Hemothorax Riyad Karmy-Jones*, Cassandra Sappington and Nichole Wheeler

Total Page:16

File Type:pdf, Size:1020Kb

Hemothorax Riyad Karmy-Jones*, Cassandra Sappington and Nichole Wheeler 268 Current Respiratory Medicine Reviews, 2012, 8, 268-273 Hemothorax Riyad Karmy-Jones*, Cassandra Sappington and Nichole Wheeler Peace Health SouthWest Washington Medical Center, Vancouver, WA 98664, USA Abstract: Hemothorax is most commonly seen following trauma or iatrogenic injury, but can be related to underlying medical issues. The primary issue to be determine dis whether or not the patient is stable and/or has ongoing hemorrhage. Simple tube thoracostomy usually suffices to manage the problem, but specific subsets of patients are at increased risk of complications, notably empyema. The role, type and timing of surgical intervention depends upon patient stability, underlying etiology and co-existing medical variables. Keywords: Empyema, hemothorax, thoracotomy, VATS. INTRODUCTION regardless of the etiology, will be best served by operative intervention. Hemothorax has been defined as a pleural fluid collection with a hematocrit at least 50% of the peripheral blood [1]. The acute complications can involve cardiac decompensation INITIAL MANAGEMENT AND DIAGNOSIS as a consequence of hypovolemia and/or cardiac tamponade. In most cases, hemothorax is self-evident and plain chest Respiratory failure can result from the former as well as lung radiography is sufficient. However, particularly in non- collapse. The primary sub-acute and chronic complication is trauma cases, it may not be immediately apparent clinically. the risk of empyema. The majority of experience with Suspicion may be roused by signs of hypovolemia, chest hemothorax comes from the trauma population, although pain and/or shortness of breath. It may present in a delayed there are a number of non-traumatic etiologies as well (Table 1). fashion (e.g. after treatment for pulmonary embolism) and Table 1. A Short List of Etiology of Hemothorax determining to what extent a “small” or “moderate” hemothorax is contributing to the clinical picture may be difficult. In medical patients, pleural aspiration is often Traumatic performed initially to confirm the diagnosis [1]. CT scan can Iatrogenic show a pleural effusion with “typical” density of 50-100 Hounsfield units. In addition, a source of bleeding may be - Central line insertion seen (“blush” or “active extravasation”) if intra-venous - Pulmonary catheter contrast is administered. - Lung biopsy - Chest wall biopsy The initial management in all but those patients with small hemothoraces who are completely stable is tube - Sclerotherapy of varices drainage. While percutaneous catheters can be used, in - Post-operative general they are too small to be effective and drains of 28 Fr. - Complication of anticoagulation (particularly for PE) or greater are required to have a reasonable chance to - Aspiration of pleural fluid evacuate the blood. Based on the trauma literature, antibiotic “Spontaneous” prophylaxis should be given. Ideally these should cover - Pneumothorax gram-positive organisms, and first generation cephalosporins - Chest wall tumors should be used. It appears that in the trauma population 24- - Pleural metastases hours of coverage is appropriate, with no clear data regarding more prolonged coverage except in specific - Endometriosis situations [2]. These guidelines seem to fit the non-trauma - Rupture of internal mammary or intercostal arteries population as well [1]. - Thoracic aneurysm/dissection - Rupture of pulmonary artery malformations The next decision is to determine whether or not the patient requires an immediate operation. This will be determined by the patient’s stability. In the presence of The primary question in the setting of hemothorax is not hemodynamic compromise, usually immediate surgery is the underlying etiology, but whether or not the patient is required. Simultaneous transfusion, correction of coagulation stable. In unstable patients, the vast majority of patients, parameters (if possible) and respiratory support may be necessary. Large bore access should be employed for aggressive volume resuscitation. In the civilian sector there *Address correspondence to this author at the Peace Health SouthWest has been growing consensus that blood product rather than Washington Medical Center, 505 87th Ave Suite 301 Bldg B, Vancouver, crystalloid resuscitation, combined with short-term WA 98664, USA; Tel: 360-514-1854; E-mail: [email protected] “hypotensive” resuscitation (goal of systolic blood pressure 90 mmHg) may be associated with improved outcomes. This 1875-6387/12 $58.00+.00 © 2012 Bentham Science Publishers Hemothorax Current Respiratory Medicine Reviews, 2012, Vol. 8, No. 4 269 concept is based on the premise that large volumes of contamination) and as blood is a potent bacterial growth crystalloid will simply drive up blood pressure transiently, medium as well