Alizard from Baltic amber (Eocene) and the ancestry of the crown group lacertids

MAGDALENA B ORSUK-BIAŁYNICKA. MARIUS Z LUBKA. and WoLFGANG nÓnuB

Borsuk-BiĄnicka, M., Lubka, M., & BÓhme, w. 1999.A lizard from Baltic amber (Eocene) and the ancestryof the crown group lacertids.- Acta Palaeontologica P olonica 44,4, 349-38f .

An almost complete ltzard specimen discovered from the Baltic amber of middle Eocene age is described and considered conspecific with the first Baltic amber hza,rd Succini- lacerta succinea (Boulengeą t9l7). The new specimen demonsfrates that the Ępical lacertid morphoĘpe was fully developed by the middle Eocene. This is in conflict with a possible derivation of all the extant lacertids from a cofirmon ancestor of no earlier than Oligocene age based on the recent albumin-immunological and karyologic analyses using molecular clock methodology. Outgroup analysis of the lacenid pileus characters is applied to reconsfruct the order and rate of appearance of character states during the pre-Oligocene section of phylogeny of the lacertid clade thęoretically beginning by about the Late Juras- sic. Two synapomorphies are proposed for the whole lacertid clade, including Eocene Plesiolacerta: frontoparietal scales largely overlapping the parietal table with a cone- sponding central position of the interparietal, and presence of the occipital. Plesiolacertais the only stem lacertid known Succinilacerla is considered a member of the crown lacertids on the basis of two other synapomorphies: an integration of parietalscales and a deveĘ- ment of early ontogenetic conffol of the pileus pattern. Parietal integnĘ is suggested to be sensitive to size. Pileus fragmentation may be primary or secondary.

Key words: Amber inclusions, Eocene, , Scincomorpha, , Succini- lacerta.

Magdalena Borsuk-Biatynicka [[email protected]], InsĘtut Paleobiologii PAN, PL-00-818 Warszawa ul. Twarda 51/55, Poland. MaiuszLubka, InsĘtut Geologii UAM, PL-6]-606 Pozllań, ul. Maków Polnych ]6, Poland. Wolfgang BÓhme, Zoologisches Forschungsinstitut und Museum Alexander Koenig, Adenauerallee 160, 53113,Bonn, Germany.

Introduction

The specimen described herein is the second almost complete Lizard specimen ever discovered from the Baltic amber.Three other fragmentaryspecimens have been an- 350 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et al.

A

Fig. 1. Succinilacertą succinea (Boulenger, I9I7), specimenG.G.l. A. Dorsal view. B. Dorsolateral view. ACTA PALAEONTOLOGTCA POLONTCA (44) (4) 351

I-) lp) 35f Eocene Baltic amber lizard: BORSUK.BIAŁYNICKA et al. liounced recently (BÓhme & Weitschat 1998).Baltic amberis a fossil resin occurring in those Paleogene deposits usually referred to as Blue Earth (Blaue Erde) and most abundantin Sambia.The tslue Earth-,which is a glauconitic marine clayey sand,is now dated as latest Eocene (Kosmowska-Ceranowrczet al. 1997) or even earlier, middle Eocene (Lutetian after RitzkowskrlggT). So, the age of the inclusions in Baltic amber is estimatedas about 40 MA. Of the two more complete Baltic amber specimens,the first one was found in Sambiain 1891,and describedby Klebs (1910)some 20 yearslater as tessel- lata (Smtth, 1838),an extant Afńcan lacertid genus and species.Later on, it was as- signedto a new species,N. succineąBoa|engeq|9|7. The specimenis housedin the Museum of Geology and Paleontology of the University in GÓttingen, and has been redescribedby Bóhme & Weitschat(1998, see also referencestherein and Ritzkowski in press),who assignedthe speciesto a new genusSuccinilacertaBÓhme & Weitschat, 1998. According to these authors three other fragmentary specimens of lizards re- cently discovered from the Baltic amber are probably conspecific with S. succinea. Two of them, apartial body with posterior exfremities,and a tail, both coming from Yantarnyj (= Palmnicken), were figured by BÓhme & Weitschat (1998: pl. III: 1_3), while no information has been given on the third one. The presentspecimen is consid- ered conspecific with the former Baltic amber specimenson the basis of distal finger scaling,and thusbelongs to Succinilacertasuccinea (Boulenger,l9IT). The specimendescribed herein was found by Mrs Gabńela Gierłowska tn1997 in Holocene beach sedimentsin Gdańsk-Stogi (about1 km awayfrom the shore),and be- longs to her private collection. The piece of amberincluding the animal has been stud- ied by means of infrared absorption specffography(Kosmowska-Ceranowicz et al. 1997) to exclude forgery and has displayed the IRS 468 curve Ępical of succinite of the Baltic amber. Succinilacerta succinears arepresentativeof a lacertid clade thatmade its appearance about the late Paleoceneaccording to Estes (1983).Still earlier,the pre-Tertiaryorigin of the clade is implied by the stratigraphicrange of relatedgroups (see discussion onp.36f). According to Mayer & Benyr (1994),theextant lacertids (27 OldWorld liznd gen- era and 240 species) make up a monophyletic crown group Lacertidae rooted in the Oligocene. Though we realise that this date is hypothetical (Mayer & Benyr 1994: p.6f8), we have tried to comparethe dataon fossil and extantlacertids with the Mayer & Benyr's (199a)hypothesis. The family LacefitdaeBonaparte, 1831 is hereconsid- ered to inlude both crown and stem lacertids. Most important references on the of extant lacertids are papers by Boulenger(I92vI921), Arnold(1973,1989),Bischoff(199r1992),DarevsĘ (1967), and Mayer & Benyr (1994).Though the osteologyof extantlizards has an abundantlit- erature (Camp L9f3, Estes et ąI. 1988 and referencestherein, as well as Klemmer 1957, and Arnold 1973, 1989 in the case of the Lacertidae) it is hardly applicable to a low level taxonomy. Many putative fossil lizards assigned to the genus I'ącerta Linnaeus,1758 on thebasis of isolatedbones, proved to be nominadubia. The original materials of the late Oligocene L. antiqua Pomel, 1853, late Miocene L. bifidentata Lartet, 1851,and late Pliocene L. crassidensGervais, 1859have beeninadequately de- scńbed then lost (Estes et al. 1988).The name L. eocena owen,1884 was given to a fossil fish. ACTA PALAEONTOLOGTCA POLONICA (44) (4) 353

