Phenotypic Subgrouping and Multi-Omics Analyses Reveal

Total Page:16

File Type:pdf, Size:1020Kb

Phenotypic Subgrouping and Multi-Omics Analyses Reveal RESEARCH ARTICLE Phenotypic subgrouping and multi-omics analyses reveal reduced diazepam-binding inhibitor (DBI) protein levels in autism spectrum disorder with severe language impairment Chatravee Pichitpunpong1, Surangrat Thongkorn2, Songphon Kanlayaprasit2, a1111111111 Wasana Yuwattana3, Waluga Plaingam4, Siriporn Sangsuthum5, Wan Mohd Aizat6, Syarul 6 7 8 7 a1111111111 Nataqain Baharum , Tewin Tencomnao , Valerie Wailin Hu , Tewarit SarachanaID * a1111111111 a1111111111 1 M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand, 2 PhD Program in Clinical a1111111111 Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand, 3 B.Sc. Program in Medical Technology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand, 4 College of Oriental Medicine, Rangsit University, Pathum Thani, Thailand, 5 Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand, 6 Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia, 7 Age-related Inflammation and Degeneration Research OPEN ACCESS Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Citation: Pichitpunpong C, Thongkorn S, Thailand, 8 Department of Biochemistry and Molecular Medicine, George Washington University School of Kanlayaprasit S, Yuwattana W, Plaingam W, Medicine and Health Sciences, Washington, DC, United States of America Sangsuthum S, et al. (2019) Phenotypic [email protected] subgrouping and multi-omics analyses reveal * reduced diazepam-binding inhibitor (DBI) protein levels in autism spectrum disorder with severe language impairment. PLoS ONE 14(3): e0214198. Abstract https://doi.org/10.1371/journal.pone.0214198 Editor: Jon M. Jacobs, Pacific Northwest National Laboratory, UNITED STATES Background Received: April 17, 2018 The mechanisms underlying autism spectrum disorder (ASD) remain unclear, and clinical Accepted: March 8, 2019 biomarkers are not yet available for ASD. Differences in dysregulated proteins in ASD have Published: March 28, 2019 shown little reproducibility, which is partly due to ASD heterogeneity. Recent studies have demonstrated that subgrouping ASD cases based on clinical phenotypes is useful for identi- Copyright: © 2019 Pichitpunpong et al. This is an open access article distributed under the terms of fying candidate genes that are dysregulated in ASD subgroups. However, this strategy has the Creative Commons Attribution License, which not been employed in proteome profiling analyses to identify ASD biomarker proteins for permits unrestricted use, distribution, and specific subgroups. reproduction in any medium, provided the original author and source are credited. Methods Data Availability Statement: All transcriptome profile data are available in the NCBI GEO DataSets We therefore conducted a cluster analysis of the Autism Diagnostic Interview-Revised (ADI- database under GSE numbers GSE15402, R) scores from 85 individuals with ASD to predict subgroups and subsequently identified GSE18123, GSE25507, GSE42133, and GSE6575. dysregulated genes by reanalyzing the transcriptome profiles of individuals with ASD and All ADI-R scores and demographic information were obtained from previous research available in unaffected individuals. Proteome profiling of lymphoblastoid cell lines from these individuals NCBI PubMed article number PMID 19455643. was performed via 2D-gel electrophoresis, and then mass spectrometry. Disrupted proteins Funding: This research was supported by the were identified and compared to the dysregulated transcripts and reported dysregulated Ratchadaphiseksomphot Endowment Fund of proteins from previous proteome studies. Biological functions were predicted using the PLOS ONE | https://doi.org/10.1371/journal.pone.0214198 March 28, 2019 1 / 30 Phenotypic subgrouping and multi-omics analyses of ASD with severe language impairment Chulalongkorn University (CU59-004-HR) granted Ingenuity Pathway Analysis (IPA) program. Selected proteins were also analyzed by West- to TS. CP, ST, and SK are graduate students in the ern blotting. M.Sc. and Ph.D. Programs