MP-173DM Newfoundlandmtns Plate2 REV 022221

Total Page:16

File Type:pdf, Size:1020Kb

MP-173DM Newfoundlandmtns Plate2 REV 022221 UTAH GEOLOGICAL SURVEY a division of Utah Department of Natural Resources in cooperation with Plate 2 U.S. Department of the Interior Utah Geological Survey Miscellaneous Publication 173DM U.S. Geological Survey Geologic Map of the Newfoundland Mountains and east p art of the Wells 30' x 60' Quadrangles CORRELATION OF MAP UNITS LIST OF MAP UNITS GEOLOGIC SYMBOLS INDEX TO GEOLOGIC MAPPING Surficial Quaternary-Tertiary Surficial Deposits Tertiary (Paleogene) Igneous and Sedimentary Rocks Devonian Rocks Contact –Long dashed where approximately Axial trace of anticline – Dotted where 114° 113°30' 113° MAP NAME AND AUTHORS Deposits, 41°30' 41°30' undivided located, short dashed where inferred, dotted JJJconcealed Depositional Environment Qu Ttc Dp (cross Surficial deposits, undivided (Holocene and Pleistocene) Rhyolitic tuff and sedimentary rocks (Eocene) Pilot Shale where concealed 1. Lucin NW - Miller and Oviatt, 1994 section Axial trace of syncline – Dotted where 2 2. Bovine Mountain - Jordan, 1983 only) Alluvial Playa and Spring Lacustrine and Mixed-Environment Eolian Mass-Movement Alluvial Deposits Trd Rhyodacite (Eocene) Dg Guilmette Formation Bedding plane fault – Long dashed where """ concealed 3. Terrace Mountain West - Miller and McCarthy, 2002 approximately located, dotted where 18 1 19 3 4 Qam Qal Qafy Qpm Qsm Qei Qes Qeo Qem Qmc Qam Alluvial mud (Holocene) Tg Granodiorite dikes (Eocene) Ds Simonson Dolomite concealed; ticks on hanging wall 4. Terrace Mountain East - McCarthy and Miller, 2002 Qms Holo. Qu Line of cross section Qafo Qlm Qli Qls Qlg Qla 20 5. Tecoma - Miller and Schneyer, 1985 Qal Stream alluvium (Holocene) Tbc Bettridge Creek Granodiorite (Eocene) Devonian and Silurian Rocks Overturned low-angle normal fault – Dotted 6. Lucin - Miller, 1985 where concealed; teeth on hanging wall 21 Qb Qafy Young alluvial-fan deposits (Holocene) DSd Thick–bedded dolomite, undivided 7. Pigeon Mountain - Glick and Miller, 1987 QTaf ~ 1 Ma QUATERNARY Tm McGinty Monzogranite (Eocene) Bedding form lines (cross section only) Pleistocene Low-angle normal fault – Long dashed where 8. Jackson - Miller and Glick, 1987 ? Qafo Older alluvial-fan deposits (Pleistocene) Teg Emigrant Pass intrusion of Compton and others (1977) (Eocene) DSlm Lone Mountain Dolomite approximately located, dotted where Sedimentary bedding attitude - 9. Pa tterson Pass - Miller and others, 1993 Tby concealed; teeth on hanging wall 5 6 7 8 ~ 4 Ma Plio. QTaf Oldest alluvial-fan deposits (Pleistocene and Pliocene?) Jurassic Plutonic Rocks DSu Undivided dolomite and limestone 10. Crater Island NW - Miller, 1993 Steeply dipping normal fault – Long dashed Unconformity; low-angle normal fault in Pilot Range Inclined 11. Lemay Island - Miller and Glick, 1986 Playa and Spring Deposits Jms Miners Spring Granite Silurian Rocks where approximately located, short dashed 12. Lucin 4 NW - Glick and Miller, 1986 ? where inferred, dotted where concealed; bar 41°15' 41°15' Tt Tr ~8 - 10 Ma Qpm Playa mud (Holocene) Jgd Granodiorite Sl Laketown Dolomite and ball on downthrown side 13. Pilot Peak - Miller and Lush, 1994 Tbi ~10.5 Ma Inclined, orientation approximate 14. Crater Island