The Native Forms of the Phycobilin Chromophores of Algal Biliproteins a CLARIFICATION

Total Page:16

File Type:pdf, Size:1020Kb

The Native Forms of the Phycobilin Chromophores of Algal Biliproteins a CLARIFICATION Biochem. J. (1980) 187, 303-309 303 Printed in Great Britain The Native Forms of the Phycobilin Chromophores of Algal Biliproteins A CLARIFICATION Padraig O'CARRA,* Richard F. MURPHYt and S. Derek KILLILEAt Department ofBiochemistry, University College, Galway, Ireland (Received 3 September 1979) Pigments released from phycoerythrins and phycocyanins by treatment with hot methanol are currently regarded as equivalent to the native chromophores phyco- erythrobilin and phycocyanobilin. However, evidence presented here confirms the original views of O'Carra & O'hEocha [(1966) Phytochemistry 5, 993-9971 that these methanol-released pigments are artefacts differing in their chromophoric conjugated systems from the native protein-bound prosthetic groups. By contrast, the native spectral properties are retained in pigments released by careful acid treatment of the biliproteins and these acid-released phycobilins, rather than the methanol-released pigments, are therefore regarded as the protein-free forms of the native chromophores. The conclusion reached by Chapman, Cole & Siegelman [(1968) J. Am. Chem. Soc. 89, 3643-36451, that all the algal biliproteins contain only phycoerythrobilin and phycocyanobilin, is shown to be incorrect. The identification of a urobilinoid chromophore, phycourobilin, accompanying phycoerythrobilin in B- and R- phycoerythrins is confirmed and supported by more extensive evidence. The cryptomonad phycocyanins are shown to contain a phycobilin chromophore accom- panying phycocyanobilin. This further phycobilin has the spectral properties of the class of bilins known as violins and the provisional name 'cryptoviolin' is proposed pending elucidation ofits structure. The algal biliproteins are a group of brilliantly the phycocyanins is imparted by open-chain tetra- coloured fluorescent proteins that function as photo- pyrrole chromophores that are covalently attached synthetic pigments in red, blue-green and crypto- to the apoproteins (O'hEocha, 1965, 1966). These monad algae (O'hEocha, 1965, 1966). They are chromophores are termed phycobilins. They have subdivided into two major categories on the basis of labile structures and are difficult to release from the visual appearance: the phycoerythrins are red with a apoproteins without alteration. This has greatly golden fluorescence; the phycocyanins are blue with hindered the complete structural characterization of a red fluorescence (O'hEocha, 1965, 1966). Several the pigments. We believe that the structures cur- subtypes of these chromoproteins are distinguished rently accepted for the major phycobilins, phyco- on the basis of differences in absorption spectra. R-, erythrobilin and phycocyanobilin, apply to artefact B- and C-phycoerythrins and R-, C- and allo- derivatives of the native chromophores. Since the phycocyanins are found in various members of the confusion of native and artefact forms has been Rhodophyta (red algae) and Cyanophyta (blue- extensive (Beuhler et al., 1976; Chapman et al., green algae). Cryptomonad algae contain a complex 1967, 1968; Cole et al., 1967; Crespi & Katz, 1969; group of further variants [see O'hEocha et al. (1964) Crespi et al., 1968; Glazer & Fang, 1973; Glazer & for a review ofthese]. Hixson, 1975; Troxler et al., 1978), we decided that The brilliant coloration of the phycoerythrins and it was appropriate to clarify this issue before * To whom reprint requests should be addressed. proceeding to a consideration of the structures of the t Present address: Department of Biochemistry, native chromophores [see the following paper Medical Biology Centre, Queen's University, Belfast, (Killilea et al., 1980)]. Northern Ireland, U.K. A further issue needing clarification is the t Present address: Department of Biochemistry, North question as to whether phycoerythrobilin and phy- Dakota State University, Fargo, ND 58102, U.S.A. cocyanobilin are the only phycobilins occurring in Vol. 