The String Theory Landscape
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Pev-Scale Split Supersymmetry from Higgs Mass and Electroweak Vacuum Stability
The PeV-Scale Split Supersymmetry from Higgs Mass and Electroweak Vacuum Stability Waqas Ahmed ? 1, Adeel Mansha ? 2, Tianjun Li ? ~ 3, Shabbar Raza ∗ 4, Joydeep Roy ? 5, Fang-Zhou Xu ? 6, ? CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China ~School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China ∗ Department of Physics, Federal Urdu University of Arts, Science and Technology, Karachi 75300, Pakistan Institute of Modern Physics, Tsinghua University, Beijing 100084, China Abstract The null results of the LHC searches have put strong bounds on new physics scenario such as supersymmetry (SUSY). With the latest values of top quark mass and strong coupling, we study the upper bounds on the sfermion masses in Split-SUSY from the observed Higgs boson mass and electroweak (EW) vacuum stability. To be consistent with the observed Higgs mass, we find that the largest value of supersymmetry breaking 3 1:5 scales MS for tan β = 2 and tan β = 4 are O(10 TeV) and O(10 TeV) respectively, thus putting an upper bound on the sfermion masses around 103 TeV. In addition, the Higgs quartic coupling becomes negative at much lower scale than the Standard Model (SM), and we extract the upper bound of O(104 TeV) on the sfermion masses from EW vacuum stability. Therefore, we obtain the PeV-Scale Split-SUSY. The key point is the extra contributions to the Renormalization Group Equation (RGE) running from arXiv:1901.05278v1 [hep-ph] 16 Jan 2019 the couplings among Higgs boson, Higgsinos, and gauginos. -
A String Landscape Perspective on Naturalness Outline • Preliminaries
A String Landscape Perspective on Naturalness A. Hebecker (Heidelberg) Outline • Preliminaries (I): The problem(s) and the multiverse `solution' • Preliminaries (II): From field theory to quantum gravity (String theory in 10 dimensions) • Compactifications to 4 dimensions • The (flux-) landscape • Eternal inflation, multiverse, measure problem The two hierarchy/naturalness problems • A much simplified basic lagrangian is 2 2 2 2 4 L ∼ MP R − Λ − jDHj + mhjHj − λjHj : • Assuming some simple theory with O(1) fundamental parameters at the scale E ∼ MP , we generically expectΛ and mH of that order. • For simplicity and because it is experimentally better established, I will focus in on theΛ-problem. (But almost all that follows applies to both problems!) The multiverse `solution' • It is quite possible that in the true quantum gravity theory, Λ comes out tiny as a result of an accidental cancellation. • But, we perceive that us unlikely. • By contrast, if we knew there were 10120 valid quantum gravity theories, we would be quite happy assuming that one of them has smallΛ. (As long as the calculations giving Λ are sufficiently involved to argue for Gaussian statisics of the results.) • Even better (since in principle testable): We could have one theory with 10120 solutions with differentΛ. Λ-values ! The multiverse `solution' (continued) • This `generic multiverse logic' has been advertised long before any supporting evidence from string theory existed. This goes back at least to the 80's and involves many famous names: Barrow/Tipler , Tegmark , Hawking , Hartle , Coleman , Weinberg .... • Envoking the `Anthropic Principle', [the selection of universes by demanding features which we think are necessary for intelligent life and hence for observers] it is then even possible to predict certain observables. -
Moduli Spaces
spaces. Moduli spaces such as the moduli of elliptic curves (which we discuss below) play a central role Moduli Spaces in a variety of areas that have no immediate link to the geometry being classified, in particular in alge- David D. Ben-Zvi braic number theory and algebraic topology. Moreover, the study of moduli spaces has benefited tremendously in recent years from interactions with Many of the most important problems in mathemat- physics (in particular with string theory). These inter- ics concern classification. One has a class of math- actions have led to a variety of new questions and new ematical objects and a notion of when two objects techniques. should count as equivalent. It may well be that two equivalent objects look superficially very different, so one wishes to describe them in such a way that equiv- 1 Warmup: The Moduli Space of Lines in alent objects have the same description and inequiva- the Plane lent objects have different descriptions. Moduli spaces can be thought of as geometric solu- Let us begin with a problem that looks rather simple, tions to geometric classification problems. In this arti- but that nevertheless illustrates many of the impor- cle we shall illustrate some of the key features of mod- tant ideas of moduli spaces. uli spaces, with an emphasis on the moduli spaces Problem. Describe the collection of all lines in the of Riemann surfaces. (Readers unfamiliar with Rie- real plane R2 that pass through the origin. mann surfaces may find it helpful to begin by reading about them in Part III.) In broad terms, a moduli To save writing, we are using the word “line” to mean problem consists of three ingredients. -