SW - Miller, 1990c CENOZOIC Qsm Spring mud (Holocene) Jpm Porphyritic monzogranite Ordovician Rocks Normal fault, geophysical, gravity – Dotted 23 Ts NEOGENE 15. Crater Island - Miller and others, 1990a Tdb G where concealed and very approximately 9 10 11 12 Miocene Oes Overturned Lacustrine and Mixed-Environment Deposits Jc Ely Springs Dolomite located; bar and ball on downthrown side 16. Lucin 4 SW - Miller, 1990a Tt Td Tr ~12 - 14 Ma Crater Island Quartz Monzonite TERTIARY 17. Newfoundland Mountains - Allmendinger and Jordan, 1989 Qlm Lacustrine marl (Pleistocene) Jn Oe Eureka Quartzite Thrust fault – Dotted where concealed; teeth 17 23 Newfoundland Stock of Caroon (1977) Vertical 18. Jackson Spring area - Douglas, 1984; Miller and Felger, unpublished mapping Tsc on hanging wall 22 Ts Tbi ~18.5 Ma Qli Lacustrine silt (Pleistocene) Triassic Rocks Ocw Crystal Peak Dolomite and Watson Ranch Quartzite 19. Lucin NE-Bovine area - Miller and Felger, unpublished mapping; Compton ? Fault, unknown type – Long dashed where Volcanic and metamorphic foliation - and others, 1983, unpublished mapping Unconformity; low-angle normal fault in Pilot Range Qls Lacustrine sand (Pleistocene) ^d Dinwoody Formation Ol Lehman Formation approximately located, dotted where 20. Sheep Mountain area - Miller and Felger, unpublished mapping concealed Horizontal 13 14 15 16 21. Hogup Mountains area - Stifel, 1964; Miller, unpublished mapping Qlg Lacustrine gravel (Pleistocene) Permian Rocks Ok Kanosh Shale Ttc ~37 Ma Tg Tbc Tm Teg ~34 - 42 Ma 22. Grassy Mountains area - Doelling, 1964; Miller, unpublished mapping Fault, gravity slide – Ticks on hanging wall Eocene Qla Lacustrine and alluvial deposits, undivided (Pleistocene) Pg Gerster Formation Opl Lower Pogonip Group Trd PALEOGENE Inclined 23. Great Salt Lake Desert - Miller, unpublished mapping 41° 41° Unconformity Unconformity Eolian Deposits Pm Murdock Mountain Formation Ordovician and Cambrian Rocks Zone of structural accommodation 114° 113°30' 113° Qei Eolian silt (Holocene) O_n Notch Peak Formation Vertical Jms Jgd Jpm Jc Jn ~155 - 160 Ma Ppm Phosphoria Formation, Meade Peak Phosphatic Shale Tongue Published map Unpublished, reconnaisance, and thesis mapping Lake Bonneville shorelines -- JURASSIC Qes Eolian sand and silt (Holocene) Pgr Grandeur Formation of the Park City Group Cambrian Rocks Bonneville shoreline – Dashed where Unconformity B B _cs Corset Spring Shale Member of the Orr Formation B B B Northern Pilot Range, Lion Mountain, Qeo Eolian ooid sand (Holocene) Ptc Trapper Creek Formation approximately located Ground water well Lemay Island, Pigeon Mountain, Bovine Mountains, Terrace Mountain, MESOZOIC _j and Little Pigeon Mountains and the Hogup and Grassy Mountains Qem Eolian mud (Holocene) Pbg Johns Wash Limestone Member of the Orr Formation Provo shoreline – Dashed where Badger Gulch Formation P PPPP approximately located Drill hole – Oil/gas exploration ^d Fault or depositional ^d Not pres ent in Grassy Mountains Mass-Movement Deposits _c Candland Shale Member of the Orr Formation contact with Pm TRI. Pp Pequop Formation Pg Only present at Lemay Island Pg Qmc _sd S SSS S Stansbury shoreline Colluvium and talus (Holocene) Pu Unnamed sandstone unit Sandstone and dolomite Pm Pm Qms Landslide deposits (Holocene and