187 0306-3275/80/050303-07$01.50/1 © 1980 The Biochemical Society 304 P. O'CARRA, R. F. MURPHY AND S. D. KILLILEA algal biliproteins, as claimed by Chapman et al. (O'Carra et al., 1964; Riidiger & O'Carra, 1969). (1968). O'hEocha & O'Carra (1961) and O'Carra et Since the artefact attachment takes place by con- al. (1964) suggested the occurrence of a third type densation of the vinyl-side-chain group of ring D of of phycobilin with urobilinoid spectral properties phycoerythrobilin with thiol groups on the poly- in R-phycoerythrin, and evidence presented here peptide chains (O'Carra et al., 1964; Riidiger & strongly supports this. In addition, spectral evi- O'Carra, 1969), blocking of the thiol groups by dence suggest that, as well as containing phycocy- reduction and aminoethylation (Raftery & Cole, anobilin, cryptomonad phycocyanins have a further 1966) before tryptic digestion was carried out to type of phycobilin with violinoid spectral properties eliminate this complication. To further protect the (O'hEocha et al., 1964). We propose that these chromophores, all procedures used were carried out further phycobilins be termed respectively phyco- in the dark and under nitrogen. Tryptic digests were urobilin and cryptoviolin. carried out as follows. Reduced and aminoethylated biliprotein (50mg) was suspended in 10ml of Experimental 0.2M-sodium phosphate buffer, pH7.0. A solution Biliprotein preparations (0.1 ml) of diphenylcarbamoyl chloride-treated tryp- R-phycoerythrin from the red alga Rhodymenia sin (2.5 mg; Sigma) in 1 mM-HCl was added. The palmata, C-phycoerythrin from the red alga mixture was incubated with stirring for 6h at 250C Phormidium persicinum, C-phycocyanin from the under nitrogen, and any insoluble material was blue-green alga Nostoc punctiforme and R-phyco- removed by centrifugation. After the addition of a cyanin from the red alga Ceramium rubrum were further portion (0.1 ml) of trypsin solution to the isolated and purified as by O'Carra (1965). Crypto- supematant, digestion was continued for 16 h. monad phycocyanin was isolated from Hemiselmis Digests were stored at -200C under nitrogen. virescens as by O'hEocha et al. (1964). Starch-gel electrophoresis of tryptic digests of Bilin preparations R-phycoerythrin Methanol-released 'purple pigment' from R- Electrophoresis of tryptic digests of R-phyco- phycoerythrin and 'blue pigment' from C-phyco- erythrin was carried out on horizontal starch gels by cyanin were prepared as by O'Carra & O'hEocha using 'Starch Hydrolysed' (Connaught Medical (1966). Preparations of phycoerythrobilin and Research Laboratories, Toronto, Ont., Canada) and phycocyanobilin from R-phycoerythrin and C- adopting the procedure of Smithies (1955). The phycocyanin, respectively, were obtained by incu- buffer systems used were: glycine/HCl, pH 2.2; bating the biliproteins for successive periods of sodium acetate, pH4.0, 4.5, 5.0 and 5.5; Tris/mal- l5min at 180C in 11.5-12M-HCl (O'Carra et al., ate, pH 7.4 and 8.3. For the glycine/HCl and sodium 1964; O'hEocha, 1963). Phycocyanobilin was acetate buffers, the gel buffer concentration was similarly released from R-phycocyanin when most of 0.025M and the bridge buffer concentration was the phycoerythrobilin had been first released from 0.05M. For the Tris/malate buffers, the gel buffer the protein by two successive incubations with HCl concentration was 0.005M and the bridge buffer (O'Carra, 1962; Murphy, 1968). T.l.c. on silica-gel concentration was 0.1 M. Electrophoresis was carried G was used for analysis of the free diacid forms of out at 40C in the dark for 16h at 7.5 V/cm. After the phycobilin preparations and for purification of electrophoresis the starch gels were soaked in individual bilin constituents (Murphy, 1968). The ethanol/pyridine (1: 1, v/v) for 10min. The solvent systems used were: carbon tetra- bathing fluid was replaced for each of two subse- chloride/acetic acid (2: 1, v/v); carbon tetra- quent washings. The gels were then placed in a chloride/acetone/acetic acid (4:8:1, by vol.); hep- saturated solution of zinc acetate in ethanol for tane/acetone/acetic acid (16:16:3, by vol.). Bilins 