in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Results Chulalongkorn University. CP and ST were The cluster analysis of ADI-R data revealed four ASD subgroups, including ASD with severe financially supported by the 90th Anniversary Chulalongkorn University Fund language impairment, and transcriptome profiling identified dysregulated genes in each sub- (Ratchadaphiseksomphot Endowment Fund: CP group. Screening via proteome analysis revealed 82 altered proteins in the ASD subgroup GCUGR1125601057M 53-3; ST with severe language impairment. Eighteen of these proteins were further identified by GCUGR1125601056M 53-2) and received nano-LC-MS/MS. Among these proteins, fourteen were predicted by IPA to be associated additional financial support from a ªScholarship from the Graduate School Chulalongkorn with neurological functions and inflammation. Among these proteins, diazepam-binding University to commemorate the 72nd anniversary inhibitor (DBI) protein was confirmed by Western blot analysis to be expressed at signifi- of His Majesty King Bhumibala Aduladejaº. CP was cantly decreased levels in the ASD subgroup with severe language impairment, and the DBI also financially supported by the expression levels were correlated with the scores of several ADI-R items. Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (CU59-004-HR) as a research assistant. ST received ªThe Overseas Conclusions Research Experience Scholarship for Graduate By subgrouping individuals with ASD based on clinical phenotypes, and then performing an Studentsº from the Graduate School and Faculty of Allied Health Sciences, Chulalongkorn University, integrated transcriptome-proteome analysis, we identified DBI as a novel candidate protein and also received the Royal Golden Jubilee Ph.D. for ASD with severe language impairment. The mechanisms of this protein and its potential Programme Scholarship (Grant No. PHD/0029/ use as an ASD biomarker warrant further study. 2561) by Thailand Research Fund. SK was supported by The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship. VWH is supported by NIEHS grants R21 ES023061 and R21 ES028124. Competing interests: The authors declare that they Introduction have no competing interests. Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders thought to Abbreviations: 2D-PAGE, Two-Dimensional result from both genetic and environmental factors [1±4]. The Centers for Disease Control Polyacrylamide Gel Electrophoresis; ACBP, Acyl- and Prevention (CDC) has reported that the prevalence of ASD is approximately 1 in 59 CoA-Binding Protein; aCGH, Array Comparative children in the United States [5]. According to the Diagnostic and Statistical Manual of Genomic Hybridization; ACN, Acetonitrile; ADI-R, Mental DisordersÐFifth Edition (DSM-5), ASD is characterized by (i) impairments in Autism Diagnostic Interview, Revised; AGRE, Autism Genetic Resource Exchange; AHSG, Alpha- social interaction and communication and (ii) repetitive behaviors and restricted interests, 2-HS-glycoprotein; ANXA5, Annexin A5; ASD, without further subclassification into specific ASD subtypes [6]. However, there is a high Autism Spectrum Disorder; ApoA1, Apolipoprotein degree of variation in ASD symptoms and severity. Some individuals with ASD exhibit A1; ApoA4, Apolipoprotein A4; ATP, Adenosine severe language deficits, including a lack of verbal communication, whereas many others Triphosphate; BCKDH, Branched Chain 2-Oxoacid show little impairment in language and are capable of communication with others [7]. Such Dehydrogenase; BSA, Bovine Serum Albumin; BZD, Benzodiazepine; CALM1, Calmodulin-1; CCT5, heterogeneity in the autism spectrum is thought to result from the combination of multiple T-Complex Protein 1 Subunit Epsilon; CEP290, molecular mechanisms and environmental factors, leading to the pathobiology specific to Centrosomal Protein 290; CDC, Centers for Disease the clinical phenotypes of each ASD subpopulation. There is evidence that dividing individ- Control and Prevention; CHAPS, 3-[(3- uals with ASD into subgroups is meaningful for identifying gene/protein candidates and Cholamidopropyl)Dimethylammonio]-1- molecular mechanisms that are uniquely associated with