The Cosmic Microwave Background
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Monolayer Graphene Bolometer As a Sensitive Far-IR Detector Boris S
Monolayer graphene bolometer as a sensitive far-IR detector Boris S. Karasik*a, Christopher B. McKitterickb, Daniel E. Proberb aJet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA USA 91109; bDepts. of Phys. and Appl. Phys., Yale University, 15 Prospect St., BCT 417, New Haven, CT USA 06520 ABSTRACT In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few µm2 of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature ~ 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity. The analysis shows that the readout contribution can be reduced to that of the bolometer phonon noise if the detector device is operated at 0.05 K and the JNT signal is read at about 10 GHz where the Johnson noise emitted in equilibrium is substantially reduced. Beside the high sensitivity (NEP < 10-20 W/Hz1/2), this bolometer does not have any hard saturation limit and thus can be used for far-IR sky imaging with arbitrary contrast. -
Pushing the Limits of the Coronagraphic Occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph
Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes Bin Ren Glenn Schneider John H. Debes, Bin Ren, Glenn Schneider, “Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph,” J. Astron. Telesc. Instrum. Syst. 5(3), 035003 (2019), doi: 10.1117/1.JATIS.5.3.035003. Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 02 Jul 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Journal of Astronomical Telescopes, Instruments, and Systems 5(3), 035003 (Jul–Sep 2019) Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes,a,* Bin Ren,b,c and Glenn Schneiderd aSpace Telescope Science Institute, AURA for ESA, Baltimore, Maryland, United States bJohns Hopkins University, Department of Physics and Astronomy, Baltimore, Maryland, United States cJohns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, Maryland, United States dUniversity of Arizona, Steward Observatory and the Department of Astronomy, Tucson Arizona, United States Abstract. The Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) contains the only currently operating coronagraph in space that is not trained on the Sun. In an era of extreme-adaptive- optics-fed coronagraphs, and with the possibility of future space-based coronagraphs, we re-evaluate the con- trast performance of the STIS CCD camera. The 50CORON aperture consists of a series of occulting wedges and bars, including the recently commissioned BAR5 occulter. We discuss the latest procedures in obtaining high-contrast imaging of circumstellar disks and faint point sources with STIS. -
Pixel-Wise Motion Deblurring of Thermal Videos
Pixel-Wise Motion Deblurring of Thermal Videos Manikandasriram S.R.1, Zixu Zhang1, Ram Vasudevan2, and Matthew Johnson-Roberson3 Robotics Institute1, Mechanical Engineering2, Naval Architecture and Marine Engineering3 University of Michigan, Ann Arbor, Michigan, USA 48109. fsrmani, zixu, ramv, [email protected] https://fcav.engin.umich.edu/papers/pixelwise-deblurring Abstract—Uncooled microbolometers can enable robots to see in the absence of visible illumination by imaging the “heat” radiated from the scene. Despite this ability to see in the dark, these sensors suffer from significant motion blur. This has limited their application on robotic systems. As described in this paper, this motion blur arises due to the thermal inertia of each pixel. This has meant that traditional motion deblurring techniques, which rely on identifying an appropriate spatial blur kernel to perform spatial deconvolution, are unable to reliably perform motion deblurring on thermal camera images. To address this problem, this paper formulates reversing the effect of thermal inertia at a single pixel as a Least Absolute Shrinkage and Selection Operator (LASSO) problem which we can solve rapidly using a quadratic programming solver. By leveraging sparsity and a high frame rate, this pixel-wise LASSO formulation is able to recover motion deblurred frames of thermal videos without using any spatial information. To compare its quality against state-of- Fig. 1: An illustration of the proposed motion deblurring algorithm for the-art visible camera based deblurring methods, this paper eval- microbolometers. The top image shows a visible image captured at 30fps with uated the performance of a family of pre-trained object detectors auto exposure. -
Infrared Imaging Video Bolometer with a Double Layer Absorbing Foil
