Linear Algebra and Smarandache Linear Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Linear Algebra and Smarandache Linear Algebra w. b. vasantha kandasamy LINEAR ALGEBRA AND SMARANDACHE LINEAR ALGEBRA AMERICAN RESEARCH PRESS 2003 Linear Algebra and Smarandache Linear Algebra W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India American Research Press 2003 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. Zeeb Road P.O. Box 1346, Ann Arbor MI 48106-1346, USA Tel.: 1-800-521-0600 (Customer Service) http://wwwlib.umi.com/bod/ and online from: Publishing Online, Co. (Seattle, Washington State) at: http://PublishingOnline.com This book has been peer reviewed and recommended for publication by: Jean Dezert, Office National d=Etudes et de Recherches Aerospatiales (ONERA), 29, Avenue de la Division Leclerc, 92320 Chantillon, France. M. Khoshnevisan, School of Accounting and Finance, Griffith University, Gold Coast, Queensland 9726, Australia. Sabin Tabirca and Tatiana Tabirca, University College Cork, Cork, Ireland. Copyright 2003 by American Research Press and W. B. Vasantha Kandasamy Rehoboth, Box 141 NM 87322, USA Many books can be downloaded from our E-Library of Science: http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ISBN : 1-931233-75-6 ISBN-13: 978-1-931233-75-0 Standard Address Number: 297-5092 Printed in the United States of America CONTENTS PREFACE 5 Chapter One LINEAR ALGEBRA : Theory and Applications 1.1 Definition of linear Algebra and its properties 7 1.2 Linear transformations and linear operators 12 1.3 Elementary canonical forms 20 1.4 Inner product spaces 29 1.5 Operators on inner product space 33 1.6 Vector spaces over finite fields Zp 37 1.7 Bilinear forms and its properties 44 1.8 Representation of finite groups 46 1.9 Semivector spaces and semilinear algebra 48 1.10 Some applications of linear algebra 60 Chapter Two SMARANDACHE LINEAR ALGEBRA AND ITS PROPERTIES 2.1 Definition of different types of Smarandache linear algebra with examples 65 2.2 Smarandache basis and S-linear transformation of S-vector spaces 71 2.3 Smarandache canonical forms 76 2.4 Smarandache vector spaces defined over finite S-rings Zn 81 2.5 Smarandache bilinear forms and its properties 86 2.6 Smarandache representation of finite S-semigroup 88 2.7 Smarandache special vector spaces 99 2.8 Algebra of S-linear operators 103 2.9 Miscellaneous properties in Smarandache linear algebra 110 2.10 Smarandache semivector spaces and Smarandache semilinear algebras 119 3 Chapter Three SMARANDACHE LINEAR ALGEBRAS AND ITS APPLICATIONS 3.1 A smattering of neutrosophic logic using S-vector spaces of type II 141 3.2 Smarandache Markov Chains using S-vector spaces II 142 3.3 Smarandache Leontief economic models 143 3.4 Smarandache anti-linear algebra 146 Chapter Four SUGGESTED PROBLEMS 149 REFERENCES 165 INDEX 169 4 PREFACE While I began researching for this book on linear algebra, I was a little startled. Though, it is an accepted phenomenon, that mathematicians are rarely the ones to react surprised, this serious search left me that way for a variety of reasons. First, several of the linear algebra books that my institute library stocked (and it is a really good library) were old and crumbly and dated as far back as 1913 with the most 'new' books only being the ones published in the 1960s. Next, of the few current and recent books that I could manage to find, all of them were intended only as introductory courses for the undergraduate students. Though the pages were crisp, the contents were diluted for the aid of the young learners, and because I needed a book for research-level purposes, my search at the library was futile. And given the fact, that for the past fifteen years, I have been teaching this subject to post-graduate students, this absence of recently published research level books only increased my astonishment. Finally, I surrendered to the world wide web, to the pulls of the internet, where although the results were mostly the same, there was a solace of sorts, for, I managed to get some monographs and research papers relevant to my interests. Most remarkable among my internet finds, was the book by Stephen Semmes, Some topics pertaining to the algebra of linear operators, made available by the Los Alamos National Laboratory's internet archives. Semmes' book written in November 2002 is original and markedly different from the others, it links the notion of representation of group and vector spaces and presents several new results in this direction. The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite prime fields, which is not properly represented or analyzed in linear algebra books. This book