Tiio studiedLizard offers a stateof preservationof the integunnentcomparable to rn:t cf'rcccnt , but lacks any remains of the internal skeleton. On the other hąnrl.the specimenis approximatelysynchronous with the earliestknown fossil record of this lizndgroup. The pattemof scalationwhich is the primary taxonomic character in neoherpetologyprovides a direct basis for the familial affiliation of the lizards pre- served as amberinclusions. This patternis reflectedby the underlying osteoderms,if they are presentat all. The osteodermalcoveńng which is preservablein fossil state, provides thus the first field of overlap of the two approaches,the paleo- and neo- herpetologicalone. Unfortunately,lacertids lack body osteoderms,and thus, only the osteodermalskull covering remains to be compared.It may display the traces left by the scale covering of the dorsal surfaceof the head referredto as the pileus. The second field of overlap of the two approachesis given by the shape of the whole body and that of its parts.Among othęrs,the proportionsof the extremities,and the number,length and shapesof the digits included, indicate the locomotory adapta- tion of the animal, and thus may bear on its generic and/or specific affiliation. In herpetologicalliterature, the pileus patternhas rarely beenconsidered in detail in terms of morphocline polarity. Some features,but mostly those of the anteriorpileus, were included in the osteologicalcharacter analysis of lacertidsby Arnold (1989:chaf- acters8, 9, 1I,3941, and3f44). More broadly,the pileus pattern was analysedin the Cordylifonnes (Lang 1991). In both cases, cladistic analysis using the PAUP pro- gramme was applied. The objective of the present paper is not to check existing cladogramsof squamaterelationships or to constructnew ones,but just to proposethe morphocline polarity of some pileus charactersby comparing the data available from fossil and recentmaterial with the best supportedcladograms. For the sake of brevity, the namesof extanttaxa referredto in the text are listed jłl extensoin the Appendix (p. 380) whereasauthors' names and datesare usually omitted in the text.

Methods

The outgroup analysis of some charactersof the posterior part of the lacertid pileus (preservedin the amberspecimen) has been applied to infer their morphoclinepolarity according to cladistic methodology. The best supportedand most recent hypothesesof general relationships within squamates(Estes et al. 1988;Evans & Chure 1998)and of thosewithin the lacertids (Mayer & Bischotr 1996)have been used as a basis for this analysis.The resultshave been combined with stratigraphicdata on fossil lacertids and contrastedwith the re- sults of molecular data from the literature. .crown .stem We follow Jeffeńes(1979) in his understandingof theterms group' and 'the group'. The crown group as defined by this authorcontains latest common ancestor of the living (we add:at a given moment of geological time) membersof a monophyletic group,plus all descendantsof this ancestor'.Stem groups are (usually)fossil taxa that sharesome but not all synapomorphiesof the crown group.We find this conceptsvery useful while studying the problem of the taxonomic range of the Lacertidae. 354 Eocene Baltic amber lizard: BORSUK.BIAŁYNICKA et al,

Institutional abbreviations: G.G., The private collection of Mrs. Gabriela Gierłow- ska, Gdańsk, ul. Szna9 m. 50; GPIK, Institutftir Geologie und Palziontologie,KÓnigs- berg; KBUK, KÓnigliche Bernsteinsammlungder Universitiit KÓnigsberg; MGPU, Museum ftir Geologie und Paliiontologie der Universitiit in GÓttingen; MNHI{, Mu- seumd'Histoire Naturelle,Paris; MZ, Museum of the Earth,Polish Academy of Sci- ences, Warsaw; ISEA, Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków; ZPAL' Instituteof Paleobiology, Polish Academy of Sciences,Warsaw; ZFMK, Zoologisches Forschungsinstitutund Museum Alexander Koenig, Bonn; SMĘ SenckenbergMuseum, Frankfurt a.M. Other abbreviations: s-v, snout-vent length; Rh index, relative head size index (= pileus to snout-ventlength).

Systematic Part

SquamataMerrem,1826 Scincomorpha Camp, 1923 Lacertidae Bonaparte, 1831 Succinilacerta Bóhme & Weitschat, 1998 Succinilacerta suc cinea (Boulenger,L91.7) Emended geneńc and specific diagnosis. - Smalllacertid. Estimated adult s-v length about 70 mm. Head robust. Pileus length is about 32%oof s-v length. Parietal scales large without any fraces of subdi- vision, not reaching the lateral edges of parietal table, bordered by three supratemporal scales, the sec- ond one much elongated. Temporal region covered by small scales. Tiny spindle-shaped intercalary scale squeezed between the frontoparietal and supraocular III, symmetrically on both sides. Dorsal body scales tiny, juxtaposed, unkeeled to slightly keeled. Six rows of almost rectangular and slightly imbricated belly scales. Shaqp transition of dorsal scaling into true caudal whorls of elongated and keeled scales occurs at the distance of about 213 femtr length from the sacrum. Some alternation in length of successive scale whorls in the proximal part of the tail. Digits provided with protruding sub- unguicular scales. Note. - The genus is monotypic. A discrimination between specific and generic characters is impos- sible.

Material. - Five specimens have so far been discovered , all of them from the middle Eocene Baltic amber: (1) G.G.1' the specimen described herein from Gdańsk, Poland; (2) KBUK then GPIK, now MGPU 12664, from Sambia, Lithuania, the holotype; (3)-(5) three fragmentary specimens from Lithuania (BÓhme & Weitschat 1998:pl. III: 1_3 and pp. fI\,2||), private collections, no cat. num- bers. State of preservation. - The specimen G.G.1 is preserved almost whole (Figs 1, 2) except for the front part of the head (anterior to the orbit), the left side of the trunk along with the left anteńor limb (except the hand), and the posterior part of the tail. The damage to the trunk resulted in washing out of the tissues, so that the fossil is almost empty. The colour of the specimen has not been preserved. The amber is opaque in some regions, so that the left side of the head, the collar and anal regions, as well as a presacral part of the dorsum are obscured. Ovoid bodies situated on the dorsal surface of the limb bases are here interpreted as pockets of decay gas caught by amber. The distal parts of the ex- 'gloves', tremities are also covered by a sort of that in some cases (Fig. 1A, B) include small frag- ments of plant detritus. This cover makes the digits thicker and obscures their structure. Still, it is ACTA PALAEONTOLOGTCA POLONTCA (44) (4) 355

Fig, f . Succinilacerta succineą(Boulenger, 1917),G.G. 1. A. Slightly ventrolateralview. B. Ventral view. slightly translucent at the very tips of the digits, thus allowing the reconstruction of the claw regions (Fig.6,Ą).