10min to convert the bilin chromophores into their were esterified (Murray, 1966) in a solution (1 ml) of zinc complexes. Although the peptide bands that BF3 in methanol (14%, v/v; Sigma, Poole, Dorset, contained bilin chromophores could be detected U.K.) for 25min at 40C. Ice-cold water (4ml) was visually after electrophoresis, much greater sen- then added and the esterified pigment was extracted sitivity was achieved by viewing the fluorescent zinc with three 2ml portions of chloroform. complexes under u.v. light, when phycoerythrobilin and phycourobilin exhibit orange and green fluores- Tryptic digestion ofbiliproteins cence respectively. At each pH value used for Previous studies have shown that, under some electrophoresis of the tryptic digest, only one peptide conditions used to release phycoerythrobilin from containing phycoerythrobilin and one containing phycoerythrins, random artefact covalent linkage of phycourobilin could be detected. Similar results the bilin to the polypeptide chains of the apoprotein were obtained when the digests were subjected can take place and the chromophore is also to electrophoresis on polyacrylamide disc gels by converted into a urobilinoid artefact derivative the method of Dietz & Lubrano (1967). 1980 THE NATIVE PHYCOBILIN CHROMOPHORES OF ALGAL BILIPROTEINS 305 Results and Discussion released and methanol-released pigment prepara- tions. The two preparations retain their spectral To simplify discussion, the phycobilins are
Recommended publications
  • Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr
    Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr. 67, D-8000 München 19, Bundesrepublik Deutschland Z. Naturforsch. 38 c, 753-757 (1983); received May 4, 1983 Semisynthetic Bile Pigments, Urobiliverdin III, Coprobiliverdin III, Biliverdin IX, Uroporphyrin III 5-Aminolevulinic acid is incubated with a crude enzyme extract from Rhodopseudomonas spheroides, mutant R 26. The formed porphyrins (main product: uroporphyrin III) are isolated. Incorporation of iron, ring-splitting by coupled oxydation and subsequent iron removal leads to a mixture of pigments, from which urobiliverdin, a new bile pigment with eight carboxylic acid side chains, is isolated. It is characterized by its chromatographic behaviour, chromic acid degra­ dation and UV-vis spectroscopy. Introduction the photosynthetic bacteria, Rhodopseudomonas spheroides, mutant R26 was a gift from Prof. Naturally occurring open chained tetrapyrrolic H. Scheer, Munich. Marker porphyrins were pur­ systems (bile pigments) usually bear two carboxylic chased from Porphyrin products (Logan, USA). acid side chains, namely propionic acid side chains. Chromic acid degradation was performed accord­ Examples are phycocyanobilin [1-5], phycoerythro- ing to the procedure developed by Rüdiger [21]; the bilin [5, 6], phytochromobilin [7, 8], the biliar pig­ degradation products were separated on silicagel 60 ment bilirubin ([9], here older literature) and sterco- coated HPTLC plates (E. Merck, Darmstadt, FRG) bilin [9] which is encountered in the faeces. using the solvent system chloroform-ethyl acetate- All of these pigments probably derive from proto­ cyclohexane = 6:3:1. The imides formed were heme as has been shown experimentally in a identified by comparison with authentic standards.
    [Show full text]
  • Ecological and Physiological Studies on Freshwater Autotrophic Picoplankton
    Durham E-Theses Ecological and physiological studies on freshwater autotrophic picoplankton Hawley, Graham R.W. How to cite: Hawley, Graham R.W. (1990) Ecological and physiological studies on freshwater autotrophic picoplankton, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/6058/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Ecological and physiological studies on freshwater autotrophic picoplankton by Graham R.W. Hawley B.Sc. (DI.melm) A thesis submdtted for the degree of Doctor of Philosophy in the university of Durham, England. Department of Biological Sciences, August 1990 The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. w~ 1 8 AUG 1992 2 This thesis is entirely the result of my~~ work.