as being rich in fibrin there is early and thereby re-starting bleeding, as well as further dilute critical vigorous colonization and loculation formation [17]. components required for the clotting cascade [3, 4]. The Thus, even in the absence of signs of infection, retained most recent and ongoing military experience supports this hemothorax can be an indication for intervention. concept [5]. That being said, in the civilian setting, this Documenting the true volume of hemothorax as well as requires that definitive control be obtained within 1-2 hours extent of loculations can be difficult. Plain radiography often at most, and as a practical matter the very unstable patient is underestimates the volume and nature of the fluid collection going to the operating theater within minutes. With that in [18]. Ultra-sound and CT scan have been shown to be able to mind, it is better to follow one’s own instinct and prepare for identify occult or larger than expected collections of pleural any type and volume of fluid that is required and that the fluid (Figs. 1 & 2) [10, 18, 19]. However, because CT scan treating surgeon feels is appropriate. in particular is so sensitive, it is not clear what volume of Patients who are not unstable, or who respond to retained hemothorax (in absence of other indications for resuscitation and maintain stability, usually afford some time intervention) would be a clear cut indication for further to determine the underlying etiology which may offer interventions. An American Association for the Surgery of alternatives to thoracotomy. However, unless the patient is Trauma multi-center trial is currently addressing this issue completely stable, constant vigilance is required. but at the current time the decision remains individualized. INTERVENTION BASED ON VOLUME OF OUTPUT In the absence of hemodynamic instability, or a specific diagnosis that requires intervention, the volume of ongoing chest tube output has been used to determine if an intervention (usually operative) is required. Relatively recently, an initial output of 1500 ml or ongoing output of 250 ml/hr for 3 consecutive hours has been the standard [6]. In practice, the concept of observing chest tube output can be problematical. Tubes can vary in volume or become plugged, and it is not always certain that close monitoring is possible. The authors who originated the “1500 ml limit” actually noted that the absolute value over a short period (usually less than 24 hours) was an acceptable and relevant marker for the need of intervention [7, 8]. The use of the “1500 ml in 24- hour limit” in trauma patients was re-validated by a multi- center study that demonstrated a 3.2-fold increase in mortality if thoracotomy was performed after a total of 1500 cc blood loss in a 24-hour period [9]. How this applies to the non-trauma/non-iatrogenic setting is not clear. Given that patients with a high volume of output are at risk for worsening coagulopathy, perturbations in fluid and electrolyte balance and multiple organ stress, it would seem that this is an appropriate indicator for more aggressive intervention in this population as well [10]. The exception to the 1500 ml rule would the patient who presents in a delayed fashion. It is not uncommon for patients to have 2-3 liters of blood and/or reactive fluid days after an inciting event. In the absence of hemodynamic Fig. (1). Patient who presented with pneumothorax and rib fracture changes, simple tube drainage is sufficient. with clear chest radiograph after tube placement. The next day he was slightly febrile and tachycardic. RETAINED HEMOTHORAX Not all hemothoraces need to be drained. Hemodynami- Chest tubes fail to completely evacuate hemothorax in at cally stable patients with small effusions or those that appear least 5-10% of cases [11-13]. The primary complication of a in a delayed fashion may be observed. Our criteria includes partially drained hemothorax is empyema, which can occur the following: No sign of infection; patient able to in as many as 30% of patients, particularly after trauma [12, participate in pulmonary toilet; the effusion has not had a 14]. Trapped lung or fibrothorax has also been discussed as a tube placed. Many of these will increase in volume initially long term complication, but the current consensus is that this (secondary to inflammatory changes) but in the majority of really reflects occult empyema or other pleural inflammatory cases will resolve spontaneously without the need for processes that exacerbate pleural scarring [15, 16]. Empyema intervention (Figs. 3 & 4). Bilello et al. suggested that hemo- following hemothorax differs from the more common para- thoraces following trauma that are < 1.5 cm in depth can be pneumonic empyema in that there tends to
Recommended publications
  • Right Heart Pressures in Bronchial Asthma