is divided into four chapters. The first chapter is divided into ten sections which deal with, and introduce, all notions of linear algebra. In the second chapter, on Smarandache Linear Algebra, we provide the Smarandache analogues of the various concepts related to linear algebra. Chapter three suggests some application of Smarandache linear algebra. We indicate that Smarandache vector spaces of type II 5 will be used in the study of neutrosophic logic and its applications to Markov chains and Leontief Economic models – both of these research topics have intense industrial applications. The final chapter gives 131 significant problems of interest, and finding solutions to them will greatly increase the research carried out in Smarandache linear algebra and its applications. I want to thank my husband Dr.Kandasamy and two daughters Meena and Kama for their continued work towards the completion of these books. They spent a lot of their time, retiring at very late hours, just to ensure that the books were completed on time. The three of them did all the work relating to the typesetting and proofreading of the books, taking no outside help at all, either from my many students or friends. I also like to mention that this is the tenth and final book in this book series on Smarandache Algebraic Structures. I started writing these ten books, on April 14 last year (the prized occasion being the birth anniversary of Dr.Babasaheb Ambedkar), and after exactly a year's time, I have completed the ten titles. The whole thing would have remained an idle dream, but for the enthusiasm and inspiration from Dr. Minh Perez of the American Research Press. His emails, full of wisdom and an unbelievable sagacity, saved me from impending depression. When I once mailed him about the difficulties I am undergoing at my current workplace, and when I told him how my career was at crisis, owing to the lack of organizational recognition, it was Dr. Minh who wrote back to console me, adding: "keep yourself deep in research (because later the books and articles will count, not the titles of president of IIT or chair at IIT, etc.). The books and articles remain after our deaths." The consolation and prudent reasoning that I have received from him, have helped me find serenity despite the turbulent times in which I am living in. I am highly indebted to Dr. Minh for the encouragement and inspiration, and also for the comfort and consolation. Finally I dedicate this book to millions of followers of Periyar and Babasaheb Ambedkar. They rallied against the casteist hegemony prevalent at the institutes of research and higher education in our country, continuing in the tradition of the great stalwarts. They organized demonstrations and meetings, carried out extensive propaganda, and transformed the campaign against brahmincal domination into a people's protest. They spontaneously helped me, in every possible and imaginable way, in my crusade against the upper caste tyranny and domination in the Indian Institute of Technology, Madras -- a foremost bastion of the brahminical forces. The support they lent to me, while I was singlehandedly struggling, will be something that I shall cherish for the rest of my life. If I am a survivor today, it is because of their brave crusade for social justice. W.B.Vasantha Kandasamy 14 April 2003 6 Chapter One LINEAR ALGEBRA Theory and Applications This chapter has ten sections, which tries to give a possible outlook on linear algebra. The notions given are basic concepts and results that are recalled without proof. The reader is expected to be well-acquainted with concepts in linear algebra to proceed on with this book. However chapter one helps for quick reference of basic concepts. In section one we give the definition and some of the properties of linear algebra. Linear transformations and linear operators are introduced in section two. Section three gives the basic concepts on canonical forms. Inner product spaces are dealt in section four and section five deals with forms and operator on inner product spaces. Section six is new for we do not have any book dealing separately with vector spaces built over finite fields Zp. Here it is completely introduced and analyzed. Section seven is devoted to the study and introduction of bilinear forms and its properties. Section eight is unconventional for most books do not deal with the representations of finite groups and transformation of vector spaces. Such notions are recalled in this section. For more refer [26]. Further the ninth section is revolutionary for there is no book dealing with semivector spaces and semilinear algebra, except for [44] which gives these notions.