    [Show full text]
  • PDF File Includes: Main Text Figures 1 to 4 Supplemental Text Supplemental Figures S1 to S8 Supplemental Tables
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.414581; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE Takayuki Nagaea, Masashi Unnob, Taiki Koizumic, Yohei Miyanoirid, Tomotsumi Fujisawab, Kento Masuif, Takanari Kamof, Kei Wadae, Toshihiko Ekif, Yutaka ItoC, Yuu Hirosef and Masaki Mishimac aSynchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan; bDepartment of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan; cDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan; dInstitute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan; eDepartment of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan; fDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan 1To whom correspondence should be addressed 1Masaki Mishima Email: [email protected] 1Yuu Hirose Email: [email protected] 1 Masashi Unno Email: [email protected] Takayuki Nagae: 0000-0001-7016-5183 Tomotsumi Fujisawa: 0000-0002-3282-6814 Masashi Unno: 0000-0002-5016-6274 Yohei Miyanoiri: 0000-0001-6889-5160 Yuu Hirose: 0000-0003-1116-8979 Kei Wada: 0000-0001-7631-4151 Yutaka Ito: 0000-0002-1030-4660 Masaki Mishima: 0000-0001-7626-7287 Classification Biological Sciences Keywords cyanobacteriochrome, phytochrome, bilin, NMR, crystallography Author Contributions MM, YH, and MU designed the research and wrote the manuscript.
    [Show full text]
  • View Article
    Cronicon OPEN ACCESS EC Microbiology Review Article Spirulina Rising: Microalgae, Phyconutrients, and Oxidative Stress Mark F McCarty1 and Nicholas A Kerna2,3* 1Catalytic Longevity, USA 2SMC-Medical Research, Thailand 3First InterHealth Group, Thailand *Corresponding Author: Nicholas A Kerna, (mailing address) POB47 Phatphong, Suriwongse Road, Bangrak, Bangkok, Thailand 10500. Contact: [email protected] Received: August 22, 2019; Pubished: June 30, 2021 DOI: 10.31080/ecmi.2021.17.01135 Abstract Oxidative stress provokes the development of many common diseases and contributes to the aging process. Also, oxidative stress is a critical factor in common vascular disorders and type 2 diabetes. It plays a role in neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, amytrophic lateral sclerosis, multiple sclerosis, and cancer. Oxidative stress contributes to the healthy regulation of cell function. However, excessive oxidative stress results in pathological processes. Antioxidant vitamins have a limited from oxidative stress, and inhibits NOX. PhyCB, a component of the microalgae Spirulina, shares a similar structure with biliverdin, influence on oxidative stress as most oxidative stress results from the cellular production of superoxide. Bilirubin protects cells a biosynthetic precursor of bilirubin. Thus, the oral administration of PhyCB, phycocyanin, or whole Spirulina shows promise for preventing and or treating human disorders that have resulted from excessive oxidative stress. Keywords: Microalgae; Oxidative Stress; Phycocyanobilin; Phyconutrients; Singlet Oxygen; Spirulina; Superoxide Abbreviations DHA: Docosahexaenoic Acid; HO-1: Heme Oxygenase-1; O2: Oxygen; PhyCB: Phycocyanobilin Introduction To understand how phyconutrients, found abundantly in microalgae, can provide preventive and therapeutic effects, it is fundamental to understand how oxidative stress triggers or contributes to the development of many common diseases—and how microalgae, such as Spirulina can help inhibit oxidative stress in the human body.