    Thorax: first published as 10.1136/thx.26.1.39 on 1 January 1971. Downloaded from Thorax (1971), 26, 39. Right heart pressures in bronchial asthma R. F. GUNSTONE St. George's Hospital, London S.W.1 Right heart pressures, electrocardiograms, blood gases, and peak expiratory flow rates were measured in nine patients admitted to hospital with severe bronchial asthma. Low or normal right heart pressures were found despite electrocardiographic changes in five patients consisting of right atrial P waves, abnormal right axis deviation, and in one patient T-wave changes in pre- cordial leads. These electrocardiographic changes reverted towards normal on recovery of the patient from the asthmatic attack. Electrocardiographic changes suggestive of right The procedure was carried out in the general ward heart embarrassment have been noted in acute with the patient in the sitting position supported at 60 bronchial asthma, particularly right atrial P waves to 90 degrees to the horizontal because orthopnoea (P and abnormal right axis deviation was always present. Immediately after catheterization pulmonale) the peak expiratory flow rate was measured with a (Harkavy and Romanoff, 1942; Miyamato, Wright peak flow meter (Wright and McKerrow, Bastaroli, and Hoffman, 1961; Ambiavagar, 1959) and blood (capillary or arterial) was taken for Jones and Roberts, 1967). These observations measurement of pH, Pco2, and standard bicarbonate raise the possibility that death in bronchial asthma by the Astrup method (Astrup, J0rgensen, Andersen, may be due to acute cor pulmonale although and Engel, 1960). The peak flow rate and electro- copyright. necropsy evidence is against this suggestion (Earle, cardiogram were repeated after recovery.
    [Show full text]
  • Severe Asthma Is Associated with a Remodeling of the Pulmonary Arteries in Horses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042903; this version posted April 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Severe asthma is associated with a remodeling of the pulmonary arteries in horses Remodeling of pulmonary arteries in severe equine asthma Serena Ceriotti1,2, Michela Bullone1, Mathilde Leclere1, Francesco Ferrucci2, Jean-Pierre Lavoie1* 1 Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint- Hyacinthe, Quebec, Canada 2 Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy Dr. Ceriotti current address is Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA Dr. Bullone current address is Department of Veterinary Science, Università degli Studi di Torino, Grugliasco, Italy *Corresponding author: [email protected] Serena Ceriotti and Jean-Pierre Lavoie conceived and designed the work. Serena Ceriotti, Michela Bullone and Mathilde Leclere acquired clinical data, collected, processed and prepared histological and immunostained samples. Serena Ceriotti performed histomorphometric studies and statistical analysis. Serena Ceriotti, Jean-Pierre Lavoie and Francesco Ferrucci prepared and edited the manuscript prior to submission. Michela Bullone and Mathilde Leclere edited the manuscript prior to submission. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042903; this version posted April 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis: Diagnostic and Treatment Challenges
    y & Re ar sp Leonardi et al., J Pulm Respir Med 2016, 6:4 on ir m a l to u r P y DOI: 10.4172/2161-105X.1000361 f M o e Journal of l d a i n c r i n u e o J ISSN: 2161-105X Pulmonary & Respiratory Medicine Review Article Open Access Allergic Bronchopulmonary Aspergillosis: Diagnostic and Treatment Challenges Lucia Leonardi*, Bianca Laura Cinicola, Rossella Laitano and Marzia Duse Department of Pediatrics and Child Neuropsychiatry, Division of Allergy and Clinical Immunology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy Abstract Allergic bronchopulmonary aspergillosis (ABPA) is a pulmonary disorder, occurring mostly in asthmatic and cystic fibrosis patients, caused by an abnormal T-helper 2 lymphocyte response of the host to Aspergillus fumigatus antigens. ABPA diagnosis is defined by clinical, laboratory and radiological criteria including active asthma, immediate skin reactivity to A. fumigatus antigens, total serum IgE levels>1000 IU/mL, fleeting pulmonary parenchymal opacities and central bronchiectases that represent an irreversible complication of ABPA. Despite advances in our understanding of the role of the allergic response in the pathophysiology of ABPA, pathogenesis of the disease is still not completely clear. In addition, the absence of consensus regarding its prevalence, diagnostic criteria and staging limits the possibility of diagnosing the disease at early stages. This may delay the administration of a therapy that can potentially prevent permanent lung damage. Long-term management is still poorly studied. Present primary therapies, based on clinical experience, are not yet standardized. These consist in oral corticosteroids, which control acute symptoms by mitigating the allergic inflammatory response, azoles and, more recently, anti-IgE antibodies.