Plasma and Fusion Research: Regular Articles Volume 2, S1052 (2007) Infrared Imaging Video Bolometer with a Double Layer Absorbing Foil Igor V. MIROSHNIKOV, Artem Y. KOSTRYUKOV and Byron J. PETERSON1) St. Petersburg State Technical University, 29 Politechnicheskaya Str., St. Petersburg, 195251, Russia. 1)National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, 509-5292, Japan (Received 30 November 2006 / Accepted 11 August 2007) The object of the present paper is an infrared video bolometer with a bolometer foil consisting of two layers: the first layer is constructed of radiation absorbing blocks and the second layer is a thermal isolating base. The absorbing blocks made of a material with a high photon attenuation coefficient (gold) were spatially separated from each other while the base should be made of a material having high tensile strength and low thermal con- ductance (stainless steel). Such a foil has been manufactured in St. Petersburg and calibratedinNIFSusinga vacuum test chamber and a laser beam as an incident power source. A finite element method (FEM) code was applied to simulate the thermal response of the foil. Simulation results are in good agreement with the experi- mental calibration data. The temperature response of the double layer foil is a factor of two higher than that of a single foil IR video bolometer using the same absorber material and thickness. c 2007 The Japan Society of Plasma Science and Nuclear Fusion Research Keywords: plasma bolometry, infrared imaging bolometer, double layer foil, finite element method simulation DOI: 10.1585/pfr.2.S1052 1. Introduction 2. Double Layer Foil Design and Man- The idea of infrared imaging bolometry is to absorb ufacturing the incident plasma radiation in an ultra thin (1 µm-2.5 µm) The idea of DLF design is shown in Fig. -
Designing of Sensing Element for Bolometer Working at Room Temperature
IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834,p- ISSN: 2278-8735. PP 47-52 www.iosrjournals.org Designing of Sensing Element for Bolometer Working at Room Temperature 1 2 Debalina Panda , Subrat Kumar Pradhan 1 M.Tech Scholar, Dept. of ECE, Centurion University of Technology &Management, Odisha, INDIA 3 Asst. Professor, Dept. of ECE, Centurion University of Technology &Management, Odisha, INDIA Abstract: Bolometer is a highly sensitive thermal detector used for detection of heat or electromagnetic radiation. It has vast applications extending their range to the field of military, medical, astronomy, particle physics and in day-to-day use thus devising it as a significant part of our society. The basic operation principle is that it measures the incident radiation power through absorption resulting a specific change in a measurable quantity. This present work aims at designing of a MEMS based bolometer analysing the variation of thermal conductivity in response to the temperature by using COMSOL Multiphysics®. Here the temperature change occurs due to the incident infrared radiation. The proposed bolometer design is efficient of operating at elevated temperatures (>273 K) and thus can be implemented in a Wheatstone bridge to make it a modifiable detector for better sensitivity. I. Introduction Bolometer is light, rugged, reliable and low cost resistive thermal detectors generally used for low temperature operation. These are radiation power detectors constructed from a material having very small thermal capacity and large thermal coefficient so that the absorbed incident radiation produces a large change in resistance. It consists of an absorptive element connected to a thermal reservoir (or heat sink) and a thermopile attached to it for measurement of temperature as shown in Fig.1. -
The Atacama Cosmology Telescope: Extragalactic Sources at 148 Ghz in the 2008 Survey
Haverford College Haverford Scholarship Faculty Publications Astronomy 2011 The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey Tobias A. Marriage Jean-Baptise Juin Yen-Ting Lin Bruce Partridge Haverford College, [email protected] Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey Marriage, Tobias A.; Baptiste Juin, Jean; Lin, Yen-Ting; Marsden, Danica; Nolta, Michael R.; Partridge, Bruce; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Bertrand Doriese, W.; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernández-Monteagudo, Carlos; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin M.; Handel Hughes, David; Hughes, John P.; Infante, Leopoldo; Irwin, Kent D.; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M.; Limon, Michele; Lupton, Robert H.; Martocci, Krista; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B.; Niemack, Michael .;D Page, Lyman A.; Parker, Lucas; Quintana, Hernan; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jon; Spergel, David N.; Staggs, Suzanne T.; Swetz, Daniel S.; Switzer, Eric R.; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wilson, Grant; Wollack, Ed; Zhao, Yue The Astrophysical Journal, Volume 731, Issue 2, article id. 100, 15 pp. (2011). This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. -