    [Show full text]
  • Myoglobin with Modified Tetrapyrrole Chromophores: Binding Specificity and Photochemistry ⁎ Stephanie Pröll A, Brigitte Wilhelm A, Bruno Robert B, Hugo Scheer A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1757 (2006) 750–763 www.elsevier.com/locate/bbabio Myoglobin with modified tetrapyrrole chromophores: Binding specificity and photochemistry ⁎ Stephanie Pröll a, Brigitte Wilhelm a, Bruno Robert b, Hugo Scheer a, a Department Biologie I-Botanik, Universität München, Menzingerstr, 67, 80638 München, Germany b Sections de Biophysique des Protéines et des Membranes, DBCM/CEA et URA CNRS 2096, C.E. Saclay, 91191 Gif (Yvette), France Received 2 August 2005; received in revised form 2 March 2006; accepted 28 March 2006 Available online 12 May 2006 Abstract Complexes were prepared of horse heart myoglobin with derivatives of (bacterio)chlorophylls and the linear tetrapyrrole, phycocyanobilin. Structural factors important for binding are (i) the presence of a central metal with open ligation site, which even induces binding of phycocyanobilin, and (ii) the absence of the hydrophobic esterifying alcohol, phytol. Binding is further modulated by the stereochemistry at the isocyclic ring. The binding pocket can act as a reaction chamber: with enolizable substrates, apo-myoglobin acts as a 132-epimerase converting, e.g., Zn-pheophorbide a' (132S) to a (132R). Light-induced reduction and oxidation of the bound pigments are accelerated as compared to solution. Some flexibility of the myoglobin is required for these reactions to occur; a nucleophile is required near the chromophores for photoreduction (Krasnovskii reaction), and oxygen for photooxidation. Oxidation of the bacteriochlorin in the complex and in aqueous solution continues in the dark. © 2006 Elsevier B.V.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Indicators of Iron
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Indicators of Iron Metabolism in Marine Microbial Genomes and Ecosystems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Shane Lahman Hogle Committee in charge: Katherine Barbeau, Chair Eric Allen Bianca Brahamsha Christopher Dupont Brian Palenik Kit Pogliano 2016 Copyright Shane Lahman Hogle, 2016 All rights reserved . The Dissertation of Shane Lahman Hogle is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION Mom, Dad, Joel, and Marie thank you for everything iv TABLE OF CONTENTS Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents .................................................................................................................v List of Figures ................................................................................................................... vii List of Tables ..................................................................................................................... ix Acknowledgements ..............................................................................................................x Vita ..................................................................................................................................
    [Show full text]
  • Scholarworks@UNO
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-4-2011 Identification and characterization of enzymes involved in the biosynthesis of different phycobiliproteins in cyanobacteria Avijit Biswas University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Biswas, Avijit, "Identification and characterization of enzymes involved in the biosynthesis of different phycobiliproteins in cyanobacteria" (2011). University of New Orleans Theses and Dissertations. 446. https://scholarworks.uno.edu/td/446 This Dissertation-Restricted is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation-Restricted in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Identification and characterization of enzymes involved in biosynthesis of different phycobiliproteins in cyanobacteria A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry (Biochemistry) By Avijit Biswas B.S.
    [Show full text]
  • Phototrophic Pigment Production with Microalgae
    Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis committee Promotor Prof. Dr R.H. Wijffels Professor of Bioprocess Engineering Wageningen University Co-promotors Dr D.E. Martens Assistant professor, Bioprocess Engineering Group Wageningen University Dr P.P. Lamers Assistant professor, Bioprocess Engineering Group Wageningen University Other members Prof. Dr H. van Amerongen, Wageningen University Prof. Dr M.J.E.C. van der Maarel, University of Groningen Prof. Dr C. Vilchez Lobato, University of Huelva, Spain Dr S. Verseck, BASF Personal Care and Nutrition GmbH, Düsseldorf, Germany This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis submitted in fulfilment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 5 December 2014 at 11 p.m. in the Aula. K. J. M. Mulders Phototrophic pigment production with microalgae, 192 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With propositions, references and summaries in Dutch and English ISBN 978-94-6257-145-7 Abstract Microalgal pigments are regarded as natural alternatives for food colourants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main focus on secondary carotenoids. Different microalgal groups each possess their own set of primary pigments. Besides, a selected group of green algae (Chlorophytes) accumulate secondary pigments (secondary carotenoids) when exposed to oversaturating light conditions.
