Soil Taxonomy
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Integrated Evaluation of Petroleum Impacts to Soil
Integrated Evaluation of Petroleum Impacts to Soil Randy Adams, D. Marín, C. Avila, L. de la Cruz, C. Morales, and V. Domínguez Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico [email protected] 1.00 0.90 0.80 0.70 0.60 R2 = 0.9626 0.50 0.40 1-IAFcorr 0.30 0.20 0.10 0.00 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Conc. hidrocarburos (mg/Kg) Actual Modelo BACKGROUND U J A T •Clean-up criteria for petroleum contaminated soils developed in US in 60’s and 70’s on drilling cuttings •1% considered OK – no or only slight damage to crops, only lasts one growing season •Bioassays confirmed low toxicity of residual oil •Subsequenty used as a basis for clean-up criteria for hydrocarbons in soils in many countries does not consider kind of hydrocarbons does not consider kind of soil SISTEMATIC EVALUATION U J A T •Selection of light, medium, heavy and extra-heavy crudes •Selection of 5 soil types common in petroleum producing region of SE Mexico •Contamination of soil at different concentrations •Measurement of acute toxicity (Microtox), and subchronic toxicity (28 d earthworm) •Measurement of impacts to soil fertility: water repellency, soil moisure, compaction, complemented with in situ weathering experiments •Measurement of plant growth: pasture, black beans Crude Petroleum Used in Study U J A T 100% 80% 60% Aliphatics Aromatics 40% Polars + Resins Asphaltenes 20% 0% Light Crude Medium Crude Heavy Crude Extra-heavy Crude 37 ºAPI 27 ºAPI 15 ºAPI 3 ºAPI U J A T FAO: FLUVISOL VERTISOL GLEYSOL ARENOSOL ACRISOL USDA: FLUVENT -
2021 Soils/Land Use Study Resources
2021 NCF Envirothon Soil Test Study Guide Lincoln, Nebraska 2021 NCF-Envirothon Nebraska Soils and Land Use Study Resources Key Topic #1: Physical Properties of Soil and Soil Formation 1. Describe the five soil forming factors, and how they influence soil properties. 2. Explain the defining characteristics of a soil describing how the basic soil forming processes influence affect these characteristics in different types of soil. 3. Identify different types of parent material, their origins, and how they impact the soil that develops from them. 4. Identify and describe soil characteristics (horizon, texture, structure, color). 5. Identify and understand physical features of soil profiles and be able to use this information interpret soil properties and limitations. Study Resources Sample Soil Description Scorecard – University of Nebraska – Lincoln Land Judging Documents, edited by Judy Turk, 2021 (Pages 3-4) Soil Description Field Manual Reference – University of Nebraska – Lincoln Land Judging Documents, edited by Judy Turk, 2021 (Pages 5-17) Correlation of Field Texturing Soils by Feel, Understanding Soil Laboratory Data, and Use of the Soil Textural Triangle – Patrick Cowsert, 2021 (Pages 18-21) Tips for Measuring Percent Slope on Contour Maps – Excerpt from Forest Measurements by Joan DeYoung, 2018 (Pages 22-23) Glossary – Excerpts from Geomorphic Description System version 5.0, 2017, and Field Book for Describing Soils version 3.0, 2012 (Pages 24-27) Study Resources begin on the next page! Contestant Number Sample Soil Description Card Site/Pit Number Host: University of Nebraska – Lincoln Number of Horizons Lower Profile Depth 2021 –Scorecard Nail Depth A. Soil Morphology Part A Score __________ Moist Horizons Boundary Texture Color Redox. -
Biotechnological Applications of the Sepiolite Interactions with Bacteria
Biotechnological applications of the sepiolite interactions with bacteria: Bacterial transformation and DNA extraction Fidel Antonio Castro-Smirnov, Olivier Pietrement, Pilar Aranda, Eric Le Cam, Eduardo Ruiz-Hitzky, Bernard Lopez To cite this version: Fidel Antonio Castro-Smirnov, Olivier Pietrement, Pilar Aranda, Eric Le Cam, Eduardo Ruiz- Hitzky, et al.. Biotechnological applications of the sepiolite interactions with bacteria: Bacte- rial transformation and DNA extraction. Applied Clay Science, Elsevier, 2020, 191, pp.105613. 10.1016/j.clay.2020.105613. hal-02565762 HAL Id: hal-02565762 https://hal.archives-ouvertes.fr/hal-02565762 Submitted on 6 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Biotechnological applications of the sepiolite interactions with 2 bacteria: bacterial transformation and DNA extraction 3 Fidel Antonio Castro-Smirnova,b, Olivier Piétrementc,d, Pilar Arandae, Eric Le Camc, 4 Eduardo Ruiz-Hitzkye and Bernard S. Lopeza,f*. 5 6 aCNRS UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris Sud, 7 Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard 8 Vaillant, 94805 Villejuif, France. 9 bUniversidad de las Ciencias Informáticas, Carretera a San Antonio de los Baños, km 10 1⁄2, La Habana, 19370, Cuba 11 cCNRS UMR 8126, Institut de Cancérologie Gustave-Roussy, Université Paris Sud, 12 Université Paris-Saclay, 114 Rue Édouard Vaillant, 94805 Villejuif, France. -