Pleistocene) _b Big Horse Limestone Member of the Orr Formation Southern Pilot Range, Crater Island, Ptf Third Fork(?) Formation Pilot Valley shoreline – Dashed where Ppm VVVVV V and Newfoundland Mountains Ppm approximately located Quaternary Volcanic Rocks _l Lamb Dolomite Pgr Pgr Pgr Pr Riepetown Sandstone Qb Gilbert shoreline – Dashed where PERMIAN Basalt of Sheep Mountain (Pleistocene) GGGG G G Ptc Permian and Pennsylvanian Rocks _tr Trippe Limestone Pp Pu approximately located Pbg Tertiary (Neogene) Igneous and Sedimentary Rocks Posl Oquirrh Group, Interbedded sandstone and limestone unit _to Toano Limestone Ptf Pr Posl Tby Younger basaltic lava flows (Pliocene) *os Oquirrh Group, Sandstone unit _ks Killian Springs Formation P*s P*s *os Ts Salt Lake Formation, undivided (Miocene) Unconformity Unconformity in *ol Cambrian and Neoproterozoic Rocks Grassy Mtns Oquirrh Group, Limestone unit LITHOLOGIC COLUMN Unconformity *e *ol PENN. Tsc Salt Lake Formation, conglomerate (Miocene) _Zpm P*s Strathearn Formation Prospect Mountain Quartzite *Mdc *Mdc *Mdc Southern Pilot Range, Crater Island, Newfoundland Mountains Low-angle normal fault Tt Tuff and tuff breccia (Miocene) Neoproterozoic Rocks common at base of IPMdc *e Mtp Mj MISS. Ely Limestone Tr Rhyolite (Miocene) Zmg McCoy Creek Group of Misch and Hazzard (1962), Unit G Fault(s) in Pilot Range Dp Pennsylvanian and Mississippian Rocks AGE GEOLOGIC MAP THICKNESS LITHOLOGY NOTES Dg Dg Fault Td Zmf Dacite (Miocene) *Mdc Diamond Peak Formation and Chainman Shale, undivided McCoy Creek Group of Misch and Hazzard (1962), Unit F UNIT SYMBOL Meters DSu (Feet) Ds Ds DEVONIAN Tbi Intermediate-age basaltic lava flows (Miocene) Zme McCoy Creek Group of Misch and Hazzard (1962), Unit E Mississippian Rocks Grandeur PCGp Pgr >120 (>400) DSlm Fm DSd Tdb Diabase (Miocene) Mtp Tripon Pass Limestone Zmd McCoy Creek Group of Misch and Hazzard (1962), Unit D Sl Sl SIL. Zmb McCoy Creek Group of Misch and Hazzard (1962), Unit B(?) Pequop 450–550 Oes Oes Oes Mj Joana Limestone Pp PALEOZOIC Formation (1500–1800) PERMIAN LITHOLOGIC COLUMN Oe Oe Oe Zma McCoy Creek Group of Misch and Hazzard (1962), Unit A(?) Ocw Thrust faults common Ocw Riepetown Ss Pr 90 (300) Bovine Mountains, Terrace Mountain, Hogup Mountains, Grassy Mountains in this interval in the Strathearn Fm P*s 5–40 (16–130) Unconformity Low-angle normal fault Ol Newfoundland Mountains Ely >250 Low-angle normal fault *e Ok ORDOVICIAN Limestone (>820) AGE GEOLOGIC MAP THICKNESS LITHOLOGY NOTES PENN. UNIT Diamond SYMBOL Meters Opl Opl Opl Commonly Peak Fm, <375 (Feet) *Mdc structurally Chainman (<1230) O_n LITHOLOGIC COLUMN thinned Shale Not present in _cs MISS. Mj Dinwoody 400–600 Grassy Mtns Northern Pilot Range, Lion Mountain, Lemay Island, Pigeon Mountain, Joana Ls 125 (410) ^d Formation (1300–2000) _j _sd and Little Pigeon Mountains Pilot TRIASSIC Dp 300 (980) _c Shale _b AGE GEOLOGIC MAP THICKNESS LITHOLOGY NOTES UNIT SYMBOL Meters Gerster 485–600 _l (Feet) Pg Guilmette <550 Formation (1600–1970) Dg Fm (<1800) _tr Dinwoody Fm ^d 110 (360) Fault or contact
Recommended publications
  • The Influence of Hydrology and Climate on the Isotope Geochemistry