Detection of Large-Scale X-Ray Bubbles in the Milky Way Halo
Detection of large-scale X-ray bubbles in the Milky Way halo P. Predehl1†, R. A. Sunyaev2,3†, W. Becker1,4, H. Brunner1, R. Burenin2, A. Bykov5, A. Cherepashchuk6, N. Chugai7, E. Churazov2,3†, V. Doroshenko8, N. Eismont2, M. Freyberg1, M. Gilfanov2,3†, F. Haberl1, I. Khabibullin2,3, R. Krivonos2, C. Maitra1, P. Medvedev2, A. Merloni1†, K. Nandra1†, V. Nazarov2, M. Pavlinsky2, G. Ponti1,9, J. S. Sanders1, M. Sasaki10, S. Sazonov2, A. W. Strong1 & J. Wilms10 1Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany. 2Space Research Institute of the Russian Academy of Sciences, Moscow, Russia. 3Max-Planck-Institut für Astrophysik, Garching, Germany. 4Max-Planck-Institut für Radioastronomie, Bonn, Germany. 5Ioffe Institute, St Petersburg, Russia. 6M. V. Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute, Moscow, Russia. 7Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia. 8Institut für Astronomie und Astrophysik, Tübingen, Germany. 9INAF-Osservatorio Astronomico di Brera, Merate, Italy. 10Dr. Karl-Remeis-Sternwarte Bamberg and ECAP, Universität Erlangen-Nürnberg, Bamberg, Germany. †e-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected] The halo of the Milky Way provides a laboratory to study the properties of the shocked hot gas that is predicted by models of galaxy formation. There is observational evidence of energy injection into the halo from past activity in the nucleus of the Milky Way1–4; however, the origin of this energy (star formation or supermassive-black-hole activity) is uncertain, and the causal connection between nuclear structures and large-scale features has not been established unequivocally. -
Observations of Comet IRAS-Araki-Alcock (1983D) at La Silla T
- 12 the visual by 1.3 mag). Like for the other SOor variables we M explain this particular finding by the very high mass loss (M = Bol 5 6.10- M0 yr-') during outburst. The variations in the visual are caused by bolometric flux redistribution in the envelope whilst -10 the bolometric luminosity remains practically constant. The location of R127 in the Hertzsprung-Russell diagram together with the other two known SOor variables of the LMC -B are shown in fig. 8. We note that Walborn classified R127 as an Of or alterna tively as a late WN-type star. This indicates that the star is a late Of star evolving right now towards a WN star. Since we have -6 detected an SOor-type outburst of this star we conclude that this transition is not a smooth one but is instead accompanied '.8 '.6 4.0 3.6 by the occasional ejection of dense envelopes. Fig. 8: Location of the newly discovered S Dar variable R 127 in the References Hertzsprung-Russell diagram in comparison with the other two estab lished SOor variables of the LMG. Also included in the figure is the Conti, P. S.: 1976, Mem. Soc. Roy. Sei. Liege 9,193. upper envelope of known stellar absolute bolometric magnitudes as Dunean, J. C.: 1922, Publ. Astron. Soc. Pacific 34, 290. derived byHumphreys andDavidson (1979). The approximateposition Hubble, E., Sandage, A.: 1953, Astrophys. J. 118, 353. o( the late WN-type stars is also given. Humphreys, R. M., Davidson, K.: 1979, Astrophys. J. 232,409. Lamers, H. -
A Measurement of the Cosmic Microwave Background B-Mode Polarization with Polarbear
Publications of the Korean Astronomical Society pISSN: 1225-1534 30: 625 ∼ 628, 2015 September eISSN: 2287-6936 c 2015. The Korean Astronomical Society. All rights reserved. http://dx.doi.org/10.5303/PKAS.2015.30.2.625 A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION WITH POLARBEAR The Polarbear collaboration: P.A.R. Ade29, Y. Akiba33, A.E. Anthony2,5, K. Arnold14, M. Atlas14, D. Barron14, D. Boettger14, J. Borrill3,32, S. Chapman9, Y. Chinone17,13, M. Dobbs25, T. Elleflot14, J. Errard32,3, G. Fabbian1,18, C. Feng14, D. Flanigan13,10, A. Gilbert25, W. Grainger28, N.W. Halverson2,5,15, M. Hasegawa17,33, K. Hattori17, M. Hazumi17,33,20, W.L. Holzapfel13, Y. Hori17, J. Howard13,16, P. Hyland24, Y. Inoue33, G.C. Jaehnig2,15, A.H. Jaffe11, B. Keating14, Z. Kermish12, R. Keskitalo3, T. Kisner3,32, M. Le Jeune1, A.T. Lee13,27, E.M. Leitch4,19, E. Linder27, M. Lungu13,8, F. Matsuda14, T. Matsumura17, X. Meng13, N.J. Miller22, H. Morii17, S. Moyerman14, M.J. Myers13, M. Navaroli14, H. Nishino20, A. Orlando14, H. Paar14, J. Peloton1, D. Poletti1, E. Quealy13,26, G. Rebeiz6, C.L. Reichardt13, P.L. Richards13,31, C. Ross9, I. Schanning14, D.E. Schenck2,5, B.D. Sherwin13,21, A. Shimizu33, C. Shimmin13,7, M. Shimon30,14, P. Siritanasak14, G. Smecher34, H. Spieler27, N. Stebor14, B. Steinbach13, R. Stompor1, A. Suzuki13, S. Takakura23,17, T. Tomaru17, B. Wilson14, A. Yadav14, O. Zahn27 1AstroParticule et Cosmologie, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cit´e,France 2Center for Astrophysics and Space -