Effect of Waterlogging on Soil Biochemical Properties and Organic Matter Quality
26 Effect of waterlogging on soil biochemical properties and organic matter quality 27 in different salt marsh systems 28 29 Chiara Ferronatoa, Sara Marinarib, Ornella Franciosoa, Diana Belloc, Carmen Trasar-Cepedac, Livia 30 Vittori Antisaria 31 32 a Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum – Università di 33 Bologna, Via Fanin 44, 40127 Bologna, Italy 34 b Dipartimento per l’ Innovazione dei Sistemi Biologici, Agroalimentari e Forestali, Università della 35 Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy 36 c Departamento de Bioquímica del Suelo, Instituto de Investigaciones Agrobiológicas de Galicia- 37 Consejo Superior de Investigaciones Científicas, Apartado 122, 15780 Santiago de Compostela, 38 Spain 39 40 Abstract 41 This study investigated the effects of hydroperiod on soil organic matter quality in three different salt 42 marshes in the Baiona lagoon (N Italy) representing terrestrial, intertidal and subaqueous ecosystems 43 in the area. The study specifically aimed to gain some insight into how soil waterlogging 44 (hydroperiod) affects the chemical and biological properties of soils as well as the quality and 45 structure of the soil organic matter (SOM). Total contents of selected nutrients, total organic carbon 46 and carbon stable isotope (δC 13) were measured in all soil profiles. The results of these analyses 47 enabled us to define the different origin of the SOM by discriminating between terrestrial and aquatic 48 SOM sources. The findings also show that accumulation of nutrients and SOM is significantly 49 magnified in intertidal systems, in which pedoturbation effects induced by water movements are 50 particularly strong. In addition, DRIFT spectra of humic acids revealed the changes in the main 2 51 functional groups in relation to increased waterlogging, highlighting the lower aromaticity and 52 complexity in subaqueous soils (SASs), which is possibly due to the effect of the soil water saturation 53 on the chemical and biological SOM transformation processes. -
Prairie Dog and Burrowing Owl Habitat Analysis Throughout Nebraska: Summary
Prairie Dog and Burrowing Owl Habitat Analysis throughout Nebraska: Summary Rainwater Basin Joint Venture Report. 2012. Andy Bishop1, Laura Achterberg1, Roger Grosse1, Ele Nugent1, and Christopher Jorgensen1,2 1Rainwater Basin Joint Venture, 2550 North Diers Ave, Grand Island, NE 68801 2Nebraska Cooperative Fish and Wildlife Research Unit, 422 Hardin Hall, 3310 Holdrege Street, Lincoln, NE 68583 Introduction For this analysis, we downloaded SSURGO data on a county by Identifying suitable habitat in the landscape for rare and elusive county basis from Soil Data Viewer 5.2 using ArcGIS 9.2. We species can assist wildlife managers in forming conservation merged multiple data layers together into a single shapefile to plans and can even facilitate new discoveries of species provide a statewide coverage. Each polygon in the dataset populations. The following project sought to identify available represented a single SSURGO map unit. We extracted the soil habitat for Burrowing Owls in Nebraska. Burrowing Owls are map unit name and the range site name from the Soil Data considered a Tier 1 at-risk species (i.e., a species globally or Viewer. nationally most at risk of extinction) by the Nebraska Game and Parks Commission (NGPC). We developed a conceptually Burrowing Owls are known to occupy burrows 200 cm below based, spatially explicit habitat suitability index to determine the the soil surface in Washington (Conway et al. 2006) and 69 cm remaining suitable habitat for Burrowing Owls in Nebraska. in Oklahoma (Butts and Lewis 1982). We took the average of Model development was based on a previous modeling exercise these two estimates, establishing burrow preference of 136 cm geared towards identifying suitable habitat for Black-tailed below the soil surface. -
Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications
minerals Review Microbial Interaction with Clay Minerals and Its Environmental and Biotechnological Implications Marina Fomina * and Iryna Skorochod Zabolotny Institute of Microbiology and Virology of National Academy of Sciences of Ukraine, Zabolotny str., 154, 03143 Kyiv, Ukraine; [email protected] * Correspondence: [email protected] Received: 13 August 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Clay minerals are very common in nature and highly reactive minerals which are typical products of the weathering of the most abundant silicate minerals on the planet. Over recent decades there has been growing appreciation that the prime involvement of clay minerals in the geochemical cycling of elements and pedosphere genesis should take into account the biogeochemical activity of microorganisms. Microbial intimate interaction with clay minerals, that has taken place on Earth’s surface in a geological time-scale, represents a complex co-evolving system which is challenging to comprehend because of fragmented information and requires coordinated efforts from both clay scientists and microbiologists. This review covers some important aspects of the interactions of clay minerals with microorganisms at the different levels of complexity, starting from organic molecules, individual and aggregated microbial cells, fungal and bacterial symbioses with photosynthetic organisms, pedosphere, up to environmental and biotechnological implications. The review attempts to systematize our current general understanding of the processes of biogeochemical transformation of clay minerals by microorganisms. This paper also highlights some microbiological and biotechnological perspectives of the practical application of clay minerals–microbes interactions not only in microbial bioremediation and biodegradation of pollutants but also in areas related to agronomy and human and animal health. -
Comparison of Phyllosilicates Observed on the Surface of Mars with Those Found in Martian Meteorites
80th Annual Meeting of the Meteoritical Society 2017 (LPI Contrib. No. 1987) 6115.pdf COMPARISON OF PHYLLOSILICATES OBSERVED ON THE SURFACE OF MARS WITH THOSE FOUND IN MARTIAN METEORITES. J. L. Bishop1, and M. A. Velbel2,3, 1SETI Institute & NASA-Ames (Mountain View, CA, USA; [email protected]), 2Michigan State University (East Lansing, MI); 3Smithsonian Institution (Washington, DC). Introduction: Phyllosilicates are an important indicator of aqueous processes on Mars and have been observed on the martian surface as well as inside martian meteorites. Here we survey the types of phyllosilicates detected at the surface of Mars and inside martian rocks in order to gain a better understanding of aqueous alteration processes taking place at Mars. Comparing the phyllosilicates observed on the surface today with those found in meteorites [1] may provide clues toward understanding which phyllosilicates formed in surface environments and which formed through subsurface processes. Martian Surface: Fe/Mg-phyllosilicates are present in numerous sites where the Noachian rocks are exposed [2]. These have been detected and characterized with the OMEGA [3] and CRISM [4] imaging spectrometers. Fe- rich smectite is the most abundant phyllosilicate on the surface of Mars [5], but a large variety of phyllosilicates and short-range-ordered (SRO) materials [6] have been observed. These include: nontronite, saponite, clinochlore, chamosite, serpentine, prehnite, talc, illite, beidelite, montmorillonite, kaolinite, halloysite, opal, hydrated silica, allophane, and imogolite. These are often observed together with iron oxides/hydroxides (FeOx), sulfates or car- bonates. Phyllosilicates and SROs have also been detected on Mars by CheMin on MSL [7]. Analyses of these data from several locations indicate the presence of trioctahedral and dioctahedral smectites and SRO phases [8, 9]. -
Suspension Polymerization of Methyl Methacrylate Stabilized Solely by Palygorskite Nano Fibers*
Chinese Journal of Polymer Science Vol. 32, No. 2, (2014), 123−129 Chinese Journal of Polymer Science © Chinese Chemical Society Institute of Chemistry, CAS Springer-Verlag Berlin Heidelberg 2014 Rapid Communication Suspension Polymerization of Methyl Methacrylate Stabilized Solely by Palygorskite Nano Fibers* Bai-yu Li**, Yin-ping Wang, Xiao-bin Niu and Zai-man Liu The School of Chemical & Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China Abstract A kind of fibrous clay, palygorskite (PAL), was used as the sole stabilizer in suspension polymerization without the using of any other stabilizer usually used, especially polymeric stabilizers. In order to improve the compatibility with the organic monomer, PAL nano fibers were organically modified with silane coupling agent methacryloxypropyltrimethoxysilane (MPS). Transmission electron microscopy (TEM) and Fourier-transform infrared (FTIR) spectroscopy results show that the hydrolyzed MPS was attached onto PAL surface through Si―O―Si bonds formation without morphology change of PAL. At a loading amount of PAL to monomer as low as 0.36 wt%, effective stabilization could be achieved. After suspension polymerization, spherical poly(methyl methacrylate) (PMMA) particles were obtained. Scanning electron microscopy (SEM) analysis on both the outer surface and the inner cracked surface of the spherical PMMA particles indicates that the PAL particles reside on the surface of the PMMA spheres. The densely stacked PAL together with attached silane coupling agent stabilized -
On Tropical Soils?
