The Iplant Foundation API

Total Page:16

File Type:pdf, Size:1020Kb

The Iplant Foundation API Software-as-a-Service: The iPlant Foundation API Rion Dooley, Matthew Vaughn, Dan Stanzione, Edwin Skidmore Steve Terry iPlant Collaborative Texas Advanced Computing Center University of Arizona The University of Texas Tucson, USA Austin, USA [email protected] [dooley, vaughn, dan, sterry1]@tacc.utexas.edu Abstract—The iPlant Foundation API (fAPI) is a hosted, Multiple high performance computing (HPC) resources Software-as-a-Service (SaaS) resource for the computational through allocations on XSEDE [5], FutureGrid [6], the Open biology field. Unlike many other grid-based approaches to Science Grid (OSG) [7], and the University of Texas System distributed infrastructure, the fAPI provides a holistic view of [8] are provided free of charge. iPlant also manages its own core computing concepts such as security, data, applications, high throughput computing (HTC) resources at the University jobs, and systems. It also provides the support services, such as of Arizona. Each of these resources comes with its own set of unified accounting, provenance, metadata, and global events, interfaces, allocations, and access mechanisms. needed to bind the core concepts together into a cohesive interface. Operating as a set of RESTful web services, the fAPI To lower the barrier of entry to these resources and bridges the gap between the HPC and web worlds by supporting facilitate broader adoption, community-led iPlant steering synchronous and asynchronous interfaces, web-based callbacks, committees identified a need for a programmatic access layer. unified access control lists (ACL), and a publication- subscription In-person surveys and discussions from over 100 subsequent (pubsub) model that allows modern applications to interact with community workshops validated this recommendation and the underlying infrastructure using technologies and access provided an initial set of requirements for the desired access patterns familiar to them. In its first year of operation, the fAPI layer to meet. Obvious capabilities such as the ability to submit has grown to support thousands of users across both the Plant jobs, track provenance, move data, and share work topped the and Animal Science domains. In this paper we describe the fAPI, list. Additionally common requests came from the community its underlying architecture, and briefly describe its adoption to apply and manage metadata, interoperate with their existing before concluding with future plans. private resources, interact with 3rd party services, and support Keywords— cloud; biology; cyberinfrastructure; iplant; data; ontological discovery. Other, larger development projects api; saas; web service; rest requested some developer-friendly features such as a Representational State Transfer (REST) [9] interface, callback I. INTRODUCTION notifications, token-based access, and support for asynchronous The iPlant Collaborative (iPlant) is a United States National communication. Science Foundation (NSF) funded project that has created an Driven by this initial set of requirements, the development innovative, comprehensive, and foundational team conducted an evaluation of current technologies to cyberinfrastructure (CI) in support of plant biology research identify projects they could adopt or extend to provide such an [1]. iPlant is developing cyberinfrastructure that uniquely access layer. This evaluation is discussed as background enables scientists throughout the diverse fields that comprise material in Section II. plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote II. BACKGROUND biology and computer science research interactions, and to train The evaluation began with hosted services. Globus Online the next generation of scientists on the use of [10] provided a production quality, hosted data movement cyberinfrastructure in research and education. The iPlant service, but at the time of this writing, required separate cyberinfrastructure design is based on an unprecedented period authentication mechanisms, provided no metadata support, and of research community input. It leverages developments in could not be embedded into existing services and applications. high-performance computing, data storage, and There is hope that these features will be provided in the near cyberinfrastructure for the physical sciences, and is an open- future, but until then, deep integration is not possible. The source project with application programming interfaces that Cyberaide project [11] showed great potential as a hosted job allow the community to extend the infrastructure to meet its submission service, however the project is currently needs. unsupported, the software suffers from scalability issues iPlant provides a wide range of computational resources, associated with large input data, and the model of wrapping aimed at supporting different use cases. The iPlant Data Store each individual application in a virtual appliance doesn’t match is a persistent, high performance, distributed storage solution well with usage scenarios involving users leveraging