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • HILBERT SPACE GEOMETRY Definition: a Vector Space Over Is a Set V (Whose Elements Are Called Vectors) Together with a Binary Operation
    HILBERT SPACE GEOMETRY Definition: A vector space over is a set V (whose elements are called vectors) together with a binary operation +:V×V→V, which is called vector addition, and an external binary operation ⋅: ×V→V, which is called scalar multiplication, such that (i) (V,+) is a commutative group (whose neutral element is called zero vector) and (ii) for all λ,µ∈ , x,y∈V: λ(µx)=(λµ)x, 1 x=x, λ(x+y)=(λx)+(λy), (λ+µ)x=(λx)+(µx), where the image of (x,y)∈V×V under + is written as x+y and the image of (λ,x)∈ ×V under ⋅ is written as λx or as λ⋅x. Exercise: Show that the set 2 together with vector addition and scalar multiplication defined by x y x + y 1 + 1 = 1 1 + x 2 y2 x 2 y2 x λx and λ 1 = 1 , λ x 2 x 2 respectively, is a vector space. 1 Remark: Usually we do not distinguish strictly between a vector space (V,+,⋅) and the set of its vectors V. For example, in the next definition V will first denote the vector space and then the set of its vectors. Definition: If V is a vector space and M⊆V, then the set of all linear combinations of elements of M is called linear hull or linear span of M. It is denoted by span(M). By convention, span(∅)={0}. Proposition: If V is a vector space, then the linear hull of any subset M of V (together with the restriction of the vector addition to M×M and the restriction of the scalar multiplication to ×M) is also a vector space.
    [Show full text]
  • Does Geometric Algebra Provide a Loophole to Bell's Theorem?
    Discussion Does Geometric Algebra provide a loophole to Bell’s Theorem? Richard David Gill 1 1 Leiden University, Faculty of Science, Mathematical Institute; [email protected] Version October 30, 2019 submitted to Entropy Abstract: Geometric Algebra, championed by David Hestenes as a universal language for physics, was used as a framework for the quantum mechanics of interacting qubits by Chris Doran, Anthony Lasenby and others. Independently of this, Joy Christian in 2007 claimed to have refuted Bell’s theorem with a local realistic model of the singlet correlations by taking account of the geometry of space as expressed through Geometric Algebra. A series of papers culminated in a book Christian (2014). The present paper first explores Geometric Algebra as a tool for quantum information and explains why it did not live up to its early promise. In summary, whereas the mapping between 3D geometry and the mathematics of one qubit is already familiar, Doran and Lasenby’s ingenious extension to a system of entangled qubits does not yield new insight but just reproduces standard QI computations in a clumsy way. The tensor product of two Clifford algebras is not a Clifford algebra. The dimension is too large, an ad hoc fix is needed, several are possible. I further analyse two of Christian’s earliest, shortest, least technical, and most accessible works (Christian 2007, 2011), exposing conceptual and algebraic errors. Since 2015, when the first version of this paper was posted to arXiv, Christian has published ambitious extensions of his theory in RSOS (Royal Society - Open Source), arXiv:1806.02392, and in IEEE Access, arXiv:1405.2355.
    [Show full text]
  • Spanning Sets the Only Algebraic Operations That Are Defined in a Vector Space V Are Those of Addition and Scalar Multiplication
    i i “main” 2007/2/16 page 258 i i 258 CHAPTER 4 Vector Spaces 23. Show that the set of all solutions to the nonhomoge- and let neous differential equation S1 + S2 = {v ∈ V : y + a1y + a2y = F(x), v = x + y for some x ∈ S1 and y ∈ S2} . where F(x) is nonzero on an interval I, is not a sub- 2 space of C (I). (a) Show that, in general, S1 ∪ S2 is not a subspace of V . 24. Let S1 and S2 be subspaces of a vector space V . Let (b) Show that S1 ∩ S2 is a subspace of V . S ∪ S ={v ∈ V : v ∈ S or v ∈ S }, 1 2 1 2 (c) Show that S1 + S2 is a subspace of V . S1 ∩ S2 ={v ∈ V : v ∈ S1 and v ∈ S2}, 4.4 Spanning Sets The only algebraic operations that are defined in a vector space V are those of addition and scalar multiplication. Consequently, the most general way in which we can combine the vectors v1, v2,...,vk in V is c1v1 + c2v2 +···+ckvk, (4.4.1) where c1,c2,...,ck are scalars. An expression of the form (4.4.1) is called a linear combination of v1, v2,...,vk. Since V is closed under addition and scalar multiplica- tion, it follows that the foregoing linear combination is itself a vector in V . One of the questions we wish to answer is whether every vector in a vector space can be obtained by taking linear combinations of a finite set of vectors. The following terminology is used in the case when the answer to this question is affirmative: DEFINITION 4.4.1 If every vector in a vector space V can be written as a linear combination of v1, v2, ..., vk, we say that V is spanned or generated by v1, v2, ..., vk and call the set of vectors {v1, v2,...,vk} a spanning set for V .