Effective Field Theories, Reductionism and Scientific Explanation Stephan
To appear in: Studies in History and Philosophy of Modern Physics Effective Field Theories, Reductionism and Scientific Explanation Stephan Hartmann∗ Abstract Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effec- tive field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispens- able. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation. Keywords: Effective Field Theory; Quantum Field Theory; Renormalisation; Reductionism; Explanation; Pluralism. ∗Center for Philosophy of Science, University of Pittsburgh, 817 Cathedral of Learning, Pitts- burgh, PA 15260, USA (e-mail: [email protected]) (correspondence address); and Sektion Physik, Universit¨at M¨unchen, Theresienstr. 37, 80333 M¨unchen, Germany. 1 1 Introduction There is little doubt that effective field theories are nowadays a very popular tool in quantum physics. -
Jhep05(2019)105
Published for SISSA by Springer Received: March 21, 2019 Accepted: May 7, 2019 Published: May 20, 2019 Modular symmetries and the swampland conjectures JHEP05(2019)105 E. Gonzalo,a;b L.E. Ib´a~neza;b and A.M. Urangaa aInstituto de F´ısica Te´orica IFT-UAM/CSIC, C/ Nicol´as Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid, Spain bDepartamento de F´ısica Te´orica, Facultad de Ciencias, Universidad Aut´onomade Madrid, 28049 Madrid, Spain E-mail: [email protected], [email protected], [email protected] Abstract: Recent string theory tests of swampland ideas like the distance or the dS conjectures have been performed at weak coupling. Testing these ideas beyond the weak coupling regime remains challenging. We propose to exploit the modular symmetries of the moduli effective action to check swampland constraints beyond perturbation theory. As an example we study the case of heterotic 4d N = 1 compactifications, whose non-perturbative effective action is known to be invariant under modular symmetries acting on the K¨ahler and complex structure moduli, in particular SL(2; Z) T-dualities (or subgroups thereof) for 4d heterotic or orbifold compactifications. Remarkably, in models with non-perturbative superpotentials, the corresponding duality invariant potentials diverge at points at infinite distance in moduli space. The divergence relates to towers of states becoming light, in agreement with the distance conjecture. We discuss specific examples of this behavior based on gaugino condensation in heterotic orbifolds. We show that these examples are dual to compactifications of type I' or Horava-Witten theory, in which the SL(2; Z) acts on the complex structure of an underlying 2-torus, and the tower of light states correspond to D0-branes or M-theory KK modes. -
An Introduction to Supersymmetry
An Introduction to Supersymmetry Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D–07743 Jena, Germany [email protected] This is a write-up of a series of five introductory lectures on global supersymmetry in four dimensions given at the 13th “Saalburg” Summer School 2007 in Wolfersdorf, Germany. Contents 1 Why supersymmetry? 1 2 Weyl spinors in D=4 4 3 The supersymmetry algebra 6 4 Supersymmetry multiplets 6 5 Superspace and superfields 9 6 Superspace integration 11 7 Chiral superfields 13 8 Supersymmetric gauge theories 17 9 Supersymmetry breaking 22 10 Perturbative non-renormalization theorems 26 A Sigma matrices 29 1 Why supersymmetry? When the Large Hadron Collider at CERN takes up operations soon, its main objective, besides confirming the existence of the Higgs boson, will be to discover new physics beyond the standard model of the strong and electroweak interactions. It is widely believed that what will be found is a (at energies accessible to the LHC softly broken) supersymmetric extension of the standard model. What makes supersymmetry such an attractive feature that the majority of the theoretical physics community is convinced of its existence? 1 First of all, under plausible assumptions on the properties of relativistic quantum field theories, supersymmetry is the unique extension of the algebra of Poincar´eand internal symmtries of the S-matrix. If new physics is based on such an extension, it must be supersymmetric. Furthermore, the quantum properties of supersymmetric theories are much better under control than in non-supersymmetric ones, thanks to powerful non- renormalization theorems. -
A Guiding Vector Field Algorithm for Path Following Control Of