Description.-Measurements:Thes-vlengthof specimenG.G.lisabout2'Tmm,theheadbeing almost one third of this length. The length of the tail, of which just a basal section (13 mm) is pre- served, is not known. The head is stout and relatively short. Pileus width (6.7 mm) is 213 of the esti- mated length. Posteńor limbs are much stronger than the anteńor ones. The estimated length of the posterior limbs (about 18 mm) attains 657o whereas that of the anterior ones (9.9 mm) is just 36Vo of the estimated s-v length. Pileus: The preserved part of the pileus (Fig. 3A, B) is subrectangularin shape,the posterior width being equal to the orbital one (over the supraocular II). This shape results from the large poste- rior width of parietal scutes. This character along with a large size of frontoparietals, their long sagittal contact at the expense of the posterior part of the frontal, and their large posterior extension, is very much lacertid in pattern. Of the four pairs of supraocularia, the second and the third one reach approximately the size of the frontoparietals and produce an almost complete cover of the orbits. At both ends they are bordered by small supraoculars, the first and the fourth one respectively, and with a longitudinal series of tiny scutes along the outer margin. Two elongated supratemporal scutes, the first one three times longer than the second, follow the tiny scale bordeńng supraocular fV. The bor- dering of the pileus by small scutes adds to the lacertid character of the fossil. Posterior to the fronto- parietals, there is a single interparietal (without any trace of a parietal foramen), and further back a 356 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et aI.

A

---) \ )

1mm occipitale interparietale frontoparietale

B

\r t-/- -- / \\ I V,)t l\\l Y \'-,t - //'

supratemporalia supraocularia

Fig. 3. Succinilacertą succinea (Boulenger, 1917),G.G.1. A. orbit in lateral view. B. Pilęus reconstruction in dorsal view. Frontoparietalscales arę shaded.

single occipital separates the parietals from each other. Anteńor to the frontoparietals, the frontal scute extends over the surface between the level of the posterior Il4 of the orbits up to that of their an- terior margins, but the very anterior extent of the frontal scute is unknown. The frontal scute is rather short and wide, constricted in the posterior half, while broadening slightly at the contact with the frontoparietals and more so anteriorly. Symmetrically ateach side of the pileus, at the contact of the frontoparietal with the third supraocular, and touching the medial angle of the fourth, there is a tiny intercalary scute. The transition between the head and body scale covering is quite abrupt on the dor- sal side of the fossil while being obscure ventrally. The contact line is straight and transverse. ACrA PALAEONTOLOGTCA POLOMCA (M) (4) 357

Body: The body (Figs 1, 2) is subquadrangular in cross section. The squamation of the dorsum consists of tiny oval, or subhexagonal scales. In the anterior part of the body ńe scales are arranged in transverse rows, with their longer diameters perpendicular to the long axis of the body. Towards the rear the squamation changes into a longitudinal arrangement. The scales become slightly keeled, and subimbricate with the long axes parallel to that of the body. The transition between the dorsum and ventrum is abrupt. The latter is covered by six longitudinal rows of large, quadrangular, imbricate scales (the anterior scales overlapping the posterior ones in each row). The scales of the neighbouring rows do not alternatein position but are aranged in regular transverse zones. The gular region is pre- served but obscured by a deep cover of amber. It is covered by numerous small scales and posteriorly, limited by a gently serrated collar zone (Halsband). The overall structure resembles that of Succini- lacerta succinea as figured by BÓhme & Weitschat (1998: pl. Itr: 2), exceptfor the size and number of scales contributing to the collar. Tail: The preserved part of the tail (Figs l, 2) is stout, subquadrangular in cross-section at the base and suboval at the end. A distinct furrow extends along the dorsum. The squamation of the ante- rior half of the preserved part is in continuation with that of the dorsal side of the body. Small subhexagonal, imbricate and keeled scales are ananged with their long axes parallel to that of the tail. They get gradually longer posteriad, but at about less than half the length of the preserved part of the tail (the distance equal to about 213 the length of the femur from the tail base) there is an abrupt in- crease in scale lengths. Posterior to this zone, the arrangement of the scales in verticils is quite dis- tinct. The scales of the subsequent verticils do not form longitudinal rows, but alternate instead. The verticils of this part of the tail continue on the ventral side of the tail, but the cloacal region is ob- scured by the amber, and cannot be studied. Extremitie s : The forelimbs (Fig. a) are rather long and slim with the elbow joint very high and a long hand. The length of the forearm is about 1.5 that of the arm, and the length of the hand over the longest digit ([V) is almost the same as that of the forearm. The digits are long and cylindrical, the shortest of them, the first and the fifth one being subequal, the third one almost as long as the fourth one (which is almost the rule in lacertids), the second much shorter. Large, imbricate crescent-shape scutes cover the anterior and anterodorsal face of the limb down to the dorsal side of the carpus. Their sizes diminish at the level of the elbow joint and over the carpus. Posterior part of thę forearm is covered by polygonal scales of an irregular pattern. Crescent-shape scutes, similar but smaller than those of the proximal part of the limb, cover dorsal surfaces of the dig- its, extending over the lateral side of each digit, which is obscured by opaque amber. The hind limbs (Figs 1, 5) are longer and stouter than the anterior ones, and the foot is much bigger than the hand. The extremities differ in proportions, the shin being obviously slightly shorter than the thigh. The length of the foot over the fourth digit seems to be much greater than that of the thigh. How- ever, the exact measurements are difficult to take because the inaccessibility of the measured parts and the flexed position of the digits. The fourth digit is much longer than the third one, the fifth one about the size of the second one, but opposed, the frst one is the smallest. Aposition of the first digit in the left foot may show its great mobility or may be an artefact. Each digit bears a claq which is embedded in a gas pocket interpreted herein as an artefact of preservation. As shown in transmitted hght, the digit scale next to the ungual produces a bulb-shaped structure (Frg. 6A) that may be interpreted as a gutter-like venfral ungual scale on the basis of a comparison with Talqdromus (Fig. 6E, F). Given that the amber specimen is not congeneric with Talqdromrzs, this structure is considered convergent. The anterior and dorsal faces of the hind limb bear crescent-shaped scutes of the same kind and of similar pattern to the forelimb. The sizes of the scutes decrease posteriad the change in size being quite abrupt on the lateral surface of the leg Gig. 1A), and less so on its medial side @g. 5D). The small scutes of the posteriormost row of the medial surface of the thigh bear femoral pores, 14 (or 15) in number.

Individual age and body size. - The absolute size of G.G.1 does not help in determination of its ontogenetic age. With its s-v length of about f7 rtnand a roughly estimated total length of no more than 60 mm, it matches the lower limit of variability range for many living lacertid species (e.9., L. andreanszlcyi, some Algyroides, some Psamtnodromus according to Arnold 1973), and so it might be just an adult or semiadult of a small-sizedltzard. 358 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et al.

B

Fig.4. A.Succinilącertasuccinea(Boulenger,I9L7),G.G.1.Rightforelimbinlateralview.B.Thesameof Podarcis piĘusensis (Bosca, 1883)' ZPAL R-V70. Recent. Scale bars 2 mm.