    [Show full text]
  • Pulmonary Hypertension ______
    Pulmonary Hypertension _________________________________________ What is it? High blood pressure in the arteries that supply the lungs is called pulmonary hypertension (PH) or pulmonary arterial hypertension (PAH). The blood pressure measured by a cuff on your arm isn’t directly related to the pressure in your lungs. The blood vessels that supply the lungs constrict and their walls thicken, so they can’t carry as much blood. As in a kinked garden hose, pressure builds up and backs up. The heart works harder, trying to force the blood through. If the pressure is high enough, eventually the heart can’t keep up, and less blood can circulate through the lungs to pick up oxygen. Patients then become tired, dizzy and short of breath. If a pre-existing disease triggered the PH, doctors call it secondary pulmonary hypertension. That’s because it’s secondary to another problem, such as a left heart or lung disorder. However, congenital heart disease can cause PH that’s similar to PH when the cause isn’t known, i.e., idiopathic or unexplained pulmonary arterial hypertension. In this case, the PAH is considered pulmonary arterial hypertension associated with congenital heart disease, such as associated with a VSD or ASD (either repaired or unrepaired). The problem is due to scarring in the small arteries in the lung. It’s important to repair congenital heart problems (when possible) before permanent pulmonary hypertensive changes develop. Intracardiac left-to-right shunts (such as a ventricular or atrial septal defect, a hole in the wall between the two ventricles or atria) can cause too much blood flow through the lungs.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis
    Allergic Bronchopulmonary Aspergillosis Karen Patterson1 and Mary E. Strek1 1Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois Allergic bronchopulmonary aspergillosis (ABPA) is a complex clinical type of pulmonary disease that may develop in response to entity that results from an allergic immune response to Aspergillus aspergillus exposure (6) (Table 1). ABPA, one of the many fumigatus, most often occurring in a patient with asthma or cystic forms of aspergillus disease, results from a hyperreactive im- fibrosis. Sensitization to aspergillus in the allergic host leads to mune response to A. fumigatus without tissue invasion. activation of T helper 2 lymphocytes, which play a key role in ABPA occurs almost exclusively in patients with asthma or recruiting eosinophils and other inflammatory mediators. ABPA is CF who have concomitant atopy. The precise incidence of defined by a constellation of clinical, laboratory, and radiographic ABPA in patients with asthma and CF is not known but it is criteria that include active asthma, serum eosinophilia, an elevated not high. Approximately 2% of patients with asthma and 1 to total IgE level, fleeting pulmonary parenchymal opacities, bronchi- 15% of patients with CF develop ABPA (2, 4). Although the ectasis, and evidence for sensitization to Aspergillus fumigatus by incidence of ABPA has been shown to increase in some areas of skin testing. Specific diagnostic criteria exist and have evolved over the world during months when total mold counts are high, the past several decades. Staging can be helpful to distinguish active disease from remission or end-stage bronchiectasis with ABPA occurs year round, and the incidence has not been progressive destruction of lung parenchyma and loss of lung definitively shown to correlate with total ambient aspergillus function.