    Sedimentology (2007) doi: 10.1111/j.1365-3091.2007.00932.x The influence of hydrology and climate on the isotope geochemistry of playa carbonates: a study from Pilot Valley, NV, USA CYNTHIA M. LIUTKUS* and JAMES D. WRIGHT *Department of Geology, Appalachian State University, ASU Box 32067, Boone, NC 28608, USA (E-mail: [email protected]) Department of Geological Sciences, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA ABSTRACT Carbonates often accompany lake and lake-margin deposits in both modern and ancient geological settings. If these carbonates are formed in standing water, their stable isotope values reflect the aquatic chemistry at the time of precipitation and may provide a proxy for determining regional hydrologic conditions. Carbonate rhizoliths and water samples were collected from a playa lake in eastern Nevada. Pilot Valley (43°N) is a closed-basin, remnant playa from the Quaternary desiccation of palaeo-Lake Bonneville. Water is added to the playa margin by free convection of dense brines to the east and forced convection of freshwater off the alluvial fan to the west. Both freshwater and saline springs dot the playa margin at the base of an alluvial fan. Water samples collected from seven springs show a range from )16 to )0Æ2& (Vienna Standard Mean Ocean Water), and are consistent with published values. The 18 ) ) d Ocalcite values from rhizolith samples range from 18Æ3to 6Æ7& (Vienna Pee Dee Belemnite), and the average is )12& V-PDB (1 ) r SD 2&). With the 18 exception of samples from Little Salt Spring, the range in the d Ocalcite values collected from the rhizoliths confirms that they form in equilibrium with ambient water conditions on the playa.
    [Show full text]
  • Potash Brines in the Great Salt Lake Desert, Utah
    Please do not destroy or throw away this publication. If you have no further use for it write to the Geological Survey at Washington and ask for a frank to return it DEPARTMENT OF THE INTERIOR Hubert Work, Secretary U. S. GEOLOGICAL SURVEY George Otis Smith, Director Bulletin 795 B BY THOMAS B. NOLAN Contributions to economic geology, 1927, Part I (Pages 25-44) Published June 16,1927 UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON ' 1927 CONTENTS Page Introduction___ 25 Location and settlement _ 26 History of development 26 Acknowledgments- ' _ -^ , 27 Bibliography____ 27 Method of prospecting 28 Geology______ - 29 General features _ 29 Surface features 30 Lake Bonneville beds _ 32 Calcareous clays and sands_____________ ________ 32 Salt___________________________________ 34 Brines __ _ 35 Origin of the brines___ _____ 40 Technical considerations __ _.___ _______________ 43 Summary- _ _ _ _ : ___ 44 ILLUSTEATION Page PLATE 3. Map showing the salinity of the brines underlying the Great Salt Lake Desert, Utah______________________ 40 n POTASH BRINES IN THE GREAT SALT LAKE.DESERT, UTAH By THOMAS B. NOLAN INTRODUCTION During and immediately after the war the brines of-the Salduro Marsh, in the Great Salt Lake Desert, were a source of considerable potash for the domestic supply. Although no p'otash has been pro­ duced from these brines in the last few years, a continued interest in the area has been shown by a large number of filings, in different parts of the desert, under the potash law of October 2, 1917 (40 Stat. 297), and the regulations issued under that law by the Department of the Interior on March 21, 1918, in Circular 594 (46 L.