More conclusive are the head-to-body proportions. As demonstrated by e.g. Peters (1964: ftg. 10), the dimensions of the head allometrically diminish duńng the early ontogeny, as do those of the extremities and the length of the tail, which agrees with our observations. Such a proportionally large head compared to body length as demonstrated by G.G.1 specimen (Rh index is 32Vo) is seldom among the extant adult scincomorphans, except for the cordyliforms in which case it may attain3lVo (see Appendix). Among lacertids, this high value (36Vo) has been matched only in a juvenile Algyroides. When decidedly big-headed cordyliforms and short-headed lacertids (Nucras) are re- moved from the samples, the ranges of Rh for the studied lizards (see Appendix) are 2V27 Vo for the adults and 21-36Vo for the youngsters. So even as a juvenile, the amber specimen belongs to a big- -headed ltzard. Apart from head to body proportions (Fig. 1), the shortness of the postorbital part of the pileus (Figs 3, 7), with the stocĘ proportions of the frontoparietals and parietals, as well as the huge supraorbitals II and III, all testify to the juvenile age of the amber lrzard. Assuming that the amber specimen is actually a juvenile, the problem of adult length appears. Its estimated total length of 60 mm is much less than the value of over 100 mm given by Bischoff et aI. (1984) for the total length of hatchlings of large-sized (about 60 cm) lacertids. Thus, we are most probably dealing with small lizards comparable to South European Algyroides species (s-v adult ACTA PALAEONTOLOGTCA POLONTCA (44) (4) 359

Fig. 5. A. Podarcis pityusensis (Bosca, 1883),ZPN,R-V7O. Recent.Right hind limb in ventral view. B-D. Succinilacertą succinea (Boulenger, 1917),G.G.1. B. Right hind limb in ventral view. C. Right foot and shin in dorsal view. D. Left hind limb in ventral view. Scale bars 2 mm. length about 70 mm according to Arnold 1973) or with medium-sizedhzards similar to European I-acerta vivipara and Lacerta agilis (at most 90 mm adult s-v length and about 170-180 mm total adult length according to Juszczyk's 1987 data).

Family level affiliation

All the preservedcharucters of the G.G.l specimenremain within the variability range of the family Lacertidae. They are as follows: the patternof the skull table scalation (pileus),the sharptransition of the latterinto the body scalationas well as thepattern of scale covering of the extremities and tail. This indicates that the specimen is a crown-grouplacertid or belongsto a clade including it. The first possibility is preferred here and will be discussedbelow.

Generic and specific affiliation

The non-amber Eocene lizards related to lacertids, the genera Plesiolącerta }Joff. stetter,I94f andEolacertąNóth, |940, grewto largesize. As estimatedon thebasis of Estes (1983:ftg.Z{B),the total lengthof the representativesof P. lydekkeriHoffstetter, 1942was about360 mm (130mm of s-v length).The completeskeleton of Eolacerta robustą NÓth, 1940 from the Middle Eocene of Geiseltal is about 650 mm in total length,240 mmbeing the s-v length (NÓth 1940).Some other smaller forms have been collectedbut not yet descńbed(Schaa| &Ziegler 1988).The oligocene durophagous 360 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et al.

0.5 mm

Fig. 6. Posterior limb claw structure.A-D. Succinilacerta succineą(Boulenger, 1917), G.G.1' A. Distalex- fremity of the digit IV of the ńght foot as seenin transmittedlight. B. Reconstructionof the ungual scalesof the digit IV from BÓhme & Weitschat(1998: fig. 1a).C. Distaltoe structureof the left foot of the specimen illustrated in Bóhme & Weitschat (1998:pl. III: 1, 2 without scale).D. Digits III and [V of the right foot. E,F.TalcydromussexlineatusDaudin,ISO2,ZPN-R-V71. Recent. Claw andscalepatternof thedigitlVin lateral (E) and anterolateral (F) view.

(amblyodont)forms with heavy jaws and probably colrespondingly heavy skulls be- longing to the generaDrącaenosaurus Pomel, 1846 and PseudeumecesHoffstetter, 1944 (Rage & Augó L993) ale estimatedto have been about 120 mm and 180 mm in s-v length respectively. The congenerity of the present specimen with any of these Paleogenelizards is excluded. of greatervalue is a comparisonbetween G.G.l and Succinilącertąsuccinea (Boulenger,l9I7) a lacertid alreadydescribed from the Baltic amber.Three new spec- imens assignedrecently to this specimenare fragmentarybut to some extentcomple- mentaryto the holotype (BÓhme & Weitschat 1998). The total length of the holotype first given by Andree (1937) amountsto 42 mm without thę tail tip. It is of the same order of size as that of the present specimen (27 mmestimateds-v length + about 13 mm for the preservedtail fragment).The size differencesbetween the specimens(BÓhme & Weitschat1998: Addendump. |2) have ACTA PALAEONTOLOGTCA POLONTC A (U) (4) 361

Podarcismu ralis, juvenile Timon pinceps, juvenile

Podarcis mural is, adult Ttmonprinceps, adult

Fig.7. Postembryonic developmentof the pileus of lacertids. A, B. Juveniles. C, D. Adults. A - ZFMK 4188,B -ZtNIK4f723, C -ZFMK 584, D -2FMK4274. Nl Recent.Frontoparietal scales are shaded. Horizontal arows indicate the level of the fronto-parietal suture. Out of scale. been overestimated.Also the difference describedin the tail scaling is. All the speci- mens'those described by BÓhme & Weitschat(1998: pl. Itr: 1_3;see also Weitschat & Wichard 1988) and the presentone, display a slight alternationof longer and shorter whorls (inspectionof the earlier specimensby W.B.). The unique scalationof the toe tips, presentin the holoĘpe of Succinilącerta succinea,is also presentin the specimen G.G.1. Though eachtoe is coveredby a gas-bulb,the sffucturemay be studiedby shin- ing a light through the translucentbulb (Fig. 6,Ą, D). Posterovenffalto the claw the ventralborder of the scalenext to it protrudesventrally, recalling the ventrally protrud- ing scale, bulbous in lateral viewo unique of Succinilacerta studied by BÓhme & Weitschat (1998)' and reminiscent of gutter-like scale of TaĘdromus sexlineątus Daudin, 1802(Fig. 6E, F). On this basis,congenerity of the studiedspecimen (G.G.l) with thosedescribed earlier, is here proposed.The conspecifiĘ also seemsmost prob- able,because of the samesfratigraphic and biogeographicprovenience of all the speci- mens. 36f Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et al.