each ASD subpopulation and Propanesulfonate; CLTA, Clathrin light chain A; shared among subpopulations, which may be useful for ASD diagnosis and/or treatment in CNS, Central Nervous System; CNV, Copy Number Variation; COX5A, Cytochrome c oxidase subunit the future [8±17]. However, clinical biomarkers are not available for ASD diagnosis or the 5A; DBI, Diazepam-Binding Inhibitor; DEGs, specific differentiation of severity. Accurate predictive clinical biomarkers for the diagnosis Differentially Expressed Genes; DLD, Dihydrolipoyl and confirmation of the disorder, as well as for ASD subtyping, are still needed. Dehydrogenase; DSM-5, The Diagnostic and Several studies involving transcriptome profiling analysis of lymphoblastoid cell lines Statistical Manual of Mental Disorders, Fifth (LCLs) derived from patients with ASD and unaffected controls
Recommended publications
  • Mouse Mxra8 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Mxra8 Knockout Project (CRISPR/Cas9) Objective: To create a Mxra8 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Mxra8 gene (NCBI Reference Sequence: NM_024263 ; Ensembl: ENSMUSG00000029070 ) is located on Mouse chromosome 4. 10 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 10 (Transcript: ENSMUST00000030947). Exon 1~10 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Phenotypic analysis of mice homozygous for a gene trap allele indicates this mutation has no notable phenotype in any parameter tested in a high-throughput screen. Exon 1 starts from about 0.08% of the coding region. Exon 1~10 covers 100.0% of the coding region. The size of effective KO region: ~3486 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 10 Legends Exon of mouse Mxra8 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis.
    [Show full text]
  • Transcriptional Regulation Differs in Affected Facioscapulohumeral Muscular Dystrophy Patients Compared to Asymptomatic Related Carriers
    University of Massachusetts Medical School eScholarship@UMMS Wellstone Center for FSHD Publications Wellstone Center for FSHD 2009-04-14 Transcriptional regulation differs in affected facioscapulohumeral muscular dystrophy patients compared to asymptomatic related carriers Patricia Arashiro University of Sao Paulo Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/wellstone_pubs Part of the Cell Biology Commons, Developmental Biology Commons, Molecular Biology Commons, Molecular Genetics Commons, Musculoskeletal Diseases Commons, and the Nervous System Diseases Commons Repository Citation Arashiro P, Eisenberg I, Kho AT, Cerqueira AM, Canovas M, Silva HC, Pavanello RC, Verjovski-Almeida S, Kunkel LM, Zatz M. (2009). Transcriptional regulation differs in affected facioscapulohumeral muscular dystrophy patients compared to asymptomatic related carriers. Wellstone Center for FSHD Publications. https://doi.org/10.1073/pnas.0901573106. Retrieved from https://escholarship.umassmed.edu/ wellstone_pubs/18 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Wellstone Center for FSHD Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Transcriptional regulation differs in affected facioscapulohumeral muscular dystrophy patients compared to asymptomatic related carriers Patricia Arashiroa, Iris Eisenbergb, Alvin T. Khoc, Antonia M. P. Cerqueiraa, Marta
    [Show full text]
  • Identification of Novel Nasopharyngeal Carcinoma
    Imaging, Diagnosis, Prognosis Identification of Novel Nasopharyngeal Carcinoma Biomarkers by Laser Capture Microdissection and Proteomic Analysis Ai-Lan Cheng,1, 3 Wei-Guo Huang,1, 3 Zhu-Chu Chen,1, 2 Fang Peng,1Peng-Fei Zhang,1Mao-Yu Li,1 Feng Li,1, 2 Jian-Ling Li,1Cui Li,1Hong Yi,1Bin Yi,1and Zhi-Qiang Xiao1 Abstract Purpose: To identify novel nasopharyngeal carcinoma (NPC) biomarkers by laser capture microdissection and a proteomic approach. Experimental Design: Proteins from pooled microdissected NPC and normal nasopharyngeal epithelial tissues (NNET) were separated by two-dimensional gel electrophoresis, and differential proteins were identified by mass spectrometry. Expression of three differential proteins (stathmin, 14 -3 -3j, and annexin I) in the above two tissues as well as four NPC cell