the built upon iRODS[2]. Atmosphere is a highly customized, on- service as a mechanism for rapid application development. demand virtualization solution built upon Eucalyptus [3][4]. Airavata [12] is a well supported workflow orchestration and execution service, but currently lacks key permission and data NEWT is a web service that allows users to access access concepts requested by the iPlant community. Several computing resources at the National Energy Research discussions with the Airavata project team indicated that Scientific Computing Center (NERSC) through a simple REST significant refactoring would be required to support these API. NEWT exposes services for authentication, system concepts and such work was not in the scope of their current monitoring, file uploads and downloads, directory listings, roadmap. running commands, submitting jobs to batch queues, obtaining accounting information, and accessing a persistent object Next, the development team looked at Infrastructure-as-a- storage. NEWT is an internal project at NERSC and, as such, is Service (IaaS) solutions. Commercial companies such as deeply tied to the underlying NERSC infrastructure. After Amazon, Rackspace, and Microsoft provided solutions with evaluating the NEWT architecture, it was found that while it mature web service offerings that allowing customers to did meet many of the requirements, it would require nearly a interact with their infrastructure. However the primary focus of complete rewrite to port NEWT onto the iPlant their web services was the administration of the resources they cyberinfrastructure. own. VMWare, OpenStack, Nimbus, and Eucalyptus all provided IaaS solutions solutions similar to the hosted The Simple API for Grid Applications (SAGA) is a commercial offerings, but run on local systems. These were programmatic interface for managing jobs and data on a attractive solutions iPlant could, and did adopt to expose their computational grid. It currently has bindings in Java, C++, and underlying cloud resource, but neither the hosted nor private Python, however it lacks any web service iterface. IaaS solutions provide services of sufficient abstraction or breadth to meet the requirements of the user community. Unicore is a comprehensive middleware solution similar to the Globus Toolkit, but exposed as a set of SOAP web services. Finally, the development team turned their evaluation focus One benefit of Unicore is its use of community established to popular "middleware" projects such as the Globus protocols for job submission, information management, and Toolkit[13], Grisu[14], Newt[15], SAGA[16], and Unicore authentication. The primary drawbacks to Unicore are the large [17]. Each project had its own advantages, but the focus was buy-in required to leverage it, the technology stack required by generally on a subset of the functionality desired by the iPlant clients to interact with the SOAP services, and the system-level user community. The Globus Toolkit provided solutions for installations required by both the clients and resource cross-site authentication, data movement, job submission, and providers. Given iPlant's lack of administrative access to the information management, but worked in a way largely underlying HPC hardware and the requirement for REST and disconnected from the underlying compute and data systems. web-accessible services, Unicore could not be an outward- Exposing the Globus GRAM scheduler as an outward facing facing technology in the desired iPlant programmatic access service to iPlant users would create the possibility of a layer. discrepancy between queue status reported by the system schedulers and the Globus scheduler. The development team After completing the evaluation process, the development team determined that, for lack of a better description, there was learned that in other projects, this led to accounting and monitoring difficulties that could never be completely worked abundant plumbing, but no kitchen sink. Despite the needs of the community, there was no solution that allowed significant out. Another roadblock to adopting the Globus Toolkit as a top level solution was that interaction with the Globus services re-use of existing code bases to meet the needs of the plant science community, and so the development team designed and required a separate technology stack. This technology stack would be required on every system communicating with iPlant. created
Recommended publications
  • Iplant Collaborative Taking Plant Biology Into Cyberspace by Janni Simner and Susan Mcginley Leslie Johnston
