of Life Science, Research Center for Human and Environmental Sciences, Shinshu University, Ueda, Nagano, Japan, 3 Biodiversity and Ecosystem Restoration, Institute of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan ¤a Current address: The Great East Japan Earthquake-destroyed satoyama forest rescue network, Ueda, Nagano, Japan ¤b Current address: Department of integrated Science and Engineering for Sustainable Society, Chuo University, Bunkyo-ku, Tokyo, Japan * [email protected] Abstract Japanese black bears often break branches when climbing trees and feeding on fruit in canopies, thereby creating small canopy gaps. However, the role of black bear-created OPEN ACCESS canopy gaps has not been evaluated in the context of multiple forest dynamics. Our Citation: Takahashi K, Takahashi K, Washitani I hypothesis was that small canopy gaps created by black bears improve light conditions, (2015) Do Small Canopy Gaps Created by Japanese which facilitates fruiting of adult fleshy-fruited plants located beneath the gaps, and also Black Bears Facilitate Fruiting of Fleshy-Fruited Plants? PLoS ONE 10(7): e0130956. doi:10.1371/ that this chain interaction depends on interactions among the size of gaps, improved light journal.pone.0130956 conditions, forest layers, and life form of plants. The rPPFD, size of black bear-created can- Editor: Gil Bohrer, The Ohio State University, opy gaps, and fruiting/non-fruiting of fleshy-fruited plants were investigated in five forest UNITED STATES layers beneath black-bear-created canopy gaps and closed canopies of Mongolian oak Received: February 18, 2014 (Quercus crispula).
    [Show full text]
  • The Tribe Cichorieae In
    Chapter24 Cichorieae Norbert Kilian, Birgit Gemeinholzer and Hans Walter Lack INTRODUCTION general lines seem suffi ciently clear so far, our knowledge is still insuffi cient regarding a good number of questions at Cichorieae (also known as Lactuceae Cass. (1819) but the generic rank as well as at the evolution of the tribe. name Cichorieae Lam. & DC. (1806) has priority; Reveal 1997) are the fi rst recognized and perhaps taxonomically best studied tribe of Compositae. Their predominantly HISTORICAL OVERVIEW Holarctic distribution made the members comparatively early known to science, and the uniform character com- Tournefort (1694) was the fi rst to recognize and describe bination of milky latex and homogamous capitula with Cichorieae as a taxonomic entity, forming the thirteenth 5-dentate, ligulate fl owers, makes the members easy to class of the plant kingdom and, remarkably, did not in- identify. Consequently, from the time of initial descrip- clude a single plant now considered outside the tribe. tion (Tournefort 1694) until today, there has been no dis- This refl ects the convenient recognition of the tribe on agreement about the overall circumscription of the tribe. the basis of its homogamous ligulate fl owers and latex. He Nevertheless, the tribe in this traditional circumscription called the fl ower “fl os semifl osculosus”, paid particular at- is paraphyletic as most recent molecular phylogenies have tention to the pappus and as a consequence distinguished revealed. Its circumscription therefore is, for the fi rst two groups, the fi rst to comprise plants with a pappus, the time, changed in the present treatment. second those without.
    [Show full text]
  • Ecology and Structure of Black Bear (Ursus Americanus
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2013 Ecology and Structure of Black Bear (Ursus americanus) Populations in the Interior Highlands of Arkansas Thea Vandervelde Kristensen University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Animal Studies Commons, Population Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Kristensen, Thea Vandervelde, "Ecology and Structure of Black Bear (Ursus americanus) Populations in the Interior Highlands of Arkansas" (2013). Theses and Dissertations. 838. http://scholarworks.uark.edu/etd/838 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Ecology and structure of black bear (Ursus americanus) populations in the Interior Highlands of Arkansas Ecology and structure of black bear (Ursus americanus) populations in the Interior Highlands of Arkansas A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology By Thea V. Kristensen Eckerd College Bachelor of Arts in Environmental Studies and Psychology, 1999 Washington State University Masters of Science in Natural Resources, 2001 Simmons College Master of Arts in Teaching, 2004 August 2013 University of Arkansas This dissertation is approved
    [Show full text]
  • Assembling Mitogenome of Himalayan Black Bear (U. T. Laniger
    www.nature.com/scientificreports OPEN Assembling mitogenome of Himalayan Black Bear (U. t. laniger) from low depth reads and its application in drawing phylogenetic inferences Amrita Bit1,2, Mukesh Thakur1,2*, Sujeet Kumar Singh1, Bheem Dutt Joshi1, Vinay Kumar Singh1, Lalit Kumar Sharma1, Basudev Tripathy1 & Kailash Chandra1 The complete mitogenome of Himalayan black bear (Ursus thibetanus laniger) from Indian Himalayan region was assembled following the modifed approach of mitochondrial baiting and mapping using the next-generation sequencing reads. The complete mitogenome was of 16,556 bp long, consisted of 37 genes that contained 13 protein-coding genes, 22 tRNAs, 2 rRNAs and 1 control region. The complete base composition was 31.33% A, 15.24% G, 25.45%C, and 27.98%T and gene arrangement was similar to the other sub-species of Asiatic black bear. The relative synonymous codon usage analysis revealed the maximum abundance of Isoleucine, Tyrosine, Leucine and Threonine. The assembled mitogenome of U. t. laniger exhibited 99% similarity with the mitogenomes of Himalayan black bear available from Nepal and Tibetan Plateau-Himalaya region. The fndings of the present study has proven low depth sequencing data, adequate and highly efcient in rapid recovering the mitochondrial genome by overcoming the conventional strategies of obtaining long-range PCR and subsequently drawing phylogenetic inferences. Te Asiatic black bear (Ursus thibetanus) with wide range distribution, consists of seven well recognized sub- species, i.e. Japanese black bear (U. t. japonicus) in Japan, Ussuri black bear (U. t. ussuricus) in far-east Russia, northeast China, and Korea, Formosan black bear (U.