lines was determined by Western blotting. Immunohistochemistry was also done to detect the expression ofthree differential proteins in 98 cases of primary NPC, 30 cases of NNET, and 20 cases of cervical lymph node metastases, and the correlation oftheir expression levels with clinicopathologic features and clinical outcomes were evaluated. Results: Thirty-six differential proteins between the NPC and NNET were identified. The expression levels ofstathmin, 14-3-3 j, and annexin I in the two types oftissues were confirmed and related to differentiation degree and/or metastatic potential of the NPC cell lines. Significant stathmin up-regulation and down-regulation of14-3-3 j and annexin I were observed in NPC versus NNET, and significant down-regulation of 14-3-3j and annexin I was also observed in lymph node metastasis versus primary NPC. In addition, stathmin up-regulation and down- regulation of14-3-3 j and annexin I were significantly correlated with poor histologic differentiation, advanced clinical stage, and recurrence, whereas down-regulation of 14-3-3j and annexin I was also significantly correlated with lymph node and distant metastasis.
    [Show full text]
  • A Recombinant Virus and Reporter Mouse System to Study Chronic Chikungunya Virus Pathogenesis Alissa Roxanne Young Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Winter 12-15-2018 A Recombinant Virus and Reporter Mouse System to Study Chronic Chikungunya Virus Pathogenesis Alissa Roxanne Young Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, Medical Immunology Commons, and the Virology Commons Recommended Citation Young, Alissa Roxanne, "A Recombinant Virus and Reporter Mouse System to Study Chronic Chikungunya Virus Pathogenesis" (2018). Arts & Sciences Electronic Theses and Dissertations. 1705. https://openscholarship.wustl.edu/art_sci_etds/1705 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Molecular Microbiology and Microbial PatHogenesis Dissertation Examination Committee: DeboraH J. Lenschow, Chair Adrianus C. M. Boon Michael S. Diamond Robyn S. Klein THaddeus S. StaPPenbeck David Wang A Recombinant Virus and RePorter Mouse System to Study CHronic CHikungunya Virus PatHogenesis by Alissa Roxanne Young A dissertation
    [Show full text]
  • Localization of the Genes for Histatins to Human Chromosome 4Q13 and Tissue Distribution of the Mrnas Johanna C
    Am. J. Hum. Genet. 45:381-387, 1989 Localization of the Genes for Histatins to Human Chromosome 4q13 and Tissue Distribution of the mRNAs Johanna C. vanderSpek, * Herman E. Wyandt,t James C. Skare, * T Aubrey Milunsky,t Frank G. Oppenheim,*qt and Robert F. Troxler*it *Department of Biochemistry and MCenter for Human Genetics, Boston University School of Medicine; and $Department of Oral Biology, Goldman School of Graduate Dentistry, Boston Summary A cDNA coding for histatin 1 was isolated from a human submandibular-gland library and sequenced. This cDNA was used to probe RNAs isolated from a variety of tissues to investigate tissue-specific regula- tion and to determine whether histatins might play a role other than in the oral cavity. The same probe was also used for Southern blot analysis of human genomic DNA restricted with various enzymes, and it showed that the genes coding for histatins are on the same chromosome. In situ hybridization of the cDNA probe to metaphase chromosome spreads was performed to determine chromosomal location of the genes for histatins. A genomic fragment isolated using the cDNA probe was also hybridized to chromo- some spreads, and the same chromosome was identified. The genes for histatins are located on chromo- some 4, band q13. We have shown that three histatin mRNAs are expressed in human parotid and sub- mandibular glands but in none of the other tissues studied. These results suggest that histatins are specific to salivary secretions. Introduction Dickinson et al. (1987). Histatins 1, 3, and 5 have been The parotid and submandibular glands of humans se- tested for candidicidal activity, and all have been shown crete a family of small, mostly cationic, histidine-rich to kill Candida albicans blastopores in a dose-dependent proteins termed histatins.