1 A guiding vector field algorithm for path following control of nonholonomic mobile robots Yuri A. Kapitanyuk, Anton V. Proskurnikov and Ming Cao Abstract—In this paper we propose an algorithm for path- the integral tracking error is uniformly positive independent following control of the nonholonomic mobile robot based on the of the controller design. Furthermore, in practice the robot’s idea of the guiding vector field (GVF). The desired path may be motion along the trajectory can be quite “irregular” due to an arbitrary smooth curve in its implicit form, that is, a level set of a predefined smooth function. Using this function and the its oscillations around the reference point. For instance, it is robot’s kinematic model, we design a GVF, whose integral curves impossible to guarantee either path following at a precisely converge to the trajectory. A nonlinear motion controller is then constant speed, or even the motion with a perfectly fixed proposed which steers the robot along such an integral curve, direction. Attempting to keep close to the reference point, the bringing it to the desired path. We establish global convergence robot may “overtake” it due to unpredictable disturbances. conditions for our algorithm and demonstrate its applicability and performance by experiments with real wheeled robots. As has been clearly illustrated in the influential paper [11], these performance limitations of trajectory tracking can be Index Terms—Path following, vector field guidance, mobile removed by carefully designed path following algorithms. robot, motion control, nonlinear systems Unlike the tracking approach, path following control treats the path as a geometric curve rather than a function of I. -
Towards a Glossary of Activities in the Ontology Engineering Field
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid Towards a Glossary of Activities in the Ontology Engineering Field Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez Ontology Engineering Group, Universidad Politécnica de Madrid Campus de Montegancedo, Avda. Montepríncipe s/n, Boadilla del Monte, Madrid, Spain E-mail: [email protected], [email protected] Abstract The Semantic Web of the future will be characterized by using a very large number of ontologies embedded in ontology networks. It is important to provide strong methodological support for collaborative and context-sensitive development of networks of ontologies. This methodological support includes the identification and definition of which activities should be carried out when ontology networks are collaboratively built. In this paper we present the consensus reaching process followed within the NeOn consortium for the identification and definition of the activities involved in the ontology network development process. The consensus reaching process here presented produces as a result the NeOn Glossary of Activities. This work was conceived due to the lack of standardization in the Ontology Engineering terminology, which clearly contrasts with the Software Engineering field. Our future aim is to standardize the NeOn Glossary of Activities. field of knowledge. In the case of IEEE Standard Glossary 1. Introduction of Software Engineering Terminology (IEEE, 1990), this The Semantic Web of the future will be characterized by glossary identifies terms in use in the field of Software using a very large number of ontologies embedded in Engineering and establishes standard definitions for those ontology networks built by distributed teams (NeOn terms. -
The Topology of Moduli Space and Quantum Field Theory* ABSTRACT
SLAC-PUB-4760 October 1988 CT) . The Topology of Moduli Space and Quantum Field Theory* DAVID MONTANO AND JACOB SONNENSCHEIN+ Stanford Linear Accelerator Center Stanford University, Stanford, California 9.4309 ABSTRACT We show how an SO(2,l) gauge theory with a fermionic symmetry may be used to describe the topology of the moduli space of curves. The observables of the theory correspond to the generators of the cohomology of moduli space. This is an extension of the topological quantum field theory introduced by Witten to -- .- . -. investigate the cohomology of Yang-Mills instanton moduli space. We explore the basic structure of topological quantum field theories, examine a toy U(1) model, and then realize a full theory of moduli space topology. We also discuss why a pure gravity theory, as attempted in previous work, could not succeed. Submitted to Nucl. Phys. I3 _- .- --- _ * Work supported by the Department of Energy, contract DE-AC03-76SF00515. + Work supported by Dr. Chaim Weizmann Postdoctoral Fellowship. 1. Introduction .. - There is a widespread belief that the Lagrangian is the fundamental object for study in physics. The symmetries of nature are simply properties of the relevant Lagrangian. This philosophy is one of the remaining relics of classical physics where the Lagrangian is indeed fundamental. Recently, Witten has discovered a class of quantum field theories which have no classical analog!” These topo- logical quantum field theories (TQFT) are, as their name implies, characterized by a Hilbert space of topological invariants. As has been recently shown, they can be constructed by a BRST gauge fixing of a local symmetry. -