Discussion

Lacertidae area successfulextant old WorldLizańfamily widespreadin Europe, Asia and Africa representedby 240 species (Arnold 1989).Whereas the criteria of species level (mainly minute scutellationcharacters including colour pattern,and adaptations to some naffow ecological niches + interbreedingpossibilities) are more or less clear, the problem of interrelationshipsof species,i.e. of their grouping into the higher level taxa representingmonophyletic groups is more difficult. We are dealing with the adaptativeradiation of a group with a very consistentand successfulmorphotype. The small variability rangeof the latterfacilitates the repeatedevolution of novelties even- tually resulting in a high frequency of parallelisms. This complicatesthe use of mor- phological criteria in phylogenetic analysis. The novelties that allow for further suc- cess of the evolutionary lines having them, are probably those of physiology and be- haviour (e.g., sound communication in Gallotinae according to Mayer & Bischoff 1996) rather than morphology. Vicariance phenomenamay also contribute.This is why the traditional grouping of lacertid species into genera by Boulenger (I9f0- -19fI), and more recently by Arnold (1989),does not quite coffespondto phylogen- etic relationshipswithin the family given by immunological distanceanalysis (Mayer & Benyr 1994),the results of which are by itselfjust tentative(see Fig. 9). The fossil record of the Lacertidae begins aboutthe early Eocene with representa- tives of the genusPlesiolacertaHoffstetter, 1942,from the locality of Dormaal, Bel- gium (Hecht & Hoffstetter I96f; Augó 1990). In the Eocene, the single species P Iydekkeri Hoffstetter, I94f was widely distributed in Europe (the Upper Eocene of Lower Headon Beds, Hordle, England; the Upper Eocene Phosphoritesdu Quercy, France). According to Augó (1988)' the genus did not survive the Eocene-oligocene boundary.Some otherpossible lacertidsfrom the Middle Eocene Messel locality (Ger- many)have been recognized but not yet described(Schaal &Ziegler 1988).Eolacerta robustą NÓth, 1940 from the Middle Eocene of Geiseltal (Germany), ońginally as- signed to the Lacertidae (NÓth 1940;Haubold 1977),turned to be a representativeof the stem non-teiioid scincomorphans(?scincoid relative according to Mtiller 1998). Two genera of amblyodont lacertids Dracąenosaurus Pomel, 1846, and Pseude- LłmecesHoffstetter, 1944 from France, have been recorded in the Middle and Upper oligocene (Rage 1987;Rage & Augó 1993).The Eocene lacertid from the Baltic am- ber,Succinilacerta succineą (Boulenger,I9|7), supplementsthe list. Remains attrib- utable to the genusLacerta, but not really determinablein terms of neoherpetological taxonomy' appearfirst in the oligocene (L. filholi, see Augó 1988). Plesiolacerta? paleocenica Kuhn, 1940 andPseudeumeces? wahlbeckensis Kuhn, 1940 from the Upper Paleocene of Wahlbeck (Germany) have been questionablyre- ferredto the lacertidsby Estes (1983,see also Rage & Augó 1993). Two cladistic approachesto relationshipsamongst squamates by Estes et al. (1988) and by Evans & Chure (1998) suggestan early date of appearanceof the Lacertidae. According to Estes' et al. (1988)phylogenetic hypothesis, as supplementedby a new affiliation of the early Cretaceous Meyasaurus Yidal, 1915, (quite recently shifted from the early autarchoglossanto the early teiioid position, see Evans & Barbadillo 1997),this date may be the late Jurassic (see Fig. 8A). A still earlier middle Jurassic date seemsto be suggestedby the Evans & Chures' (1998)cladogram, the earliest ACTA PALAEONTOLOGTCA POLONTCA (M) (4) 363

(l) o (u q) (E pŃ p EE :qEqaó E(E - -c EĘo!ł ś o_ & o g €E oo o E(U (E E s a .ĘE.o EP E !U o 'h(,F9(/)(L :6 ,ę (U E OF o p o o (E J E (E x

Anguimorpha

A Fig. 8. Cladograms of squamaterelationships. A. According to Estes et al, (1988: fig. ó) with Parama- cellodidaeand MeyasaurusYidal,1915 (M) added.B. According to Evans & Chure (1998:ftg.4). paramacellodidrecord being late Jurassic in age (Fig 8B). In a possible contrastis a conclusion from the studieson immunological distancesamong extantlacertid genera (Mayer & Benyr t994) combined with the molecular clock methodology (Kimura l98f). A chronologically scaled dendrogram(Mayer & Bischoff 1996, Fig. 9) indi- cates the date of appearanceof the common lacertid ancestor not earlier than the Oligocene. A direct implication of this hypothesisis that the Paleogene,and possible earlier lacertids (to be discovered)do not belong to this very clade, but insteadare its immediateout-groups contributing to a more inclusive clade. The phylogeneticpicture thatappears suggests we are dealing with an early radiationthat produced several lines of a primitive lacertid grade. A purely taxonomic conclusion is a discrimination be- tweentwo hierarchical groups:the Lacertidae sensustricto or the crown lacertids,and the more inclusive Lacertidae sensu lato (regardedherein as a synonym of the family Lacertidae Bonaparte, 1931), including the pre-Oligocene stem lacertids in addition (theterm lacertoidshas beenpreoccupied by Camp 19f3, and thenby Estes et al. 1988, this time for a group including lacertids, teiioids and xantusiids). If this is true, no pre-Oligocene lacertid should be considered congeneric with those belonging to the crown-group,although one of them may be a strict crown-group ancestor. 364 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et aI.

cĄ s Ę{ s 6 3 EóĘ F*śfi!strro 8* 5 African clade Eurasianclade HS E P 5 {oix6 Ńs H P *s o c o o .9.t (L+

3l q

o c El ts o o o Gallotiinae Lacertinae P E l€ o s& anłffi.ooontncertios

Fig. 9. Dendrogramof the lacertid relationshipsbased on Mayer & Bischoff (1996: ft1.2), modified.