    [Show full text]
  • Introduction to Clifford's Geometric Algebra
    解説:特集 コンピューテーショナル・インテリジェンスの新展開 —クリフォード代数表現など高次元表現を中心として— Introduction to Clifford’s Geometric Algebra Eckhard HITZER* *Department of Applied Physics, University of Fukui, Fukui, Japan *E-mail: [email protected] Key Words:hypercomplex algebra, hypercomplex analysis, geometry, science, engineering. JL 0004/12/5104–0338 C 2012 SICE erty 15), 21) that any isometry4 from the vector space V Abstract into an inner-product algebra5 A over the field6 K can Geometric algebra was initiated by W.K. Clifford over be uniquely extended to an isometry7 from the Clifford 130 years ago. It unifies all branches of physics, and algebra Cl(V )intoA. The Clifford algebra Cl(V )is has found rich applications in robotics, signal process- the unique associative and multilinear algebra with this ing, ray tracing, virtual reality, computer vision, vec- property. Thus if we wish to generalize methods from tor field processing, tracking, geographic information algebra, analysis, calculus, differential geometry (etc.) systems and neural computing. This tutorial explains of real numbers, complex numbers, and quaternion al- the basics of geometric algebra, with concrete exam- gebra to vector spaces and multivector spaces (which ples of the plane, of 3D space, of spacetime, and the include additional elements representing 2D up to nD popular conformal model. Geometric algebras are ideal subspaces, i.e. plane elements up to hypervolume ele- to represent geometric transformations in the general ments), the study of Clifford algebras becomes unavoid- framework of Clifford groups (also called versor or Lip- able. Indeed repeatedly and independently a long list of schitz groups). Geometric (algebra based) calculus al- Clifford algebras, their subalgebras and in Clifford al- lows e.g., to optimize learning algorithms of Clifford gebras embedded algebras (like octonions 17))ofmany neurons, etc.
    [Show full text]
  • A Bit About Hilbert Spaces
    A Bit About Hilbert Spaces David Rosenberg New York University October 29, 2016 David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 1 / 9 Inner Product Space (or “Pre-Hilbert” Spaces) An inner product space (over reals) is a vector space V and an inner product, which is a mapping h·,·i : V × V ! R that has the following properties 8x,y,z 2 V and a,b 2 R: Symmetry: hx,yi = hy,xi Linearity: hax + by,zi = ahx,zi + b hy,zi Postive-definiteness: hx,xi > 0 and hx,xi = 0 () x = 0. David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 2 / 9 Norm from Inner Product For an inner product space, we define a norm as p kxk = hx,xi. Example Rd with standard Euclidean inner product is an inner product space: hx,yi := xT y 8x,y 2 Rd . Norm is p kxk = xT y. David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 3 / 9 What norms can we get from an inner product? Theorem (Parallelogram Law) A norm kvk can be generated by an inner product on V iff 8x,y 2 V 2kxk2 + 2kyk2 = kx + yk2 + kx - yk2, and if it can, the inner product is given by the polarization identity jjxjj2 + jjyjj2 - jjx - yjj2 hx,yi = . 2 Example d `1 norm on R is NOT generated by an inner product. [Exercise] d Is `2 norm on R generated by an inner product? David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 4 / 9 Pythagorean Theroem Definition Two vectors are orthogonal if hx,yi = 0.