AJCS 13(11):1777-1785 (2019) ISSN:1835-2707 doi: 10.21475/ajcs.19.13.11.p1562 Could 137Cs remediation be accomplished with stable cesium (CsCl) on tropical soils? Riviane Maria Albuquerque Donha1*, Mário Roque2, Antônio Enedi Boaretto2, Antonio Sergio Ferraudo1, Elcio Ferreira Santos2, Fernando Giovannetti Macedo1, Wanderley José Melo13, José Lavres Junior2 1UNESP – São Paulo State University, Postal Code 79560-000, Jaboticabal, SP, Brazil 2USP – University of São Paulo, Center for Nuclear Energy in Agriculture. Postal Code 13416-000, Piraicaba, SP, Brazil 3Brasil University, Postal Code 13690-000, Descalvado, SP, Brazil *Correspondence authorl: [email protected] Abstract Stable cesium can be considered as the best element for desorption of soil radio-cesium. It is considered an element that slightly absorbed by plants, so that the application of high doses to the soil could increase the absorption of 137Cs, which is desired for the remediation of contaminated soils. There is shortage of knowledge on remediation of tropical and subtropical soils contaminated with 137Cs. The aim of this work was to evaluate the use of 133Cs for the remediation of Brazilian tropical and subtropical soils contaminated with 137Cs. In addition, we investigated the Cs uptake by bean plants (Phaseolus vulgaris L.) grown in Cs contaminated soil. The experiment was carried out in pots under greenhouse conditions. Seven soil types were used in the experiment (Oxisol, Udox, Psamment, Ochrept; Aquoll; Udox and Udult), which received the application of four doses of 133Cs (0, 5, 10 and 20 mg/pot in a completely randomized design arranged in a factorial scheme (7 soil types x 4 doses of 133Cs) with three replicates. -
I. PENDAHULUAN A. Latar Belakang Psamment (Entisol Berdasarkan
I. PENDAHULUAN A. Latar Belakang Psamment (Entisol berdasarkan Soil Taxonomy USDA oleh Soil Survey Staff, 2014) merupakan salah satu jenis tanah yang memiliki keterbatasan dalam hal produktifitas, tetapi masih dapat dikelola dan dimanfaatkan untuk bidang pertanian. Psamment memiliki tingkat kesuburan yang rendah, yaitu dapat dilihat dari rendahnya kadar bahan organik, sehingga kemampuannya dalam menyimpan air dan unsur hara sangat rendah. Selain itu Psamment juga mempunyai tekstur pasir berlempung, dengan tekstur demikian luas permukaan spesifiknya kecil dan pori makro lebih banyak sehingga kemampuan tanah untuk mengikat air lebih rendah. Namun Psamment memiliki porositas dan aerasi yang baik karena didominasi oleh pori makro tersebut. Berdasarkan Keputusan Menteri Kelautan dan Perikanan Nomor 10/Men/2002 tentang pedoman umum perencanaan pengelolaan pesisir terpadu, hendaknya pemanfaatan lahan pantai berpasir dilakukan dengan baik dan benar serta dapat berfungsi ganda. Pemanfaatannya dapat dilakukan dengan budidaya tanaman semusim yang bernilai ekonomis. Penggunaan Psamment sebagai lahan pertanian tanaman semusim dapat dilakukan jika terlebih dahulu memperkecil faktor pembatas yang ada sehingga mempunyai tingkat kesesuaian yang lebih baik untuk bidang pertanian. Salah satu upaya pengelolaan yang dapat dilakukan yaitu dengan penambahan input seperti bahan organik dan kapur. Bahan organik sangat berperan penting dalam peningkatan kesuburan tanah. Hardjowigeno (2003) mengemukakan bahwa pemberian bahan organik ke tanah akan berpengaruh terhadap sifat fisik, biologi dan kimia tanah. Pengaruhnya antara lain dapat memperbaiki aerase tanah, meningkatkan kemampuan tanah menahan air, meningkatkan aktifitas dan jumlah mikroorganisme tanah serta sebagai sumber unsur hara. Berdasarkan hasil penelitian Helmi (2009) pemberian jerami padi setara 20 ton/ha dan pupuk SP-36 setara 60 kg/ha dapat merubah beberapa sifat fisika Regosol diantaranya berat volume (BV), indeks stabilitas aggregat (ISA), dan porositas tanah. -