String Theory for Pedestrians
String Theory for Pedestrians – CERN, Jan 29-31, 2007 – B. Zwiebach, MIT This series of 3 lecture series will cover the following topics 1. Introduction. The classical theory of strings. Application: physics of cosmic strings. 2. Quantum string theory. Applications: i) Systematics of hadronic spectra ii) Quark-antiquark potential (lattice simulations) iii) AdS/CFT: the quark-gluon plasma. 3. String models of particle physics. The string theory landscape. Alternatives: Loop quantum gravity? Formulations of string theory. 1 Introduction For the last twenty years physicists have investigated String Theory rather vigorously. Despite much progress, the basic features of the theory remain a mystery. In the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics (QCD)– a theory of quarks and gluons – and despite their early promise, strings faded away. This time string theory is a credible candidate for a theory of all interactions – a unified theory of all forces and matter. Additionally, • Through the AdS/CFT correspondence, it is a valuable tool for the study of theories like QCD. • It has helped understand the origin of the Bekenstein-Hawking entropy of black holes. • Finally, it has inspired many of the scenarios for physics Beyond the Standard Model of Particle physics. 2 Greatest problem of twentieth century physics: the incompatibility of Einstein’s General Relativity and the principles of Quantum Mechanics. String theory appears to be the long-sought quantum mechanical theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. -
Donaldson Invariants and Moduli of Yang-Mills Instantons
Donaldson Invariants and Moduli of Yang-Mills Instantons Jacob Gross Lincoln College Oxford University (slides posted at users.ox.ac.uk/ linc4221) ∼ The ASD Equation in Low Dimensions, 17 November 2017 Jacob Gross Donaldson Invariants and Moduli of Yang-Mills Instantons Moduli and Invariants Invariants are gotten by cooking up a number (homology group, derived category, etc.) using auxiliary data (a metric, a polarisation, etc.) and showing independence of that initial choice. Donaldson and Seiberg-Witten invariants count in moduli spaces of solutions of a pde (shown to be independent of conformal class of the metric). Example (baby example) f :(M, g) R, the number of solutions of → gradgf = 0 is independent of g (Poincare-Hopf).´ Jacob Gross Donaldson Invariants and Moduli of Yang-Mills Instantons Recall (Setup) (X, g) smooth oriented Riemannian 4-manifold and a principal G-bundle π : P X over it. → Consider the Yang-Mills functional YM(A) = F 2dμ. | A| ZM The corresponding Euler-Lagrange equations are dA∗FA = 0. Using the gauge group one generates lots of solutions from one. But one can fix aG gauge dA∗a = 0 Jacob Gross Donaldson Invariants and Moduli of Yang-Mills Instantons Recall (ASD Equations) 2 2 2 In dimension 4, the Hodge star splits the 2-forms Λ = Λ+ Λ . This splits the curvature ⊕ − + FA = FA + FA−. Have + 2 2 + 2 2 κ(P) = F F − YM(A) = F + F − , k A k − k A k ≤ k A k k A k where κ(P) is a topological invariant (e.g. for SU(2)-bundles, 2 κ(P) = 8π c2(P)). -
Quantum Symmetries and Stringy Instantons
PUPT–1464 hep-th@xxx/9406091 Quantum Symmetries and Stringy Instantons ⋆ Jacques Distler and Shamit Kachru† Joseph Henry Laboratories Princeton University Princeton, NJ 08544 USA The quantum symmetry of many Landau-Ginzburg orbifolds appears to be broken by Yang-Mills instantons. However, isolated Yang-Mills instantons are not solutions of string theory: They must be accompanied by gauge anti-instantons, gravitational instantons, or topologically non-trivial configurations of the H field. We check that the configura- tions permitted in string theory do in fact preserve the quantum symmetry, as a result of non-trivial cancellations between symmetry breaking effects due to the various types arXiv:hep-th/9406091v1 14 Jun 1994 of instantons. These cancellations indicate new constraints on Landau-Ginzburg orbifold spectra and require that the dilaton modulus mix with the twisted moduli in some Landau- Ginzburg compactifications. We point out that one can find similar constraints at all fixed points of the modular group of the moduli space of vacua. June 1994 †Address after June 30: Department of Physics, Harvard University, Cambridge, MA 02138. ⋆ Email: [email protected], [email protected] . Research supported by NSF grant PHY90-21984, and the A. P. Sloan Foundation. 1. Introduction Landau-Ginzburg orbifolds [1,2] describe special submanifolds in the moduli spaces of Calabi-Yau models, at “very small radius.” New, stringy features of the physics are therefore often apparent in the Landau-Ginzburg theories. For example, these theories sometimes manifest enhanced gauge symmetries which do not occur in the field theory limit, where the large radius manifold description is valid.