    [Show full text]
  • Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva
    UCSF UC San Francisco Previously Published Works Title Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva. Permalink https://escholarship.org/uc/item/95h5g8mq Journal Cell reports, 33(7) ISSN 2211-1247 Authors Saitou, Marie Gaylord, Eliza A Xu, Erica et al. Publication Date 2020-11-01 DOI 10.1016/j.celrep.2020.108402 Peer reviewed eScholarship.org Powered by the California Digital Library University of California HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Cell Rep Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 November 30. Published in final edited form as: Cell Rep. 2020 November 17; 33(7): 108402. doi:10.1016/j.celrep.2020.108402. Functional Specialization of Human Salivary Glands and Origins of Proteins Intrinsic to Human Saliva Marie Saitou1,2,3, Eliza A. Gaylord4, Erica Xu1,7, Alison J. May4, Lubov Neznanova5, Sara Nathan4, Anissa Grawe4, Jolie Chang6, William Ryan6, Stefan Ruhl5,*, Sarah M. Knox4,*, Omer Gokcumen1,8,* 1Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A 2Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, U.S.A 3Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Viken, Norway 4Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, U.S.A 5Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, U.S.A 6Department of Otolaryngology, School of Medicine, University of California, San Francisco, CA, U.S.A 7Present address: Weill-Cornell Medical College, Physiology and Biophysics Department 8Lead Contact SUMMARY Salivary proteins are essential for maintaining health in the oral cavity and proximal digestive tract, and they serve as potential diagnostic markers for monitoring human health and disease.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Complete Transcriptome Profiling of Normal and Age-Related Macular
    www.nature.com/scientificreports OPEN Complete Transcriptome Profling of Normal and Age-Related Macular Degeneration Eye Tissues Reveals Received: 16 June 2017 Accepted: 30 January 2018 Dysregulation of Anti-Sense Published: xx xx xxxx Transcription Eun Ji Kim1, Gregory R. Grant1,2, Anita S. Bowman3,4, Naqi Haider3,4, Harini V. Gudiseva3 & Venkata Ramana Murthy Chavali3,4 Age-related macular degeneration (AMD) predominantly afects the retina and retinal pigment epithelium in the posterior eye. While there are numerous studies investigating the non-coding transcriptome of retina and RPE, few signifcant diferences between AMD and normal tissues have been reported. Strand specifc RNA sequencing of both peripheral retina (PR) and RPE-Choroid-Sclera (PRCS), in both AMD and matched normal controls were generated. The transcriptome analysis reveals a highly signifcant and consistent impact on anti-sense transcription as well as moderate changes in the regulation of non-coding (sense) RNA. Hundreds of genes that do not express anti-sense transcripts in normal PR and PRCS demonstrate signifcant anti-sense expression in AMD in all patient samples. Several pathways are highly enriched in the upregulated anti-sense transcripts—in particular the EIF2 signaling pathway. These results call for a deeper exploration into anti-sense and noncoding RNA regulation in AMD and their potential as therapeutic targets. Age-related macular degeneration (AMD) is the third largest cause of vision loss worldwide1. It is a progressive retinal disorder that involves loss of central vision, hypo- and hyper-pigmentation of the RPE, deposition of drusen in the Bruch’s membrane, and loss of photoreceptors, especially in the 8th or 9th decade2–4.