Moss-Dominated Biocrusts Decrease Soil Moisture and Result in the Degradation of Artificially Planted Shrubs Under Semiarid Climate
Geoderma 291 (2017) 47–54 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Moss-dominated biocrusts decrease soil moisture and result in the degradation of artificially planted shrubs under semiarid climate Bo Xiao a,b,⁎, Kelin Hu a a Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, PR China b State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi 712100, PR China article info abstract Article history: The relationships between biocrusts and shrubs in semiarid areas, are of great importance, however, not yet suf- Received 24 November 2016 ficiently investigated. It is unknown whether or not biocrusts will decrease soil moisture and result in the degra- Received in revised form 21 December 2016 dation of artificially planted shrubs in semiarid climates. In a semiarid watershed on the Loess Plateau of China, Accepted 4 January 2017 we selected 18 sampling sites in artificial shrublands and measured at each the soil moisture from 0 to 200 cm Available online xxxx depth under bare land, moss-dominated biocrusts, artificially planted Artemisia ordosica, A. ordosica with fi Keywords: biocrusts, and dead A. ordosica with biocrusts. We also estimated the water-holding capacity and in ltrability Biological soil crust of the soil with and without biocrusts. The A. ordosica with biocrusts had 24.4% lower biomass and 18.9% lower Microbiotic crust leaf area index than those without biocrusts, suggesting negative effects of biocrusts on these shrubs. Moreover, Soil water regime the biocrusts underneath A. -
Monitoring the Variations of Soil Salinity in a Palm Grove in Southern Algeria
sustainability Article Monitoring the Variations of Soil Salinity in a Palm Grove in Southern Algeria Abderraouf Benslama 1,*, Kamel Khanchoul 2, Fouzi Benbrahim 3 , Sana Boubehziz 2, Faredj Chikhi 1 and Jose Navarro-Pedreño 4,* 1 Laboratoire de Mathématiques et Sciences Appliquée, Université de Ghardaïa, BP 455, Ghardaïa 47000, Algeria; [email protected] 2 Laboratory of Soils and Sustainable Development, Badji Mokhtar University-Annaba, P.O.Box 12, Annaba 23000, Algeria; [email protected] (K.K.); [email protected] (S.B.) 3 École Normale Supérieure de Ouargla, BP 398, HaїEnnasr, Ouargla 30000, Algeria; [email protected] 4 Department of Agrochemistry and Environment, University Miguel Hernández of Elche, 03202 Elche, Alicante, Spain * Correspondence: [email protected] (A.B.); [email protected] (J.N.-P.) Received: 7 July 2020; Accepted: 23 July 2020; Published: 29 July 2020 Abstract: Soil salinity is considered the most serious socio-economic and environmental problem in arid and semi-arid regions. This study was done to estimate the soil salinity and monitor the changes in an irrigated palm grove (42 ha) that produces dates of a high quality. Topsoil samples (45 points), were taken during two different periods (May and November), the electrical conductivity (EC) and Sodium Adsorption Ratio (SAR) were determined to assess the salinity of the soil. The results of the soil analysis were interpolated using two geostatistical methods: inverse distance weighting (IDW) and ordinary Kriging (OK). The efficiency and best model of these two methods was evaluated by calculating the mean error (ME) and root mean square error (RMSE), showing that the ME of both interpolation methods was satisfactory for EC ( 0.003, 0.145) and for SAR ( 0.03, 0.18), but the − − − RMSE value was lower using the IDW with both data and periods.