With the Eocene fossils at hand,it is clear that the so called lacertid morphotypeis older than the possible Oligocene ancestorof the crown lacertids itself hypothesised by Mayer & Benyr (1994). These fossils included into the out-group analysis of lacertid morphology as immediateout-groups, may shedsome light on the order of ap- pearanceof the remaining charactersof the lacertid morphotype.However, more con- clusive is a combination of the immediateout-group analysis with a large scale analy- sis (including all the important squamatebranches). As statedin the Infroduction,the analysis is reducedto the characterspreservable in the amberinclusions, and mainly to those of the pileus. ACTA PALAEONTOLOGTCA POLONTCA (M) (4) 365

Analysis of some characters (1-6) of pileus and body scaling (7) pattern characteristic of modern Lacertidae (1.)Frontoparietal scales having long sagittalcontact extending forward at the expense of the unpairedfrontal scale up to at least a posteriorone thfudof the orbit length.(Figs 38, 10A, B). This characteris probably more ancient than the family itself. (2) Four supraoculars,the second and the third one much larger than the two terminal ones (I and IV) (Figs 3B, 10A). (3) Central position of both the parietal foramen and interparietalscale on the parietal table,posteńor to the anteriorreach of parietalscales; a complementarylarge posterior extent of the frontoparietals,over the fronto-parietalsuture, is equally typical of the lacertidpattern (Figs 38, 11A). (4)Large subquadrangularto roughly ovoid parietal scales extendingfrom the level of the frontoparietalsuture to the posteriormargin of the pileus (Figs 3B, 11A) - the lat- eral extentis subjectedto variability as shownby Arnold (1973,1989) (5) Consistent patternof the pileus beginning at an early stageof ontogeny. (6) Occipital scale separatingthe parietal scales at the posterior margin of the pileus (Figs 38, 114). (7) An abrupttransition from the large pileus scaling to small body scales,usually and primary arrangedin tessellatedpattern. (1) This characterstate is sharedby most teiids,cordyliforms (sełlsuLang 1991) and scincids (see Figs 10, 11),and absentfrom the out-groupsof the Scincomorpha.It might thus be considereda scincomorphansynapomorphy under the assumptionthat it has secondarily changed in some specialized scincids and some gymnophthalmids (scalefusion in hard ground burrowers,possibly in connectionwith subterraneanlife, Fńederich |978:p.22) and in xantusiids(in variousdirections and without clear func- tional significance,Friederich 1978:pp. 10-11). A typical interfrontoparietalsuture is present in the Late Cretaceous possible xantusiid sister-groupthe genusEoxanta Borsuk-Białynicka, 1988,and in the earliest representativeof lacertoidstem (sensuEstes et ai, 1988)Globaurą venustaBorsuk- -Białynicka,1988 (Borsuk-Białynicka1 988). The presenceof the long interfrontoparietalsuture is associatedwith a posteriorpo- sition of both the parietalforamen and interparietalscale in extantlacertids. Howeveą it should be kept in mind thatthe shapeof the interparietalis more variable thanthe po- sition of the foramenitself. In somelizards, the scale may increasein length anteriadof the parietal foramen to touch the suture,or even further forward than that (as e.g. in Cordylus cataphraclrzsSMF 73659, or Diploglossus costatus, tig.29 in Friederich 1978),a featurewhich obscuresthe main evolutionary trend. (2) The four pair patternof the supraocularsis very consistentwithin the lacertids but not so in the other Scincomorpha.Within the last named group, it is sharedby most cordyliforms,some scincids (e.g. Chalcides ocellalzs SMF.68808, butnot tnEumeces Fig. 10E), some teiioids (e.g.Proctoporus striatus SFM.333, but not in Callopistes 366 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et aI.

Podarcis erhardii Acanthodactylus Gerrhosaurus tristrami nigrolineatus

Cordyluscordylus Eumeces schneideri

G

$ L (E l o o (so L o- u,J

frontoparietale Teiusteyou Ameiva ameiva laeta

Fig' 10' Interorbitalpart of the pileus in lacertids:A- ZFMK 25093,B - ZFMK 44347;gerrhosauńds: C - ZFMK6lf2a;cordylids:D-SMF82540;scincids:E-SMF56840;teiids:F-SMF26642,G-ZFMK 29995. A1l Recent. Frontoparietal scales are shaded.Horizontal anows indicate the level of the fronto- -parietalsuture. Out of scale.

Fig. 12A), andby somexantusiids (Cricosaura seeFriederich1978: tig.7) while being absent from the out-groupsof the Scincomorpha (the regular pattern of five supra- oculars in the anguidsis here consideredhomoplastic). In teiids the fourth supraocular seemsto develop from the postero-lateralcorner of the third one (Fig. 10G but not in 10F).Posterior to it a naffow spaceis filled up by a mosaic of small scales.The small scalescontinue along the externalmargin of the supraocularsand supratemporals(Fig. 10F). The first supraoccularis, too, often representedby several units. A fragmenta- tion of the second and the third supraocularis rare, and homology of these scales within the scincomorphangroup is most probable. A possibility that the four pair patternof supraocularsis synapomorphicfor a groupmore inclusive thanthe lacertids, requires numerous reversals. Rather the teiid pattern(two supraoculars+ anteriorand posteriormosaic) is a point of issue for the Scincomorpha.This is consistentwith a position of teiioids in the Evans & Chure's ACTA PALAEONTOLOGTCA POLONTCA (44) (4) 367

interparietale

Eumeces schneideri Teius teyou

Ameiva ameiva petersi

Fig. 11.Parietal part of pileusin lacertids:A-ZFMK 2.5093,8-2FMK44347;scincids: C - SMF 56840; teiids:D-SMF26642,E-ZFMK29995,F-ZFMK3S29T.AllRecent.Frontoparietalscalesareshaded. Horizontal arrows indicate the level of the fronto-parietalsuture. Out of scale.

(1998)cladogram rather than with thatin Esteset aL (1988)(Fig. 8A, B). Two pairs of supraoculars(II and III) are most probably synapomorphicfor the Scincomorpha. The supraocular I and IV may have evolved in parallel within different scinco- morphan lines includiqg the lacertids. They may be synapomorphic for the latter group. Fragmentation of supraocular I and IV which occurs in AcanthodacĘIus (Fig. 10B),is considereda reversal,one of the elementsof a 'new look' of pileus of this de- rived (Mayer & Benyr 1994)genus.

(3) The position of the interparietalscale is roughly associatedwith thatof the parietal foramenaround which this scale develops.It is also associatedwith the position of the frontoparietalscales adjoining the interparietalscale anteńorly. The larger the poste- ńor overlap of the frontoparietalscales on the parietaltable, the more posteńor the po- sition of the interparietalscale with the parietal foramen on it. 368 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et al.

B

Callopistes sp. Lepidophyma sp.

Fig.12. Parietalpart of pileus. A. Calloplsres (a teiid).B. Lepidophyma (axantusiid);both afterFńedeńch 1978:figs 15 and 6 respectively'Both Recent.Frontoparietal scales are shaded.HorizontalźuTows indicate the level of the fronto-parietal suture. Scale bar 3 mm.