    [Show full text]
  • Cryptogenic Organizing Pneumonia
    462 Cryptogenic Organizing Pneumonia Vincent Cottin, M.D., Ph.D. 1 Jean-François Cordier, M.D. 1 1 Hospices Civils de Lyon, Louis Pradel Hospital, National Reference Address for correspondence and reprint requests Vincent Cottin, Centre for Rare Pulmonary Diseases, Competence Centre for M.D., Ph.D., Hôpital Louis Pradel, 28 avenue Doyen Lépine, F-69677 Pulmonary Hypertension, Department of Respiratory Medicine, Lyon Cedex, France (e-mail: [email protected]). University Claude Bernard Lyon I, University of Lyon, Lyon, France Semin Respir Crit Care Med 2012;33:462–475. Abstract Organizing pneumonia (OP) is a pathological pattern defined by the characteristic presence of buds of granulation tissue within the lumen of distal pulmonary airspaces consisting of fibroblasts and myofibroblasts intermixed with loose connective matrix. This pattern is the hallmark of a clinical pathological entity, namely cryptogenic organizing pneumonia (COP) when no cause or etiologic context is found. The process of intraalveolar organization results from a sequence of alveolar injury, alveolar deposition of fibrin, and colonization of fibrin with proliferating fibroblasts. A tremen- dous challenge for research is represented by the analysis of features that differentiate the reversible process of OP from that of fibroblastic foci driving irreversible fibrosis in usual interstitial pneumonia because they may determine the different outcomes of COP and idiopathic pulmonary fibrosis (IPF), respectively. Three main imaging patterns of COP have been described: (1) multiple patchy alveolar opacities (typical pattern), (2) solitary focal nodule or mass (focal pattern), and (3) diffuse infiltrative opacities, although several other uncommon patterns have been reported, especially the reversed halo sign (atoll sign).
    [Show full text]
  • PULMONARY HYPERTENSION in SCLERODERMA PULMONARY HYPERTENSION Pulmonary Hypertension (PH) Is High Blood Pressure in the Blood Vessels of the Lungs
    PULMONARY HYPERTENSION IN SCLERODERMA PULMONARY HYPERTENSION Pulmonary hypertension (PH) is high blood pressure in the blood vessels of the lungs. If the high blood pressure in the lungs is due to narrowing of the pulmonary arteries leading to increased pulmonary vascular resistance, it is known as pulmonary arterial hypertension (PAH). When the blood pressure inside the pulmonary vessels is high, the right side of the heart has to pump harder to move blood into the lungs to pick up oxygen. This can lead to failure of the right side of the heart. Patients with scleroderma are at increased risk for developing PH from several mechanisms. Frequently patients with scleroderma have multiple causes of their PH. Patients who have limited cutaneous scleroderma (formerly known as CREST syndrome) are more likely to have PAH than those patients who have diffuse cutaneous systemic sclerosis. PAH may be the result of the same processes that cause damage to small blood vessels in the systemic circulation of patients with scleroderma. The lining cells of the blood vessels (endothelial cells) are injured and excessive connective tissue is laid down inside the blood vessel walls. The muscle that constricts the blood vessel may overgrow and narrow the blood vessel. Other scleroderma patients may have PH because they have significant scarring (fibrosis) of their lungs. This reduces the blood oxygen level, which in turn, may cause a reflex increase in blood pressure in the pulmonary arteries. WHAT ARE THE SYMPTOMS OF PULMONARY HYPERTENSION? Patients with mild PH may have no symptoms. Patients with moderate or severe PH usually notice shortness of breath (dyspnea), especially with exercise.