    [Show full text]
  • Downloaded from the Tranche Distributed File System (Tranche.Proteomecommons.Org) and Ftp://Ftp.Thegpm.Org/Data/Msms
    Research Article Title: The shrinking human protein coding complement: are there now fewer than 20,000 genes? Authors: Iakes Ezkurdia1*, David Juan2*, Jose Manuel Rodriguez3, Adam Frankish4, Mark Diekhans5, Jennifer Harrow4, Jesus Vazquez 6, Alfonso Valencia2,3, Michael L. Tress2,*. Affiliations: 1. Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Melchor Fernández Almagro, 3, rid, 28029, MadSpain 2. Structural Biology and Bioinformatics Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain 3. National Bioinformatics Institute (INB), Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029, Madrid, Spain 4. Wellcome Trust Sanger Institute, Wellcome Trust Campus, Hinxton, Cambridge CB10 1SA, UK 5. Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), 1156 High Street, Santa Cruz, CA 95064, USA 6. Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Melchor Fernández Almagro, 3, 28029, Madrid, Spain *: these two authors wish to be considered as joint first authors of the paper. Corresponding author: Michael Tress, [email protected], Tel: +34 91 732 80 00 Fax: +34 91 224 69 76 Running title: Are there fewer than 20,000 protein-coding genes? Keywords: Protein coding genes, proteomics, evolution, genome annotation Abstract Determining the full complement of protein-coding genes is a key goal of genome annotation. The most powerful approach for confirming protein coding potential is the detection of cellular protein expression through peptide mass spectrometry experiments. Here we map the peptides detected in 7 large-scale proteomics studies to almost 60% of the protein coding genes in the GENCODE annotation the human genome.
    [Show full text]
  • The Tissue-Specific Transcriptomic Landscape of the Mid-Gestational Mouse Embryo Martin Werber1, Lars Wittler1, Bernd Timmermann2, Phillip Grote1,* and Bernhard G
    © 2014. Published by The Company of Biologists Ltd | Development (2014) 141, 2325-2330 doi:10.1242/dev.105858 RESEARCH REPORT TECHNIQUES AND RESOURCES The tissue-specific transcriptomic landscape of the mid-gestational mouse embryo Martin Werber1, Lars Wittler1, Bernd Timmermann2, Phillip Grote1,* and Bernhard G. Herrmann1,3,* ABSTRACT mainly protein-coding genes. However, none of these datasets has Differential gene expression is a prerequisite for the formation of multiple provided an accurate representation of the transcriptome of the mouse cell types from the fertilized egg during embryogenesis. Understanding embryo. In particular, earlier studies using expression profiling did not the gene regulatory networks controlling cellular differentiation requires cover the complete set of protein coding genes or alternative transcripts the identification of crucial differentially expressed control genes and, or noncoding RNA genes. The latter have come into focus in recent ideally, the determination of the complete transcriptomes of each years, as noncoding genes are assumed to play important roles in gene individual cell type. Here, we have analyzed the transcriptomes of six regulation (for reviews, see Pauli et al., 2011; Rinn and Chang, 2012). major tissues dissected from mid-gestational (TS12) mouse embryos. Among the highly diverse class of noncoding genes, long Approximately one billion reads derived by RNA-seq analysis provided noncoding RNAs (lncRNAs) are thought to influence transcription extended transcript lengths, novel first exons and alternative transcripts by a wide range of mechanisms. For example, lncRNAs can interact of known genes. We have identified 1375 genes showing tissue-specific with chromatin-modifying protein complexes involved in gene expression, providing gene signatures for each of the six tissues.
    [Show full text]
  • The Changing Chromatome As a Driver of Disease: a Panoramic View from Different Methodologies
    The changing chromatome as a driver of disease: A panoramic view from different methodologies Isabel Espejo1, Luciano Di Croce,1,2,3 and Sergi Aranda1 1. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain 3. ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain *Corresponding authors: Luciano Di Croce ([email protected]) Sergi Aranda ([email protected]) 1 GRAPHICAL ABSTRACT Chromatin-bound proteins regulate gene expression, replicate and repair DNA, and transmit epigenetic information. Several human diseases are highly influenced by alterations in the chromatin- bound proteome. Thus, biochemical approaches for the systematic characterization of the chromatome could contribute to identifying new regulators of cellular functionality, including those that are relevant to human disorders. 2 SUMMARY Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could thus reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]