    [Show full text]
  • Oxidized Zinc Deposits of the United States Part 2
    Oxidized Zinc Deposits of the United States Part 2. Utah By ALLEN V. HEYL GEOLOGICAL SURVEY BULLETIN 1135-B A detailed study of the supergene zinc deposits of Utah UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printin~ Office Washin~ton 25, D.C. CONTENTS Page Abstract ____________________ ~------------------------------------- B1 Introduction______________________________________________________ 1 Fieldwork____________________________________________________ 1 Acknowledgments_____________________________________________ 2 Geology__________________________________________________________ 2 Location of the deposits________________________________________ 2 ~ineralogy___________________________________________________ 3 Secondary zinc minerals_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 Smithsonite___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 H emimorphite (calamine) __ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 Hydrozincite___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ 7 Aurichalcite_____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 7 VVurtzite_____________________________________________ 8 Other secondary zinc minerals___________________________ 8 Associated minerals__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
    [Show full text]
  • Distribution of the Native Trees of Utah Kimball S
    Brigham Young University Science Bulletin, Biological Series Volume 11 | Number 3 Article 1 9-1970 Distribution of the native trees of Utah Kimball S. Erdman Department of Biology, Slippery Rock State College, Slippery Rock, Pennsylvania Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Erdman, Kimball S. (1970) "Distribution of the native trees of Utah," Brigham Young University Science Bulletin, Biological Series: Vol. 11 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol11/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. MU3. CCy.P. ZOOL. LIBRARY DEC 41970 Brigham Young University HARVARD Science Bulletin UNIVERSITY) DISTRIBUTION OF THE NATIVE TREES OF UTAH by Kimball S. Erdman BIOLOGICAL SERIES—VOLUME XI, NUMBER 3 SEPTEMBER 1970 BRIGHAM YOUNG UNIVERSITY SCIENCE BULLETIN BIOLOGICAL SERIES Editor: Stanley L. Welsh, Department of Botany, Brigham Young University, Provo, Utah Members of the Editorial Board: Tipton, Zoology Vernon J. Feeeon L. Anderson, Zoology Joseph R. Murdock, Botany WiLMER W. Tanner, Zoology Ex officio Members: A. Lester Allen, Dean, College of Biological and Agricultural Sciences Ernest L. Olson, Chairman, University Publications The Brigham Young University Science Bulletin, Biological Series, publishes acceptable papers, particularly large manuscripts, on all phases of biology. Separate numbers and back volumes can be purchased from Pubhcation Sales, Brigham Young University, Provo, Utah.
    [Show full text]
  • Geochronology of Intrusive and Metamorphic Rocks in the Pilot Range, Utah and Nevada, and Comparison with Regional Patterns
    Geochronology of intrusive and metamorphic rocks in the Pilot Range, Utah and Nevada, and comparison with regional patterns iiiCMrw^P I U-S- Geological Survey, 345 MiddlefleldRoad, Menlo Park, California 94025 WENDY C. HlLLHOUofc, f ROBERT E. ZARTMAN U.S. Geological Survey, Denver Federal Center, Denver, Colorado 80225 MARVIN A. LANPHERE U.S. Geological Survey, 345 Middlefleld Road, Menlo Park, California 94025 ABSTRACT tonism; these ambiguities have resulted in diver- clude Archean gneiss, upper Proterozoic to gent views of the regional metamorphic and lower Mesozoic sedimentary rocks that are K-Ar and U-Pb isotopic studies demon- tectonic development. These views range from unmetamorphosed or metamorphosed to green- strate middle Mesozoic metamorphism and assigning the metamorphism entirely to the schist and amphibolite facies, Mesozoic granit- plutonism followed by Eocene plutonism in Mesozoic (Misch, 1960; Armstrong and Hansen, oids, and Cenozoic igneous and sedimentary the Pilot Range, northeastern Great Basin. 1966) to emphasizing the Cenozoic metamor- rocks. Geologic relations in mountain ranges in Combined with field relations, the age con- phism (Compton and others, 1977; Miller and which amphibolite-facies rocks crop out gener- straints indicate that local amphibolite-facies others, 1983) and primarily attributing the at- ally demonstrate convincingly that Cenozoic and widespread greenschist-facies metamor- tendant deformation to either shortening or ex- metamorphism, ductile deformation, and low- phism peaked between 165 and 150 Ma and tension modes. The divergent interpretations angle normal faulting occurred (Compton and that plutons were emplaced early in the de- seem to require models intermediate between others, 1977; Miller and others, 1983; Snoke formational and metamorphic history, be- the extremes (Armstrong, 1982; Miller and oth- and Lush, 1984), which has led to application of tween 165 and 155 Ma.