    [Show full text]
  • Pulmonary Arteriole Gene Expression Signature in Idiopathic Pulmonary Fibrosis
    Eur Respir J 2013; 41: 1324–1330 DOI: 10.1183/09031936.0084112 CopyrightßERS 2013 Pulmonary arteriole gene expression signature in idiopathic pulmonary fibrosis Nina M. Patel*,#, Steven M. Kawut", Sanja Jelic*, Selim M. Arcasoy*,#,+, David J. Lederer*,#,+ and Alain C. Borczuk1 ABSTRACT: A third of patients with idiopathic pulmonary fibrosis (IPF) develop pulmonary AFFILIATIONS hypertension (PH-IPF), which is associated with increased mortality. Whether an altered gene *Division of Pulmonary, Allergy and Critical Care Medicine, Columbia expression profile in the pulmonary vasculature precedes the clinical onset of PH-IPF is unknown. University, New York, NY, We compared gene expression in the pulmonary vasculature of IPF patients with and without PH #Interstitial Lung Disease Program, with controls. New York Presbyterian Hospital, New Pulmonary arterioles were isolated using laser capture microdissection from 16 IPF patients: York, NY, "Dept of Medicine and the Center for eight with PH (PH-IPF) and eight with no PH (NPH-IPF), and seven controls. Probe was prepared Clinical Epidemiology and from extracted RNA, and hybridised to Affymetrix Hu133 2.0 Plus genechips. Biometric Research Biostatistics, Perelman School of Branch array tools and Ingenuity Pathway Analysis software were used for analysis of the Medicine, University of Pennsylvania, microarray data. Philadelphia, PA, +Lung Transplantation Program, New Univariate analysis revealed 255 genes that distinguished IPF arterioles from controls York Presbyterian Hospital, New York, (p,0.001). Mediators of vascular smooth muscle and endothelial cell proliferation, Wnt signalling NY, and and apoptosis were differentially expressed in IPF arterioles. Unsupervised and supervised 1Dept of Pathology and Cell Biology, clustering analyses revealed similar gene expression in PH-IPF and NPH-IPF arterioles.
    [Show full text]
  • Allergic Bronchopulmonary Aspergillosis
    Published online: 2021-07-30 CHEST RADIOLOGY Pictorial essay: Allergic bronchopulmonary aspergillosis Ritesh Agarwal, Ajmal Khan, Mandeep Garg1, Ashutosh N Aggarwal, Dheeraj Gupta Departments of Pulmonary Medicine and 1Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh - 160 012, India Correspondence: Dr. Ritesh Agarwal, Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh - 160 012, India. E-mail: [email protected] Abstract Allergic bronchopulmonary aspergillosis (ABPA) is the best-known allergic manifestation of Aspergillus-related hypersensitivity pulmonary disorders. Most patients present with poorly controlled asthma, and the diagnosis can be made on the basis of a combination of clinical, immunological, and radiological findings. The chest radiographic findings are generally nonspecific, although the manifestations of mucoid impaction of the bronchi suggest a diagnosis of ABPA. High-resolution CT scan (HRCT) of the chest has replaced bronchography as the initial investigation of choice in ABPA. HRCT of the chest can be normal in almost one-third of the patients, and at this stage it is referred to as serologic ABPA (ABPA-S). The importance of central bronchiectasis (CB) as a specific finding in ABPA is debatable, as almost 40% of the lobes are involved by peripheral bronchiectasis. High-attenuation mucus (HAM), encountered in 20% of patients with ABPA, is pathognomonic of ABPA. ABPA should be classified based on the presence or absence of HAM as ABPA-S (mild), ABPA-CB (moderate), and ABPA-CB-HAM (severe), as this classification not only reflects immunological severity but also predicts the risk of recurrent relapses. Key words: Allergic bronchopulmonary aspergillosis; allergic bronchopulmonary aspergillosis; aspergillus; chest radiograph; computed tomography; High-resolution CT scan Introduction A.
    [Show full text]
  • Pulmonary Hypertension As a Rare Cause of Postopera- Tive Chylothorax
    TEHRAN HEART CENTER Case Report Pulmonary Hypertension as a Rare Cause of Postopera- tive Chylothorax Feridoun Sabzi, MD*, Samsam Dabiri, MD, Alireza Poormotaabed, MD Kermanshah University of Medical Sciences, Imam Ali Hospital, Kermanshah, Iran. Received 13 August 2012; Accepted 16 December 2013 Abstract Chylothorax in adult occurs most commonly in the wake of cardiac and thoracic procedures. Injuries to the common thoracic duct in the thorax or its branches in the mediastinum, injuries to the thymus tissues, dissection of the superior vena cava or ascending aorta, dissection of the aortic arch, disruption of the accessory lymphatics in the left or right thorax, and increased pressure in the systemic vein exceeding that of the thoracic duct (usually in the superior vena cava thrombosis, Glenn Shunt, and hemi-Fontan) have been proposed as the possible causes of chylothorax after surgery for congenital heart disease. However, pulmonary hypertension is an exceedingly rare cause of chylothorax in adults. We present a case of chylothorax after atrial septal defect surgery in a 30-year-old female patient with pulmonary hypertension. The postoperative period was complicated by chylothorax, which was confirmed by the high lipid content of chylous effusion. The patient was treated conservatively with diet therapy, and the effusion was abolished completely after two weeks. No recurrence of chylothorax was detected at 3 months' follow-up. J Teh Univ Heart Ctr 2014;9(2):93-96 This paper should be cited as: Sabzi F, Dabiri S, Poormotaabed A. Pulmonary Hypertension as a Rare Cause of Postoperative Chylothorax. J Teh Univ Heart Ctr 2014;9(2):93-96.