    The iPlant Collaborative Taking plant biology into cyberspace By Janni Simner and Susan McGinley Leslie Johnston Richard Jorgensen, lead investigator and director of the iPlant Collaborative, surrounded by petunias used in gene expression studies. he National Science Foundation (NSF) has awarded a environmental changes; how plants have evolved in the past and University of Arizona–led team $50 million to create a global their potential to evolve in the future; and how plants live together Tcenter and computer cyberinfrastructure to answer plant with other organisms in ecosystems. biology’s grand challenge questions, which no single research entity iPlant’s team of plant biologists, computer scientists, information in the world currently has the capacity to address. scientists, mathematicians and social scientists will set about The project will unite plant scientists, computer scientists and building a “Discovery Environment”—a cyberinfrastructure—to information scientists from around the world for the first time to answer those questions in partnership with the community’s grand provide answers to questions of global importance and to advance challenge teams. knowledge in all of these fields. The iPlant center will be located in and administered through Dubbed the iPlant Collaborative, the five-year project is the UA’s BIO5 Institute in Tucson. BIO5 was founded to encourage potentially renewable for a second five years for a total of $100 collaboration across scientific disciplines, accelerate the pace of million. scientific discovery and develop innovative solutions to society’s “This global center is going to change the way we do science,” most complex biological problems. The iPlant Collaborative will says UA plant sciences professor and BIO5 Institute member create both a physical center and a virtual computing space where Richard Jorgensen, who is the lead investigator and director of researchers can communicate and work together as they share, the iPlant Collaborative.
    [Show full text]
  • Plant Pathology, Physiology, and Weed Science 2013
    News PPWSPlant Pathology, Physiology, and Weed Science www.ppws.vt.edu 2013 Greetings to our alumni, colleagues, and friends! We have had a busy year in the Department of Plant Pathology, Physiology, and Weed Science. We are pleased to share an update of our accomplishments with you. In the fall we welcomed new faculty member Dr. Xiaofeng Wang whose research interests include plant virology. We would like to congratulate the graduate students who successfully completed their degrees. We had a total of 12 graduations in the past academic year. In Fall 2012 we debuted a new student-organized mini symposium that now includes a poster competition and travel awards for outstanding graduate students. Our popular Agricultural Research and Extension Center and Ag Industry tour visited the Alson H. Smith, Jr. center in Winchester, the Southern Piedmont AREC in Blackstone, and the Eastern Virginia AREC in Warsaw last fall to provide students a first- Elizabeth Grabau, hand view of our applied research programs. We were pleased to be able to honor department head Scott Hagood as an emeritus professor of weed science during this past year. At the annual college alumni awards celebration in March we also recognized two outstanding PPWS alumni, Anne Dorrance and David McCall. As we look ahead to the coming year, we hope to visit with many of you at meetings and conferences. Please keep us informed of your news and accomplishments. We also invite you stop by the department whenever your travel finds you in the Blacksburg area. Elizabeth Grabau, department head CALS Alumni Awards Anne Dorrance (Ph.D.
    [Show full text]
  • Arxiv:1810.00224V2 [Q-Bio.PE] 7 Dec 2020 Humanity Is Increasingly Influencing Global Environments [195]
    A Survey of Biodiversity Informatics: Concepts, Practices, and Challenges Luiz M. R. Gadelha Jr.1* Pedro C. de Siracusa1 Artur Ziviani1 Eduardo Couto Dalcin2 Helen Michelle Affe2 Marinez Ferreira de Siqueira2 Luís Alexandre Estevão da Silva2 Douglas A. Augusto3 Eduardo Krempser3 Marcia Chame3 Raquel Lopes Costa4 Pedro Milet Meirelles5 and Fabiano Thompson6 1National Laboratory for Scientific Computing, Petrópolis, Brazil 2Friedrich-Schiller-University Jena, Jena, Germany 2Rio de Janeiro Botanical Garden, Rio de Janeiro, Brazil 3Oswaldo Cruz Foundation, Rio de Janeiro, Brazil 4National Institute of Cancer, Rio de Janeiro, Brazil 5Federal University of Bahia, Salvador, Brazil 6Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Abstract The unprecedented size of the human population, along with its associated economic activities, have an ever increasing impact on global environments. Across the world, countries are concerned about the growing resource consumption and the capacity of ecosystems to provide them. To effectively conserve biodiversity, it is essential to make indicators and knowledge openly available to decision-makers in ways that they can effectively use them. The development and deployment of mechanisms to produce these indicators depend on having access to trustworthy data from field surveys and automated sensors, biological collections, molec- ular data, and historic academic literature. The transformation of this raw data into synthesized information that is fit for use requires going through many refinement steps. The methodologies and techniques used to manage and analyze this data comprise an area often called biodiversity informatics (or e-Biodiversity). Bio- diversity data follows a life cycle consisting of planning, collection, certification, description, preservation, discovery, integration, and analysis.