    [Show full text]
  • Statement of Tom Fulton Deputy Assistant Secretary
    Statement of Tom Fulton Deputy Assistant Secretary– Land and Minerals Management Department of the Interior House Resources Committee Subcommittee on National Parks, Recreation and Public Lands on H.R. 2488, Pilot Range Wilderness July 26, 2001 Thank you for the opportunity to testify regarding H.R. 2488. The Department appreciates Chairman Hansen's efforts in continuing to address wilderness in Utah. The Department of the Interior supports H.R. 2488, which designates over 37,000 acres of land in western Utah as wilderness. We would like the opportunity to work with the Committee on clarifying and technical amendments to the legislation before the Committee completes its consideration of this bill. The proposed Pilot Range Wilderness Area lies in Box Elder County, Utah. Rising to over 10,761 feet, Pilot Peak served as a beacon for travelers headed to California in the 1840s and, for some, a beacon of false hope. Travelers who had completed the hot, dry trek across the Great Salt Lake Desert found water in the springs along the eastern base of the range. Located approximately 115 miles northwest of Salt Lake City, along the Utah and Nevada state line, the Pilots are a north-south trending mountain range, with canyons draining east to a large alkali flat, and west to a broad valley that extends into Nevada. The rugged terrain (ridges, side canyons and valley bottoms) meets the requirements of the Wilderness Act. Diverse vegetation complements the topography by providing screening from human activity. Opportunities for hunting, camping, hiking, and photography are outstanding. Horseback riding and pack trips are abundant throughout the area.
    [Show full text]
  • Stratigraphy and Microfaunas of the Oquirrh Group in the Southern East ...Tintic Mountains, Utah
    Stratigraphy and Microfaunas of the Oquirrh Group in the Southern East ...Tintic Mountains, Utah G E 0 L 0 G I C A L S U R V E Y P R 0 F E S S I 0 N A L P A P E R 1025 Stratigraphy and Microfaunas of the Oquirrh Group in the Southern East rrintic Mountains, Utah By H. T. MORRIS, R. C. DOUGLASS, and R. W. KOPF G E 0 L 0 G I CAL S lJ R V E Y P R 0 FE S S I 0 N A L PAP E R 1025 U N I T E D S T A T E S G 0 V E R N M E N T P R I N T I N G 0 F F I C E , WAS H I N G T 0 N : 1977 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Main en try under title: Morris, Hal Tryon, 1920- Stratigraphy and microfaunas of the Oquirrh Group in the southern East Tintic Mountains, Utah. (Geological Survey Professional Paper 1025) Bibliography: p. 20-22. 1. Geology, Stratigraphic--Pennsylvanian. 2. Geology, Stratigraphic--Permian. 3. Micropaleontology-­ Utah--Tintic Mountains. 4. Geology--Utah--Tintic Mountains. I. Douglass, Raymond Charles, joint author. II. Kopf, Rudolph William. III. Title. IV. Series: United States. Geological Survey. Professional Paper 1025. QE673.M67 551.7'52 77-10492 For -,ale by the Superintendent of Documents, U.S. GoYernment Printing Office \Vashington, D.C.