    [Show full text]
  • Shortness of Breath
    Christopher Taggart, MD St. Mary’s Medical Center, Department of Family Shortness of breath: Looking Medicine, Grand Junction, Colo beyond the usual suspects christopher.taggart@ sclhs.net COPD and pneumonia come to mind when a patient The authors reported no potential conflict of interest is short of breath. But the signs and symptoms detailed relevant to this article. here should lead you to suspect an uncommon cause. CASE u Joan C is a 68-year-old woman who presents to the of- PRACTICE RECOMMENDATIONS fice complaining of an enlarging left chest wall mass that ap- peared within the past month. She was treated for small-cell ❯ Consider diagnoses other lung cancer 11 years ago. She has a 45 pack-year smoking his- than asthma, COPD, heart failure, and pneumonia in tory (she quit when she received the diagnosis) and has heart patients with persistent or failure, which is controlled. Your examination reveals a large progressive dyspnea. C (5 cm) firm mass on her left chest wall. There is no erythema or tenderness. She has no other complaints. You recommend surgi- ❯ Avoid steroids in patients with acute pericarditis cal biopsy and refer her to surgery. because research shows Ms. C returns to your office several days later complaining that they increase the of new and worsening shortness of breath with exertion that be- risk of recurrence. B gan the previous day. The presentation is similar to prior asthma exacerbation episodes. She denies any cough, fever, chest pain, ❯ Consider anticoagulation with warfarin in patients with symptoms at rest, or hemoptysis. On exam she appears comfort- pulmonary arterial hyperten- able and not in any acute distress.
    [Show full text]
  • Pulmonary Hypertension in the Intensive Care Unit
    Pulmonary vascular disease ORIGINAL ARTICLE Heart: first published as 10.1136/heartjnl-2015-307774 on 6 April 2016. Downloaded from Pulmonary hypertension in the intensive care unit. Expert consensus statement on the diagnosis and treatment of paediatric pulmonary hypertension. The European Paediatric Pulmonary Vascular Disease Network, endorsed by ISHLT and DGPK Michael Kaestner,1 Dietmar Schranz,2 Gregor Warnecke,3,4 Christian Apitz,1 Georg Hansmann,5 Oliver Miera6 For numbered affiliations see ABSTRACT heterogeneous underlying conditions.1 Distinction end of article. Acute pulmonary hypertension (PH) complicates the between precapillary and postcapillary aetiologies Correspondence to course of several cardiovascular, pulmonary and other (or establishment of a combination of the two) is Dr. Oliver Miera, Department systemic diseases in children. An acute rise of RV important to initiate specific individual therapy. of Congenital Heart Disease afterload, either as exacerbating chronic PH of different and Paediatric Cardiology, aetiologies (eg, idiopathic pulmonary arterial Pathophysiology of acute PH and RV failure Deutsches Herzzentrum Berlin, hypertension (PAH), chronic lung or congenital heart Augustenburger Platz 1, Chronic PH causes adaptation and remodelling of Berlin 13353, Germany; disease), or pulmonary hypertensive crisis after corrective the RV to increased loading conditions. Pulmonary [email protected] surgery for congenital heart disease, may lead to severe hypertensive crisis (PHC) occurs when compensatory circulatory compromise. Only few clinical studies provide mechanisms fail, RV systolic function decompensates This manuscript is a product of evidence on how to best treat children with acute severe and LV preload acutely decreases resulting in abol- the writing group of the 23 European Paediatric Pulmonary PH and decompensated RV function, that is, acute RV ished cardiac output and coronary perfusion.
    [Show full text]