    [Show full text]
  • Ants in Brown Bear Diet, and Discovery of a New Ant Species for Estonia from Brown Bear Scats
    Published by Associazione Teriologica Italiana Online first – 2019 Hystrix, the Italian Journal of Mammalogy Available online at: http://www.italian-journal-of-mammalogy.it doi:10.4404/hystrix–00168-2019 Research Article Ants in brown bear diet, and discovery of a new ant species for Estonia from brown bear scats Marju Keis∗, Egle Tammeleht, Harri Valdmann, Urmas Saarma Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia Keywords: Abstract diet Ursus arctos For omnivorous brown bears, ants can seasonally constitute an important category of food with selective foraging high nutritional value. A former dietary study conducted in Estonia revealed that the energy gained ants from animal and plant food was roughly equal, whereas the contribution of ants was almost 15%. brown bear Here, using the same dataset, we analyzed ant consumption by brown bears in Estonia at a greater myrmecophagy taxonomic resolution and evaluated the preferences of brown bears towards different ant species by measuring the availability (biomass and mound density) of ants in the study area. Among the Article history: 18 species and five groups of ants in bear scats, members of the genera Lasius and Formica were Received: 2 January 2019 the most abundantly consumed ant groups, considering both the volume and frequency of occur- Accepted: 5 August 2019 rence. Among the species we detected, Lasius niger and Formica polyctena dominated. However, these were not the favorite ant taxa for bears, that highly preferred Camponotus ants and avoided Myrmica ants. In addition, a new species (Camponotus fallax) for Estonian ant fauna was discov- Acknowledgements We would like to dedicate this article to the memory of Dr.
    [Show full text]
  • Features of Planted Cypress Trees Vulnerable to Damage by Japanese Black Bears
    Features of planted cypress trees vulnerable to damage by Japanese black bears Akimi Yamada1,3 and Masahiro Fujioka2,4 1Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8072, Japan 2Agricultural and Forestry Research Center, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8077, Japan Abstract: The Japanese black bear (Ursus thibetanus japonicus) causes serious and persistent damage to conifer plantations in some areas of Japan. From 2006–08, we examined bear damage and tree characteristics (diameter at breast height [DBH], width of growth rings, and amount and nutritional content of newly-developing vascular tissues) in 7 even-aged stands of Japanese cypress (Chamaecyparis obtusa) growing at similar elevations in a university forest. Larger-diameter trees were more likely than smaller trees to be damaged by bears in each stand. The major nutritional component of vascular tissues was sugar, mainly sucrose. Sugar concentration of vascular tissues showed little variation, and was correlated with neither DBH nor stand age. Mass of vascular tissues was highly variable and was positively correlated with DBH, but not with stand age. To reduce bear damage, foresters should concentrate direct protection efforts on larger-diameter trees. Key words: Asiatic black bear, Chamaecyparis obtusa, conifer damage, Japan, Japanese cypress, nutrition, sugar, Ursus thibetanus japonicus, vascular tissue Ursus 21(1):72–80 (2010) The Japanese black bear (Ursus thibetanus japoni- Black bears are often regarded as a nuisance in cus), a subspecies of the Asiatic black bear (Wozencraft Japan. They damage agricultural crops (Deguchi et 2005), occurs on 3 of the 4 main islands of Japan: al.
    [Show full text]