    [Show full text]
  • The Iplant Collaborative:Cyberinfrastructure for the Life Sciences
    NSB Information Item The iPlant Collaborative: Cyberinfrastructure for the Life Sciences PI: Parker Antin, University of Arizona Professor of Cellular and Molecular Medicine Associate Dean for Research of the College of Agriculture and Life Sciences Eric Lyons Matthew Vaughn Doreen Ware Ann Stapleton Nirav Merchant David Micklos James Olds, AD and Karen Cone, Program Director Directorate for Biological Sciences February 2016 Overview • iPlant is having a transformative impact on data- to-discovery RESEARCH in life sciences and beyond – User metrics – Publication record • iPlant has become a reference model for CYBERINFRASTRUCTURE – Modular, extensible design – Hub in an interoperable cyberinfrastructure ecosystem • iPlant is on a path to SUSTAINABILITY – Maintenance of high-value operations – Continued development and innovation 2 iPlant Cyberinfrastructure Advancing Transformative Data-to-Discovery Research Whole-genome analyses resolve early branches in the tree of life of modern birds The pineapple genome and the evolution of CAM photosynthesis Using multi-timescale methods and satellite-derived land surface temperature for interpolation of daily maximum air temperature Wild-Type N-Ras, overexpressed in breast Identification of dopamine cancer…promotes tumor formation receptors…among vertebrates 3 Increase in Publications Citing iPlant Biology All Other 600 400 200 0 2008 2009 2010 2011 2012 2013 2014 2015 4 Strong and Growing User Base 40,000 User Accounts 30,000 Virtual Images launched in 20,000 Atmosphere User data in Data Store
    [Show full text]
  • Downloaded Tiles H08v04 and H09v04 for the 2001–2010 Time Period from NASA [60])
    Remote Sens. 2014, 6, 8639-8670; doi:10.3390/rs6098639 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article An Assessment of Methods and Remote-Sensing Derived Covariates for Regional Predictions of 1 km Daily Maximum Air Temperature Benoit Parmentier 1,2,3,*, Brian McGill 2, Adam M. Wilson 4, James Regetz 1, Walter Jetz 4, Robert P. Guralnick 5, Mao-Ning Tuanmu 4, Natalie Robinson 5 and Mark Schildhauer 1 1 National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, 735 State Street, Suite 300, Santa Barbara, CA 93101, USA; E-Mails: [email protected] (J.R.); [email protected] (M.S.) 2 Sustainability Solutions Initiative, University of Maine, Deering Hall Room 302, Orono, ME 04469, USA; E-Mail: [email protected] 3 iPlant Collaborative, University of Arizona, Thomas W, Keating Bioresearch Building1657 East Helen Street, Tucson, AZ 85721, USA 4 Department of Ecology & Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06520-8106, USA; E-Mails: [email protected] (A.M.W.); [email protected] (W.J.); [email protected] (M.-N.T.) 5 Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Ramaley N122, Campus Box 334, CO 80309-034, USA; E-Mails: [email protected] (R.P.G.); [email protected] (N.R.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-508-873-9508; Fax: +1-805-892-2510. Received: 5 June 2014; in revised form: 12 August 2014 / Accepted: 25 August 2014 / Published: 16 September 2014 Abstract: The monitoring and prediction of biodiversity and environmental changes is constrained by the availability of accurate and spatially contiguous climatic variables at fine temporal and spatial grains.