    [Show full text]
  • Mesozoic Structure of the Newfoundland Mountains, Utah: Horizontal Shortening and Subsequent Extension in the Hinterland of the Sevier Belt
    Mesozoic structure of the Newfoundland Mountains, Utah: Horizontal shortening and subsequent extension in the hinterland of the Sevier belt RICHARD W. ALLMENDINGER | Department of Geological Sciences, Cornell University, Ithaca, New York 14853 TERESA E. JORDAN ABSTRACT ented at a low angle to bedding. Microfabric analysis of recrystallized The Newfoundland Mountains of northwestern Utah preserve an rocks in the contact aureole and unrecrystallized country rocks shows unusually complete record of Mesozoic deformation in the hinterland that most of the intracrystalline strain is pre-latest Jurassic in age and of the Sevier orogenic belt. Structural relations of Paleozoic miogeo- is characterized by layer-parallel shortening. Post-latest Jurassic in- clinal strata with the Newfoundland stock, which has biotite and tracrystalline strain is minor and records shortening originally ori- hornblende K/Ar ages of 153.2 ± 4.6 and 147.7 ± 4.4 m.y., respec- ented nearly vertical. The map geometries, geochronology, and tively, and dated quartz monzonite dikes (with K/Ar biotite ages of microfabric analysis suggest the following structural history (from 150.7 ± 4.5 and 143.7 ± 4.3 m.y. and a muscovite age of 149.1 ± 4.5 oldest to youngest): (1) pre-latest Jurassic regional shortening and m.y.) provide the basis for dating Mesozoic deformation in the range. thrusting and (2) syn- or post-latest Jurassic horizontal extension Geologic mapping at 1:24,000 has identified four geometric classes of during the Mesozoic. In the Cretaceous and early Tertiary,
    [Show full text]
  • Pilot Creek Valley (Updated 2014)
    Site Description Pilot Creek Valley (Updated 2014) Geologic setting: The Pilot Creek Valley is located near the border of Nevada and Utah approximately 30 kilometers northwest of West Wendover, Nevada. Pilot Creek Valley also lies between the Toano Range towards the west and the Pilot Range towards the east. The Pilot Range is composed of slate, argillite, phyllite, metasiltstone, quartzite, and conglomerate and is exposed throughout the range (Woodward, 1967). The Pilot Range is a north trending mountain range located west of the Nevada-Utah border. The range is composed of metamorphosed Cambrian and Proterozoic strata with Mesozoic igneous rocks that are overlain by Quaternary sedimentary rocks and other unconsolidated material. Multiple faults and folds are prominent throughout the range including bedding plane faults, low angle faults, and high angle Tertiary strike-slip and normal faults. These normal faults are range bounding faults parallel to the range fronts (Miller and Lush, 1981). The southern Toano range is composed primarily of Cambrian and Ordovician carbonate and shale units that have been deformed into northeast plunging folds. Metamorphism has occurred in this region resulting in bleached and marbleized limestone with shale units being converted to slate and phyllite with some minor muscovite schist. These units make up the Silver Zone terrane which was intruded by the Middle Jurassic Silver Zone Pass pluton (Ketner et al, 1998). Geothermal features: A warm spring on the western side of Pilot Creek Valley (T36N, R68E, Sec. 34?) was sampled by NBMG in 2008. The spring had been converted into a tractor tire cattle trough. Samplers reported “Water flows upward through a pipe, with algae and white salt deposits visible inside the tube.
    [Show full text]
  • W9200094.Pdf
    STATE OF UTAH DEPARTt1EtJT OF tJATURAL RESOURCES Technical Publ ication No. 42 HYDROLOG IC RECOtJNA , SSANCE OF THE tWRTHERN GREAT SALT LAKE DESERT AND SUMMARY HYDROLOGIC RECONNAISSANCE OF NORTHWESTERN UTAH by Jerry C. Stephens, Hydrologist U. S. Geological Survey Prepared by the United States Geological Survey in cooperation with the Utah Department of Natural Resources Division of ~ater Rights 1974 CONTENTS Page Abstract ...........................................•....................... Introduction ••••.•••.••••.••••••••••••••••••••••••••••••••••••••••••••••••• 2 Previous studies and acknowledgments ••••••.•••••••••••••••••••••••••••••••• 3 Hydrologic reconnaissance of the northern Great Salt Lake Desert............................................................ 7 Location and general features •••••••••••.•.••••••••••••••••••.•.•.. 7 Hydrology •••••••••• ................................................ 7 Surface water •• ................................................ 7 Ground water ••••••••••••••••••••••••••••••••••••••••••••••••••• 11 Shallow brine aquifer ••• ................................... 12 Alluvial-fan aquifer ••• .................................... 16 Valley-fill aquifer 20 ot he r aqui fer 5 ••••••••••••••••••••••••••••••••••• 22 Discussion of recharge and discharge estimates ••••••••••••• 23 ~"a te r qua litY••••••• ........................................... 23 Potential for additional water-resources development •• 26 Summary of hydrology of northwestern Utah •••••••••••••••••••••••••••••••••• 26 Surface water .................•..•................................