    [Show full text]
  • True False Questions from 4,5,6
    (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. Math 217: True False Practice Professor Karen Smith 1. For every 2 × 2 matrix A, there exists a 2 × 2 matrix B such that det(A + B) 6= det A + det B. Solution note: False! Take A to be the zero matrix for a counterexample. 2. If the change of basis matrix SA!B = ~e4 ~e3 ~e2 ~e1 , then the elements of A are the same as the element of B, but in a different order. Solution note: True. The matrix tells us that the first element of A is the fourth element of B, the second element of basis A is the third element of B, the third element of basis A is the second element of B, and the the fourth element of basis A is the first element of B. 6 6 3. Every linear transformation R ! R is an isomorphism. Solution note: False. The zero map is a a counter example. 4. If matrix B is obtained from A by swapping two rows and det A < det B, then A is invertible. Solution note: True: we only need to know det A 6= 0. But if det A = 0, then det B = − det A = 0, so det A < det B does not hold. 5. If two n × n matrices have the same determinant, they are similar. Solution note: False: The only matrix similar to the zero matrix is itself. But many 1 0 matrices besides the zero matrix have determinant zero, such as : 0 0 6.
    [Show full text]
  • Worksheet 1, for the MATLAB Course by Hans G. Feichtinger, Edinburgh, Jan
    Worksheet 1, for the MATLAB course by Hans G. Feichtinger, Edinburgh, Jan. 9th Start MATLAB via: Start > Programs > School applications > Sci.+Eng. > Eng.+Electronics > MATLAB > R2007 (preferably). Generally speaking I suggest that you start your session by opening up a diary with the command: diary mydiary1.m and concluding the session with the command diary off. If you want to save your workspace you my want to call save today1.m in order to save all the current variable (names + values). Moreover, using the HELP command from MATLAB you can get help on more or less every MATLAB command. Try simply help inv or help plot. 1. Define an arbitrary (random) 3 × 3 matrix A, and check whether it is invertible. Calculate the inverse matrix. Then define an arbitrary right hand side vector b and determine the (unique) solution to the equation A ∗ x = b. Find in two different ways the solution to this problem, by either using the inverse matrix, or alternatively by applying Gauss elimination (i.e. the RREF command) to the extended system matrix [A; b]. In addition look at the output of the command rref([A,eye(3)]). What does it tell you? 2. Produce an \arbitrary" 7 × 7 matrix of rank 5. There are at east two simple ways to do this. Either by factorization, i.e. by obtaining it as a product of some 7 × 5 matrix with another random 5 × 7 matrix, or by purposely making two of the rows or columns linear dependent from the remaining ones. Maybe the second method is interesting (if you have time also try the first one): 3.
    [Show full text]
  • The Determinant Inner Product and the Heisenberg Product of Sym(2)
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 14 NO. 1 PAGE 1–12 (2021) DOI: HTTPS://DOI.ORG/10.32323/IEJGEO.602178 The determinant inner product and the Heisenberg product of Sym(2) Mircea Crasmareanu (Dedicated to the memory of Prof. Dr. Aurel BEJANCU (1946 - 2020)Cihan Ozgur) ABSTRACT The aim of this work is to introduce and study the nondegenerate inner product < ·; · >det induced by the determinant map on the space Sym(2) of symmetric 2 × 2 real matrices. This symmetric bilinear form of index 2 defines a rational symmetric function on the pairs of rays in the plane and an associated function on the 2-torus can be expressed with the usual Hopf bundle projection 3 2 1 S ! S ( 2 ). Also, the product < ·; · >det is treated with complex numbers by using the Hopf invariant map of Sym(2) and this complex approach yields a Heisenberg product on Sym(2). Moreover, the quadratic equation of critical points for a rational Morse function of height type generates a cosymplectic structure on Sym(2) with the unitary matrix as associated Reeb vector and with the Reeb 1-form being half of the trace map. Keywords: symmetric matrix; determinant; Hopf bundle; Hopf invariant AMS Subject Classification (2020): Primary: 15A15 ; Secondary: 15A24; 30C10; 22E47. 1. Introduction This short paper, whose nature is mainly expository, is dedicated to the memory of Professor Dr. Aurel Bejancu, who was equally a gifted mathematician and a dedicated professor. As we hereby present an in memoriam paper, we feel it would be better if we choose an informal presentation rather than a classical structured discourse, where theorems and propositions are followed by their proofs.