    [Show full text]
  • Biodiversity Is More Than Just a Numbers Game 7 October 2014, by Daniel Stolte
    Biodiversity is more than just a numbers game 7 October 2014, by Daniel Stolte The results of the new approach are published in a special issue of the journal PNAS. Functional biogeography is an emergent discipline focused on understanding the geographic distribution of the forms and functions—the traits—of organisms, with the goal of helping scientists and managers better predict the origin of biological diversity and how ecological communities respond to climate change. "It has long ago been proposed that the higher species diversity in the tropics could be explained by a larger number of habitats available for the organisms living there," said Christine Lamanna and Cyrille Violle, both recent Ph.D. and postdoctoral researchers in the laboratory of Brian A researcher on Brian Enquist's team measures traits Enquist and the leading authors of the special such as leaf size and branch length in a tropical issue. "While appealing, this hypothesis has not yet rainforest. been tested in plants partly due to a lack of available data. Surprisingly, we found the greatest diversity of functions in the temperate regions." A new look at one of ecology's unsolved Building on a unique database compiled by an puzzles—why biodiversity is higher in the tropics international group of researchers, the Botanical compared with colder regions—revealed that while Information and Ecology Network, or BIEN, this long-recognized pattern holds true for the analyzed data containing more than 20 million data sheer number of species, it does not for how entries of species occurrence and information different species make a living.
    [Show full text]
  • Plant Sciences
    Discover the science that feeds the world. B.S., Plant Sciences Plants and their associated microbes are fundamental to all aspects of our existence. Given the growth of the human population and the effects of this growth on the environment, research and training in the Plant Sciences has never been more critical. Coursework and optional research training prepare majors for post-graduate studies in research, medicine, and pharmacy, or careers in horticulture, agriculture, microbiology, or biotechnology. For more information contact an advisor: School of Plant Sciences Maya Azzi, Academic Advisor [email protected] 520-621-5403 Why major in Plant Sciences? Spectacular career opportunities. Our majors go on to graduate school, medical school, pharmacy school, and law school – or enter the workforce in horticulture, biotechnology, biofuels development, microbiology, computational biology, international development, ag- business, and sustainable agriculture. An outstanding learning environment. Our majors enjoy an interdisciplinary environment with small class sizes, a low student-to-faculty ratio, scholarships, internships, and opportunities for travel. Students gain hands-on experience in real-life applications of bioinformatics, genomics, molecular and cellular biology, microbial sciences, genetics, biotechnology, and plant breeding, propagation, and improvement. Research and training opportunities in world-class facilities. Plant Sciences majors engage in cutting-edge research and training in our internationally recognized centers, such as the Controlled Environment Agriculture Center, iPlant Collaborative, Bio5 Institute, the University of Arizona Herbarium, and diverse field stations and agricultural centers. A chance to change the world. Plants feed, power, and medicate the planet. They are the foundation of global biodiversity and global climate – and key to our future.
