AA53CH15-Heyer ARI 27 July 2015 8:17 Molecular Clouds in the Milky Way Mark Heyer1 and T.M. Dame2 1Department of Astronomy, University of Massachusetts, Amherst, Massachusetts 01003; email:
[email protected] 2Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138; email:
[email protected] Annu. Rev. Astron. Astrophys. 2015. 53:583–629 Keywords The Annual Review of Astronomy and Astrophysics is Galaxy: disk, structure; ISM: clouds, kinematics and dynamics, molecules; online at astro.annualreviews.org radio lines: ISM This article’s doi: 10.1146/annurev-astro-082214-122324 Abstract Copyright c 2015 by Annual Reviews. In the past twenty years, the reconnaissance of 12CO and 13CO emission All rights reserved in the Milky Way by single-dish millimeter-wave telescopes has expanded our view and understanding of interstellar molecular gas. We enumerate the major surveys of CO emission along the Galactic plane and summarize the various approaches that leverage these data to determine the large-scale distribution of molecular gas: its radial and vertical distributions, its concen- tration into clouds, and its relationship to spiral structure. The integrated Annu. Rev. Astron. Astrophys. 2015.53:583-629. Downloaded from www.annualreviews.org properties of molecular clouds are compiled from catalogs derived from the CO surveys using uniform assumptions regarding the Galactic rotation Access provided by State University of New York - Stony Brook on 08/28/17. For personal use only. curve, solar radius, and the CO-to-H2 conversion factor. We discuss the ra- dial variations of cloud surface brightness, the distributions of cloud mass and size, and scaling relations between velocity dispersion, cloud size, and surface density that affirm that the larger clouds are gravitationally bound.