Typical of the lacertids is the large posterior extent of the frontoparietal(Figs 3A, '7,101-, 114). It is approachedby some gelrhosaurids(e.g., Fig. 13D) and some scincids (Fig. 10E), but unknown outsidethe Scincomorpha,and is thus a possible novelty of the Lacertidae or of a more inclusive scincomorphan group. In the ońgin of this group,we must envisagean evolutionaryprocess causing a posteriorshift of the parietal foramen + interpanetal scale, associatedwith a complementaryposterior growthof thefrontoparietal scales. Howeveą accordingto Estes et al. ( 1988)'the po- sition of the foramen within the middle part of the parietal, clear of the fronto- -parietal suture,is primitive in squ-amates.Consequently, the central position of the interparietal scale on the parietal table consistentin the lacertids and common in the non-teiioid scincomorphansis plesiomorphic rather than derived according to these authors(Estes et a|.1988). A morphocline polarity of this character implicit in the cladogram of Evans & Chure (1998: fig. a) may be interpreted in a different sensę. According to this cladogram (Fig. 8B) the teiioids make up an early scincomorphanoffshoot (insteadof the most derived group of lacertoids),and their characterstates may thus be primitive for the Scincomorpha.The teiid position of the parietalforamen and interparietalscale, close to the fronto-parietalsuture and subjectedto variability (Figs 11D-Ę 12A, |4) may bó thus an ancestralscincomorphan state. This hypothesisis consistentwith the anteriorposition of the parietal foramen in the primitive autarchoglossans:the angui- morphans (e.9., upper Jurassic Dorsetisaurus Hoffstetter, 1967, middle Jurassic to lower CretaceousParviraptorEvans,1994, and late CretaceousGobiderma Borsuk- -Białynicka, 1984), and the pńmitive, middle Eocene non-teiioid scincomorphan ACTA PALAEONTOLOGTCA POLONTC A (44) (4) 369

(Eolacerta NÓth, 1940),as wellas in a stem-teiioid,the early CretaceousMeyasaurus Vidal, 1915). Estes et al. (1988:p. 1a8)assumed the shortparietaltable and long supratemporal processesto be primitive in squamates.According to theseauthors, the long parietals and short supratemporalprocesses found in lacertids, xantusiids and cordylids, as well as in xenosaurids'appear to have been separatelyderived by the depositof sec- ondary bone'. According to a scenario proposed herein, we are dealing with allo- metric growth of the parietals in phylogeny, mainly posteriad, to roof the angle be- tween the supratemporal processes, and not affecting the underlying brain. This growth was associatedwith a relative anterior shift of the parietal foramen on the pa- rietal table. The typical central position of the foramen in the lacertids is here consid- ered a compensatory reversal. The posterior shift of the foramen that must have occured in the evolution of this lizard group was obviously followed by the fronto- parietal scales.Hence, the large overlap of thesescales on the frontoparietalsuture (Figs 3, 104) which is quite consistentwithin the lacertids and unique for them is here considered synapomorphic for the family, along with the central position of the parietal foramen.

(4)Larye, roughly subquadrangularparietal scalesoccur in the lacertids,cordyliforms and xantusiids,each of thesegroups displaying a patternof its own. The large scalesof this type evolve if directĘ underlainby flat dermalbones. If the roofing bonesare deep underthe skin surfaceor they aremissingatall (thecase of the unroofedsupratemporal fenesffaand an unroofedangle betweensupratemporal processes), the small scale pat- tern develops rather than large scales. This mechanical dependenceon craniological characterssuggests the possibiliĘ of parallel developmentof scaling pattern. The associationof scalepattern with craniologicalcharacters is best shownin the Cordylifonnes. The Gerrhosauridae, one of the constituent families of the latter group (FiS. 13B, D), have shortparietals and short anteriorparietal scales on them, whereasthe second family, the Cordylidae (Fig. 13A, C) have the angle between supratemporalprocesses wholly roofed and the posteriorparietal scales developed on this roof. The short pileus of the scincids resemblesthe medial parietal part of that of the teiids in its oblique posterolateralmargins. It colrespondsto a flat centralsurface of the parietalbone (Fig. 11C), and may be the oldest part of the posteriorpileus whereasthe postero-lateralparts are more recent additions.This postero-lateralzone of the pileus is extremely variable in teiids, in both taxonomic (Figs 11D_Ę I2A) and ontogenetic terms (Fig. 1a). Most common is a presenceof an outer parietal scale contactingthe main parietalalong the oblique line (compareFigs llE and 14E with Fig. 11C) as well as transversedivision of parietalregion scales(Figs IIE,I4D, F). Amosaic of scales, variable in size, covers as a rule the posterior,posterolateral and lateral regions of the head.The size of the parietal scales variatesfrom quite small (Fig. 14D) throughmid- dle-sized (Fig. 14E) to ratherbig (Fig. 14F). The interparietalrelatively decreasesin size in ontogenyGrg. 14). (5) The posteńor pileus paffernis quite consistentwithin the Lacertidae,including the juveniles (Fig. 7), arń unique among the lizards. It demonstratesthat a strict genetic control operatingfrom an early stageof ontogenyhas been developedin this family. 3'70 Eocene Baltic amber lizard: BORSUK-BIAŁYMCKA et aI.

CorĘlus cowlus Gerrhosaurus nigrolineatus

CorĘlus cordylus

Fig. 13. A, B. Parietal part of skull in CoĄliformes. After Lang (I99I: figs 21A and 30 respectively).C, D. Parietalpart of thepileus in Cordyliformes:C - SMF 8251,D -ZFMK6122a. A, C. Cordylidae.B, D. Gerrhosauridae.A1l Recent. Frontoparietalscales are shaded.Hońzontal arows indicate the level of the fronto-parietalsuture. Scale bars 3 mm.

This control is consideredsynapomorphic forthe crown-grouplacertids along with the posteńor pileus patternthat results. The lack of any strict geneticcontrol of the posteriorpileus patterncharacteristic of teiids is probably plesiomorphic, which is consistentwith their position in the clado- gram shown in Fig. 8B ratherthan 8A.

(6) The absence of an occipital scale is almost the rule in non-lacertid scinco- morphans.According to Lang (1991),the occipital is rarely and randomlypresent in cordyliforms and in teiioids as a derived characterstate of a lower taxonomiclevel. In contrast,the presenceof the occipital, wedgedin betweenthe parietals,is the rule in lacertids,and it is consideredsynapomorphic for this clade.Its absence(Acantho- dactylus, Fig. 1IB, Eremias, and occasionally in Psąmmodromus)is consequently consideredsecondary. ACTA PALAEONTOLOGTCA POLONICA (44) (4) 371

Ameiva ameiva Cnemidophorus Kentropyx lemniscatus calcaratus

Cnemidophorus Ameiva ameiva lemniscatus Kentropyx calcaratus

Fig. 14.Postembryonic developmentof thepileus inteiids. A-SMF66826,8-SMF II73L,C-TIvIK33339, D-SMF38f97,E-TMK59577,F-TMK534I.L-C.Juveniles.D-F.Adults.AllRecent.Frontoparietal scales are shaded.Horizontal arrows indicate the level of the fronto-parietalsuture. Scale bars 3 mm.