    [Show full text]
  • Cyverse Austria—A Local, Collaborative Cyberinfrastructure
    Mathematical and Computational Applications Communication CyVerse Austria—A Local, Collaborative Cyberinfrastructure 1, 1, , 2 3 Konrad Lang y , Sarah Stryeck * y , David Bodruzic , Manfred Stepponat , Slave Trajanoski 4 , Ursula Winkler 2 and Stefanie Lindstaedt 1,5,* 1 Institute for Interactive Systems and Data Science, Graz University of Technology, 8010 Graz, Austria; [email protected] 2 Server and Storage Systems, University of Graz, 8010 Graz, Austria; [email protected] (D.B.); [email protected] (U.W.) 3 Central Information Technology, Graz University of Technology, 8010 Graz, Austria; [email protected] 4 Core Facility Computational Bioanalytics, Medical University of Graz, 8010 Graz, Austria; [email protected] 5 Know-Center GmbH, 8010 Graz, Austria * Correspondence: [email protected] (S.S.); [email protected] (S.L.); Tel.: +43-316-873-30677 (S.S.); +43-316-873-30600 (S.L.) These authors contributed equally to this work. y Received: 25 May 2020; Accepted: 22 June 2020; Published: 24 June 2020 Abstract: Life sciences (LS) are advanced in research data management, since LS have established disciplinary tools for data archiving as well as metadata standards for data reuse. However, there is a lack of tools supporting the active research process in terms of data management and data analytics. This leads to tedious and demanding work to ensure that research data before and after publication are FAIR (findable, accessible, interoperable and reusable) and that analyses are reproducible. The initiative CyVerse US from the University of Arizona, US, supports all processes from data generation, management, sharing and collaboration to analytics.
    [Show full text]
  • The Iplant Collaborative: a Model for Collaborative Science Cyberinfrastructure (At 30 Seconds a Slide)
    The iPlant Collaborative: A model for collaborative science cyberinfrastructure (at 30 seconds a slide) Dan Stanzione Co-Director, The iPlant Collaborative Deputy Director Texas Advanced Computing Center, UT-Austin American Geophysical Union 2012 Meeting What is iPlant • The iPlant Cyberinfrastructure Collaborative is building a comprehensive informatics infrastructure for plant biology. • (and lately, some animals as well). • This rapidly evolving infrastructure is sometimes very visible in your work, and sometimes hides in the background. iPlant – EarthCube • iPlant began with many goals and a community building process, somewhat similar to EarthCube. • The starting point in bio is wayyy behind geosciences. – Biology wasn’t really computational before the late ’90s; pre-sequencer not much digital data, very little modeling and simulation, etc. • Presuming we have done anything right, there might be some lessons for Earthcube (or perhaps just what not to do!). Data-intensive biology will mean geng biologists comfortable with new technology… One key goal in our infrastructure, training and outreach is to minimize the emphasis on technology and return the focus to the biology. 1973 Sharp, Sambrook, Sugden 1958 Gel Electrophoresis Chamber, MaC Meselson & $250 Ultracentrifuge, $500,000 What does iPlant Provide • DATA – iPlant Data Storage: All data large and small • COMPUTING: – Large Scale: Up to hundreds of thousands of processors – Virtual: “Cloud Style” server hosting • A Programmer’s Interface – Easily embed iPlant resources in your
    [Show full text]
  • Meeting Report: Advancing Practical Applications Of
    Walls et al. Standards in Genomic Sciences 2014, 9:17 http://www.standardsingenomics.com/content/9/1/17 MEETING REPORT Open Access Meeting report: advancing practical applications of biodiversity ontologies Ramona L Walls1*, Robert Guralnick2, John Deck3, Adam Buntzman4, Pier Luigi Buttigieg5, Neil Davies6, Michael W Denslow7, Rachel E Gallery8, J Jacob Parnell7, David Osumi-Sutherland9, Robert J Robbins10, Philippe Rocca-Serra11, John Wieczorek3 and Jie Zheng12 Abstract We describe the outcomes of three recent workshops aimed at advancing development of the Biological Collections Ontology (BCO), the Population and Community Ontology (PCO), and tools to annotate data using those and other ontologies. The first workshop gathered use cases to help grow the PCO, agreed upon a format for modeling challenging concepts such as ecological niche, and developed ontology design patterns for defining collections of organisms and population-level phenotypes. The second focused on mapping datasets to ontology terms and converting them to Resource Description Framework (RDF), using the BCO. To follow-up, a BCO hackathon was held concurrently with the 16th Genomics Standards Consortium Meeting, during which we converted additional datasets to RDF, developed a Material Sample Core for the Global Biodiversity Information Framework, created a Web Ontology Language (OWL) file for importing Darwin Core classes and properties into BCO, and developed a workflow for converting biodiversity data among formats. Keywords: Ontology, Biodiversity, Population, Community, Darwin Core, OWL, RDF, Microbial ecology, Sequencing Introduction [5]. The BCO focuses on how to model material samples Biological data range from information about small-scale and observations, while the PCO models assemblages of material entities such molecules and cells to large-scale individuals and their interactions.