    [Show full text]
  • Inner Product Spaces
    CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid’s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R2 and R3. We ignored other important features, such as the notions of length and angle. These ideas are embedded in the concept we now investigate, inner products. Our standing assumptions are as follows: 6.1 Notation F, V F denotes R or C. V denotes a vector space over F. LEARNING OBJECTIVES FOR THIS CHAPTER Cauchy–Schwarz Inequality Gram–Schmidt Procedure linear functionals on inner product spaces calculating minimum distance to a subspace Linear Algebra Done Right, third edition, by Sheldon Axler 164 CHAPTER 6 Inner Product Spaces 6.A Inner Products and Norms Inner Products To motivate the concept of inner prod- 2 3 x1 , x 2 uct, think of vectors in R and R as x arrows with initial point at the origin. x R2 R3 H L The length of a vector in or is called the norm of x, denoted x . 2 k k Thus for x .x1; x2/ R , we have The length of this vector x is p D2 2 2 x x1 x2 . p 2 2 x1 x2 . k k D C 3 C Similarly, if x .x1; x2; x3/ R , p 2D 2 2 2 then x x1 x2 x3 . k k D C C Even though we cannot draw pictures in higher dimensions, the gener- n n alization to R is obvious: we define the norm of x .x1; : : : ; xn/ R D 2 by p 2 2 x x1 xn : k k D C C The norm is not linear on Rn.
    [Show full text]
  • Inner Product Spaces Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (March 2, 2007)
    MAT067 University of California, Davis Winter 2007 Inner Product Spaces Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (March 2, 2007) The abstract definition of vector spaces only takes into account algebraic properties for the addition and scalar multiplication of vectors. For vectors in Rn, for example, we also have geometric intuition which involves the length of vectors or angles between vectors. In this section we discuss inner product spaces, which are vector spaces with an inner product defined on them, which allow us to introduce the notion of length (or norm) of vectors and concepts such as orthogonality. 1 Inner product In this section V is a finite-dimensional, nonzero vector space over F. Definition 1. An inner product on V is a map ·, · : V × V → F (u, v) →u, v with the following properties: 1. Linearity in first slot: u + v, w = u, w + v, w for all u, v, w ∈ V and au, v = au, v; 2. Positivity: v, v≥0 for all v ∈ V ; 3. Positive definiteness: v, v =0ifandonlyifv =0; 4. Conjugate symmetry: u, v = v, u for all u, v ∈ V . Remark 1. Recall that every real number x ∈ R equals its complex conjugate. Hence for real vector spaces the condition about conjugate symmetry becomes symmetry. Definition 2. An inner product space is a vector space over F together with an inner product ·, ·. Copyright c 2007 by the authors. These lecture notes may be reproduced in their entirety for non- commercial purposes. 2NORMS 2 Example 1. V = Fn n u =(u1,...,un),v =(v1,...,vn) ∈ F Then n u, v = uivi.
    [Show full text]
  • 5.2. Inner Product Spaces 1 5.2
    5.2. Inner Product Spaces 1 5.2. Inner Product Spaces Note. In this section, we introduce an inner product on a vector space. This will allow us to bring much of the geometry of Rn into the infinite dimensional setting. Definition 5.2.1. A vector space with complex scalars hV, Ci is an inner product space (also called a Euclidean Space or a Pre-Hilbert Space) if there is a function h·, ·i : V × V → C such that for all u, v, w ∈ V and a ∈ C we have: (a) hv, vi ∈ R and hv, vi ≥ 0 with hv, vi = 0 if and only if v = 0, (b) hu, v + wi = hu, vi + hu, wi, (c) hu, avi = ahu, vi, and (d) hu, vi = hv, ui where the overline represents the operation of complex conju- gation. The function h·, ·i is called an inner product. Note. Notice that properties (b), (c), and (d) of Definition 5.2.1 combine to imply that hu, av + bwi = ahu, vi + bhu, wi and hau + bv, wi = ahu, wi + bhu, wi for all relevant vectors and scalars. That is, h·, ·i is linear in the second positions and “conjugate-linear” in the first position. 5.2. Inner Product Spaces 2 Note. We can also define an inner product on a vector space with real scalars by requiring that h·, ·i : V × V → R and by replacing property (d) in Definition 5.2.1 with the requirement that the inner product is symmetric: hu, vi = hv, ui. Then Rn with the usual dot product is an example of a real inner product space.
    [Show full text]