    [Show full text]
  • Rails East to Prodlontory the Utah Stations
    BUREAU OF LAND MANAGEMENT UTAH "'-J ,-:, C:::,, c....• , C) ~- r- --5 :r a-, t.=-, \{) :? 1-.c', w 0 w Rails East to ProDlontory The Utah Stations Anan S. Raymond Richard E. Fike CULTURAL RESOURCE SERIES No. 8 Special Edition Reprint 1994 Special Edition Reprint 1994 The original Bureau of Land Management publication on the route of this historic railroad between Lucin and Promontory Point in Utah, Rails East to Promontory, the Utah Stations, first appeared in 1981 as Number 8 in the Utah Cultural Resource Series. High public demand for the volume resulted in its becoming out-of-print. The year 1994 marked the 125th anniversary of the completion of the first transcontinental railroad on May 10, 1869. Celebration of the placement of the famous Golden Spike was widely publicized and attended by thousands. The year 1994 also marked the advent of the theme "Trails West," in the Bureau of Land Management's Adventures in the Past program. This theme explored historic transportation routes and the relationship of these routes to westward expansion. The work by the authors, Raymond and Fike, has stood the test of time. Please note that the volume has been reprinted as it appeared in 1981 with some modifications. A few minor notes offered as errata for this reprint, follow: * The map on page 26 has two errors. The site of Metataurus was spelled incorrectly, and the locations of Metataurus and Centre were apparently transposed. * The site of Ombey, as noted on page 27 (second paragraph) is not synonymous with Gravel Pit. Om bey and Gravel Pit are separate locations, as correctly described on page 62 of the text.
    [Show full text]
  • Vascular Type Specimens
    University of Colorado Herbarium (COLO) 1201 Record(s) Page 1 of 322 COLO Type Specimens Acanthaceae Family: Acanthaceae Beloperone fragilis Robinson Type Status: Isotype Accession No: 422655 Bar Code: 351023 Proofed: none. Location: San Luis Potosi, Mexico. Las Canoas. Habitat: Limestone ledges. Collector: C.G. Pringle #3933. Date: 30 October, 5 December 1891. Miscellaneous: Plantae Mexicanae. Gift from Colorado College 1984. Repr. Status: Flr. Annotations: = Beloperone tenera (Rob.) Turrill. References: Proc. Amer. Acad. 27:183. 1892. Beloperone pringlei S. Watson Type Status: Isotype Accession No: 422657 Bar Code: 351031 Proofed: none. Location: Nuevo Leon, Mexico. Hills near Monterey. Habitat: none. Collector: C.G. Pringle #2548. Date: 15 July & 1 August 1889. Miscellaneous: Plantae Mexicanae. Gift from Colorado College 1984. Repr. Status: Flr. Annotations: = Justicia straminea D. Gibson. References: Proc. Amer. Acad. 25:160. 1890. Carlowrightia glandulosa Rob. & Greenm. Type Status: Isotype Accession No: 422658 Bar Code: 356568 Proofed: none. Location: Oaxaca, Mexico. Monte Alban near Oaxaca. Habitat: none. 5500 ft. Collector: C.G. Pringle #6276. Date: 5 December 1895. Miscellaneous: 1-3 feet. Plantae Mexicanae. Gift from Colorado College 1984. Repr. Status: Flr & Frt. Annotations: none. References: Proc. Amer. Acad. 32:40. 1896. Carlowrightia ovata Gray Type Status: Isotype Accession No: 422659 Bar Code: 356576 Proofed: none. Location: Chihuahua, Mexico. Ledges near Chihuahua. Habitat: none. Collector: C.G. Pringle #932. Date: 30 August 1885. Miscellaneous: Plantae Mexicanae. Gift from Colorado College 1984. Repr. Status: Flr & Frt. Annotations: none. References: Proc. Amer. Acad. 21:406. 1886. Page 2 of 322 COLO Type Specimens Acanthaceae Carlowrightia pringlei Rob. & Greenm. Type Status: Isotype Accession No: 422660 Bar Code: 356584 Proofed: none.
    [Show full text]