The Q/U Imaging Experiment (QUIET): the Q-Band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller
The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2010 c 2010 Laura Newburgh All Rights Reserved Abstract The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Phase I of the Q/U Imaging ExperimenT (QUIET) measures the Cosmic Microwave Background polarization anisotropy spectrum at angular scales 25 1000. QUIET has deployed two independent receiver arrays. The 40-GHz array took data between October 2008 and June 2009 in the Atacama Desert in northern Chile. The 90-GHz array was deployed in June 2009 and observations are ongoing. Both receivers observe four 15◦ 15◦ regions of the sky in the southern hemisphere that are expected × to have low or negligible levels of polarized foreground contamination. This thesis will describe the 40 GHz (Q-band) QUIET Phase I instrument, instrument testing, observations, analysis procedures, and preliminary power spectra. Contents 1 Cosmology with the Cosmic Microwave Background 1 1.1 The Cosmic Microwave Background . 1 1.2 Inflation . 2 1.2.1 Single Field Slow Roll Inflation . 3 1.2.2 Observables . 4 1.3 CMB Anisotropies . 6 1.3.1 Temperature . 6 1.3.2 Polarization . 7 1.3.3 Angular Power Spectrum Decomposition . 8 1.4 Foregrounds . 14 1.5 CMB Science with QUIET . 15 2 The Q/U Imaging ExperimenT Q-band Instrument 19 2.1 QUIET Q-band Instrument Overview . -
Development of Cryogenic Bolometer for Neutrinoless Double Beta Decay in 124Sn
Development of Cryogenic Bolometer for Neutrinoless Double Beta Decay in 124Sn By Vivek Singh PHYS01200804030 Bhabha Atomic Research Centre, Mumbai – 400 085 A thesis submitted to the Board of Studies in Physical Sciences In partial fulfillment of requirements For the Degree of DOCTOR OF PHILOSOPHY of HOMI BHABHA NATIONAL INSTITUTE October, 2014 Homi Bhabha National Institute Recommendations of the Viva Voce Board As members of the Viva Voce Board, we certify that we have read the dissertation prepared by Vivek Singh entitled “Development of Cryogenic Bolometer for Neutrinoless Double Beta Decay in 124Sn” and recommend that it may be accepted as fulfilling the dissertation requirement for the Degree of Doctor of philosophy. Chairman - Prof. S. L. Chaplot Date: Guide / Convener - Prof. V. Nanal Date: Co-guide - Prof. V. M. Datar Date: Member - Dr. G. Ravikumar Date: Member - Prof. R. G. Pillay Date: Member - Dr. V. Ganesan Date: Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to HBNI. I/We hereby certify that I/we have read this dissertation prepared under my/our direction and recommend that it may be accepted as fulfilling the dissertation requirement. Date: Place: Co-guide Guide ii STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be made available to borrowers under rules of the HBNI. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. -
Maturity of Lumped Element Kinetic Inductance Detectors For
Astronomy & Astrophysics manuscript no. Catalano˙f c ESO 2018 September 26, 2018 Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 GHz A. Catalano1,2, A. Benoit2, O. Bourrion1, M. Calvo2, G. Coiffard3, A. D’Addabbo4,2, J. Goupy2, H. Le Sueur5, J. Mac´ıas-P´erez1, and A. Monfardini2,1 1 LPSC, Universit Grenoble-Alpes, CNRS/IN2P3, 2 Institut N´eel, CNRS, Universit´eJoseph Fourier Grenoble I, 25 rue des Martyrs, Grenoble, 3 Institut de Radio Astronomie Millim´etrique (IRAM), Grenoble, 4 LNGS - Laboratori Nazionali del Gran Sasso - Assergi (AQ), 5 Centre de Sciences Nucl´eaires et de Sciences de la Mati`ere (CSNSM), CNRS/IN2P3, bat 104 - 108, 91405 Orsay Campus Preprint online version: September 26, 2018 ABSTRACT This work intends to give the state-of-the-art of our knowledge of the performance of lumped element kinetic inductance detectors (LEKIDs) at millimetre wavelengths (from 80 to 180 GHz). We evaluate their optical sensitivity under typical background conditions that are representative of a space environment and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100 and 150 GHz (∆ν/ν about 0.3). Their sensitivities were characterised in the laboratory using a dedicated closed-cycle 100 mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays was evaluated by exposing the LEKID arrays to alpha particles (241Am) and X sources (109Cd), with a read-out sampling frequency similar to those used for Planck HFI (about 200 Hz), and also with a high resolution sampling level (up to 2 MHz) to better characterise and interpret the observed glitches.