    [Show full text]
  • Retrograde Bilin Signaling Enables Chlamydomonas Greening and Phototrophic Survival
    Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival Deqiang Duanmua, David Caserob,c, Rachel M. Dentd, Sean Gallahere, Wenqiang Yangf, Nathan C. Rockwella, Shelley S. Martina, Matteo Pellegrinib,c, Krishna K. Niyogid,g,h, Sabeeha S. Merchantb,e, Arthur R. Grossmanf, and J. Clark Lagariasa,1 aDepartment of Molecular and Cellular Biology, University of California, Davis, CA 95616; bInstitute for Genomics and Proteomics, cDepartment of Molecular, Cell and Developmental Biology, and eDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; dDepartment of Plant and Microbial Biology, gHoward Hughes Medical Institute, and hPhysical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; and fDepartment of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305 Contributed by J. Clark Lagarias, December 20, 2012 (sent for review October 30, 2012) The maintenance of functional chloroplasts in photosynthetic share similar mechanisms for light sensing and retrograde sig- eukaryotes requires real-time coordination of the nuclear and naling. However, many chlorophyte genomes lack phytochromes plastid genomes. Tetrapyrroles play a significant role in plastid-to- (21–24), a deficiency offset by a larger complement of flavin- and nucleus retrograde signaling in plants to ensure that nuclear gene retinal-based sensors (25–30). expression is attuned to the needs of the chloroplast. Well-known Despite the absence of phytochromes, all known chlorophyte sites of synthesis of chlorophyll for photosynthesis, plant chlor- genomes retain cyanobacterial-derived genes for the two key oplasts also export heme and heme-derived linear tetrapyrroles enzymes required for bilin biosynthesis (Fig. 1A): a heme oxygen- (bilins), two critical metabolites respectively required for essential ase (HMOX1) and a ferredoxin-dependent bilin reductase (PCYA).
    [Show full text]
  • Scalable Production of Biliverdin Ixα by Escherichia Coli Dong Chen1, Jason D Brown1, Yukie Kawasaki2, Jerry Bommer3 and Jon Y Takemoto1,2*
    Chen et al. BMC Biotechnology 2012, 12:89 http://www.biomedcentral.com/1472-6750/12/89 RESEARCH ARTICLE Open Access Scalable production of biliverdin IXα by Escherichia coli Dong Chen1, Jason D Brown1, Yukie Kawasaki2, Jerry Bommer3 and Jon Y Takemoto1,2* Abstract Background: Biliverdin IXα is produced when heme undergoes reductive ring cleavage at the α-methene bridge catalyzed by heme oxygenase. It is subsequently reduced by biliverdin reductase to bilirubin IXα which is a potent endogenous antioxidant. Biliverdin IXα, through interaction with biliverdin reductase, also initiates signaling pathways leading to anti-inflammatory responses and suppression of cellular pro-inflammatory events. The use of biliverdin IXα as a cytoprotective therapeutic has been suggested, but its clinical development and use is currently limited by insufficient quantity, uncertain purity, and derivation from mammalian materials. To address these limitations, methods to produce, recover and purify biliverdin IXα from bacterial cultures of Escherichia coli were investigated and developed. Results: Recombinant E. coli strains BL21(HO1) and BL21(mHO1) expressing cyanobacterial heme oxygenase gene ho1 and a sequence modified version (mho1) optimized for E. coli expression, respectively, were constructed and shown to produce biliverdin IXα in batch and fed-batch bioreactor cultures. Strain BL21(mHO1) produced roughly twice the amount of biliverdin IXα than did strain BL21(HO1). Lactose either alone or in combination with glycerol supported consistent biliverdin IXα production by strain BL21(mHO1) (up to an average of 23. 5mg L-1 culture) in fed-batch mode and production by strain BL21 (HO1) in batch-mode was scalable to 100L bioreactor culture volumes.