    [Show full text]
  • DNA Subway – an Educational Bioinformatics Platform for Gene and Genome Analysis: DNA Barcoding, and RNA-Seq J. Williams*, †
    DNA Subway – An Educational Bioinformatics Platform for Gene and Genome Analysis: DNA Barcoding, and RNA-Seq J. Williams*, †, S. McKay‡, M. Khalfan*, †, C. Ghiban*, †, U. Hilgert†, §, Sue Lauter*, †, Eun-Sook Jeong*, †, and D. Micklos*, † *Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, †iPlant Collaborative, T.W. Keating Bioresearch Building, ‡Ontario Institute for Cancer Research, MaRS Centre, Toronto, ON, Canada, §BIO5 Institute, T.W. Keating Bioresearch Building, U. Arizona, Tucson, AZ ABSTRACT: DNA Subway is an educational often a limiting factor, both in availability and expertise. bioinformatics platform developed by the iPlant Fortunately, advances in technologies and good Collaborative (NSF #DBI–0735191). DNA Subway bundles timing have produced promising solutions to these research-grade bioinformatics tools, high-performance challenges. The cost of HTS has become reasonable – more computing, and databases into workflows with an easy-to- than 1000-fold reduction since 2004 (NHGRI (2013) – and use interface. “Riding” DNA Subway lines, students can the amount of data freely available for students presents predict and annotate genes in up to 150kb of DNA (Red real opportunities for them to contribute to a biology Line), identify homologs in sequenced genomes (Yellow paradigm that operates along a continuum of research and Line), identify species using DNA barcodes and education. This paper outlines how DNA Subway and other phylogenetic trees (Blue Line), and examine RNA-Seq iPlant related resources enable educators to take advantage datasets for differential transcript abundance (Green Line). of these opportunities while bringing HTS to their students. With support for plant and animal genomes, DNA Subway Driven by educational design principles. DNA engages students in their own learning, bringing to life key Subway was conceived to address a need not just for concepts in molecular biology and genetics.
    [Show full text]
  • Emerging Semantics to Link Phenotype and Environment Anne E
    Emerging semantics to link phenotype and environment Anne E. Thessen1,2 , Daniel E. Bunker3, Pier Luigi Buttigieg4, Laurel D. Cooper5, Wasila M. Dahdul6, Sami Domisch7, Nico M. Franz8, Pankaj Jaiswal5, Carolyn J. Lawrence-Dill9, Peter E. Midford10, Christopher J. Mungall11, Mart´ın J. Ram´ırez12, Chelsea D. Specht13, Lars Vogt14, Rutger Aldo Vos15, Ramona L. Walls16, JeVrey W. White17, Guanyang Zhang8, Andrew R. Deans18, Eva Huala19, Suzanna E. Lewis11 and Paula M. Mabee6 1 Ronin Institute for Independent Scholarship, Monclair, NJ, United States 2 The Data Detektiv, Waltham, MA, United States 3 Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, United States 4 HGF-MPG Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institut, Helmholtz-Zentrum fur¨ Polar-und Meeresforschung, Bremerhaven, Germany 5 Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States 6 Department of Biology, University of South Dakota, Vermillion, SD, United States 7 Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States 8 School of Life Sciences, Arizona State University, Tempe, AZ, United States 9 Departments of Genetics, Development and Cell Biology and Agronomy, Iowa State University, Ames, IA, United States 10 Richmond, VA, United States 11 Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States 12 Division of Arachnology, Museo Argentino de Ciencias Naturales–CONICET, Buenos Aires, Argentina 13 Departments of Plant
    [Show full text]