    [Show full text]
  • Adaptation to Blue Light in Marine Synechococcus Requires Mpeu, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases
    University of New Orleans ScholarWorks@UNO Biological Sciences Faculty Publications Department of Biological Sciences 2-21-2017 Adaptation to Blue Light in Marine Synechococcus Requires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases Wendy M. Schluchter University of New Orleans, [email protected] Rania Mohamed Mahmoud Joseph Sanfilippo Adam A. Nguyen Johann A. Strnat See next page for additional authors Follow this and additional works at: https://scholarworks.uno.edu/biosciences_facpubs Part of the Microbiology Commons Recommended Citation Mahmoud, R. M., Sanfilippo, J. E., Nguyen, A. A., Strnat, J. A., Partensky, F., Garczarek, L., El Kassem, N. A., Kehoe, D. M., & Schluchter, W. M. (2017). Adaptation to Blue Light in Marine Synechococcus Requires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases. Frontiers in Microbiology, 8. This Article is brought to you for free and open access by the Department of Biological Sciences at ScholarWorks@UNO. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Authors Wendy M. Schluchter, Rania Mohamed Mahmoud, Joseph Sanfilippo, Adam A. Nguyen, Johann A. Strnat, Frédéric Partensky, Laurence Garczarek, Nabil Kassem, and David M. Kehoe This article is available at ScholarWorks@UNO: https://scholarworks.uno.edu/biosciences_facpubs/37 fmicb-08-00243 February 17, 2017 Time: 18:21 # 1 ORIGINAL RESEARCH published: 21 February 2017 doi: 10.3389/fmicb.2017.00243 Adaptation to Blue Light in Marine Synechococcus Requires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases Rania M. Mahmoud1,2†, Joseph E. Sanfilippo1†, Adam A. Nguyen3,4, Johann A.
    [Show full text]
  • I Topic - Algal Pigments and Algal Classification(ALGAE) Prepared by –Prof.(Dr.)Jainendra Kumar Coordinated By: Prof.(Dr) Shyam Nandan Prasad
    Course- M.Sc. Botany Part -I Paper -I Topic - Algal Pigments and algal Classification(ALGAE) Prepared by –Prof.(Dr.)Jainendra Kumar Coordinated by: Prof.(Dr) Shyam Nandan Prasad The algae were broadly divided by F.F.Fritsch (1935) into eleven classes according to their colour - 1. Chlorophyceae or green algae 2. Xanthophyceae or yellow-green algae 3. Chrysophyceae 4. Bacillariophyceae or golden-brown algae 5. Cryptophyceae 6. Dinophyceae 7. Chloromonadineae 8. Eugleninae 9. Phaeophyceae or brown algae 10. Rhodophyceae or red algae, and 11. Myxophyceae or blue-green algae Normally, classification of algae is based on - 1. Nuclear Organization 2. Nature of Cell Wall Components 3. Pigmentation and Photosynthetic Apparatus The pigment is one of the most important criteria used in differentiation of classes in algae. The pigments in algae can be chlorophylls, carotenoids and biloproteins. These pigments are present in sac like structures called thylakoids. The thylakoids are arranged in stacks in the granum of the chloroplasts. Different groups of algae have different types of pigments and organization of thylakoids in chloroplast. The chlorophylls in algae are chlorophyll a, b, c, d and e types. Chlorophyll a is present in all classes of algae. Chlorophyll b is primary pigment of Chlorophyceae and Euglenineae. Chlorophyll c is found in Phaeophyceae and Cryptophyceae. Chlorophyll d is found in Rhodophyceae. Chlorophyll e is confined to Tribonema of Xanthophyceae. Pigments are chemical compounds which reflect only certain wavelengths of visible light. This makes them appear colourful. More important than their reflection of light is the ability of pigments to absorb certain wavelengths. Since each pigment reacts with only a narrow range of the spectrum, it is important for algae to produce pigments of different colours to capture more of the sun's energy.
    [Show full text]