The size and shape of this scale and its relations with respect to the interparietal vary to a certain extentat a generic level. Still, a similarity betweenPlesiolacerta and the stem-teiioidMeyasauru,s (Richter 1994:fig. 11) in the huge size and high triangu- lar (or trapezoidal)shape of the occipital scale (Fig. 15B, C) suggeststhat this shapeis a plesiomorphic statein lacertids.It may result from the simplestway of filling up a tri- angular spacebetween the primitively long supratemporalprocesses (see p. 369). (7) An abrupttransition from the large pileus scaling to small body scales,usually and primarily arrangedin tessellatedpattern is characteristicof lacertids. It is probably plesiomorphic ratherthan deńved, according to out-groupanalysis. outside the scin- comorphanclade, the small elementpattern of the body scaling prevails. Fig.17 illusfratesthe positionof Succinilacertaand of otherhzards discussedabove in the squamatecladogram based on Evans & Chure (1998),as well as the implicit morphocline polarity. 372 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et al,

interparietale

intepańetale

Fig. 15. Parietal part of skullbearing pileus tracesof !l. Eolacerta robustaNÓth, 1940,Middle Eocene, af- ter Mtiller 1998:fig. 2.8. Plesiolacerta lyddekeri Hoffstetter,t942,E;ocena afterEstes 1983: ftg.24B. C. Meyasaurus unąensis Richter, 1994, Ear|y Cretaceous, after Richter 1994: ftg. 11. D' Timon lepidus (Daudin, 1802),ZFMK3L433. Frontoparietalscales are shaded.Horizontal arrowsindicate the level of the fronto-parietal suture.

Succinilacerta (Figs 3, 17) shares all five (f-6) synapomorphiesof the crown group lacertids discussedabove, the early ontogeneticcontrol of the pileus patternin- cluded. Plesiolacerta lydekkeri (Figs 15B, 17) is known to sharesynapomorphies 3 and6, but displays some fragmentationof parietalscales, while being polymorphic in this re- gard (Augó 1988:fig. 6A and personalobservation by MBB, 1999 in MNHN). Its frontoparietalsoverlap the frontoparietalsuture, but the amountof overlap is less than usual in lacertids. The very long triangular occipital scale of this genus may be sepa- rated from the interparietalby a short transitionalplate, and is either unpaired or di- vided into two parts. It recalls the occipital of both Eolącerta robusta (Fig. 15A), a stem non-teiioid scincomorphan(Miiller 1998),and the most plesiomorphic teiioid ACTA PALAEONTOLOGTCA POLONTCA (44) (4) 373

Meyasaurus unaensls (Figs 15C, I7), but we consider this similarity as parallelism. The pileus stateof Plesiolacertais admittedlyplesiomorphic in lacertids,and suggests a lack of precise pileus control synapomorphicfor crown-grouplacertids. Eolacerta robusta (Figs 15A, 17) displays a pileus patternconsistent with the hy- pothesisedmorphocline polariĘ (Fig. 17).The frontoparietalscales are short (they do not even reach the frontoparietalsuture laterally) which correspondswith the anterior position of the parietal foramen (within the anterior one fourth of the parietal table). The occipital scale obviously develops within the triangular space (Miiller 1998: fie.Ą produced by the long supratemporalprocesses. The scale would be extremely long if it reached as far posteńor as theseprocesses. What is the parietal scale in the lacertids,should have beenrepresentedtn Eolacerta (Mid,Ller1998) by the medial pari- etal scale,overlapping the frontoparietalsuture anteriorly (Fig. 15A), and an unknown number of scales on the postero-lateralpileus corner. The parietalof M. unaensisfigured by Richter (7994:fig. 11)bears a sculpturethat may be interpretedas a teiid-like scale patternprovided with a very long triangularoc- cipital of a seemingly lacertid (but probably pńmitive) type' similar to that of Plesio- lacerta.

Notes on the secondary fragmentation of the pileus A cursory inspection of the skull integumentin lizards shows that the developing pileus units follow the configuration of the skull surfaceas a whole ratherthan fitting the outlines of particular dermal bone units. Situatedbetween the epidermal units and the skull bones, the osteodermalbone cover (called crusta calcarea by neoherpetolo- gists; see e.g.Arnold 1989)displays an intermediatepattern. The osteodermalunits do coffespondto the epidermal scales,but are often cut into pieces by suturesbetween the underlyingdermal bones (see e.g. Lang l99I: fig. 8). In somelizards (e.g.in anguids, see Borsuk-Białynicka 1984),the pieces fuse, and the integrationof the osteodermal cover tendsto increasein the ontogeny,but this is not the case in lacertids.In the latter Iizardgroup,the paffernof the skull integumenthas been fixed at the early ontogenetic stage,and thejuveniles, as a rule, display the samepattern as the adults.This may not be the casein big lizards. The increasing production of osteodermalbone, associatedwith an increasein animal size, makes all the division lines occuring on the osteodermalunits (tracesof bone sutures)more distinct,and the units themselvesmore convex,which eventually results in corresponding disintegration of the epidermal scales on their surface. Moreover, the thicker skin of large sized animals tends to produce small, rather than large,dermal ossifications.Large units tend to developwhen the skin is sandwiched in a narrow spacebetween dermal bones and epidermis. Size increasemay be, thus, a factor of fragmentationof the integumentand of the pileus. However, a disintegrated pileus in a juvenile of Timonlepidus (Fig. 16A) demonstratesthat the small individu- als may also be affected. It is worth noting a similarity of the division lines in this pileus to those of the teiids. Given a derived position of Timon in the phylogeny of the Lacertinae(Mayer & Bischoff 1996),the fragmentationof the posteriorpileus in this genusis tentativelyregarded as a reversal.In this casea selectivepressure for the increase in body size might have caused a withdrawal of regulatory mechanismsbe- ginning with the early ontogeny. 3',74 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et al,

supraorbitalia

parietalia

juvenile adult Timonlepidus

Fig. 16. Postembryonic developmentof the pileus inTimon lepidus (Daudin, 1802).A. Juvenile ZFMK 38165. B. Adult ZFMK396I6. Both Recent. Frontoparietalscales are shaded.Hońzontal alTowsindicate the level of the fronto-parietalsuture. Scale bars 3 mm.

Another case of reversal is that of a memberof the derived Afńcan clade (.Afrika- nischeLinie' of Mayer & Benyr 1994),the genusAcanthodacĘIus (ZFMK443477). This genus displays a derived patternwith well integratedsubquadrangular parietal scales,no occipital(Fig. 11B),an anteriorpositionof theinterparietal, and correspond- ing reduction of the posterior extent of the frontoparietals.Instead, the anterior and posterior supraocularshave been disintegratedresulting in a patternsimilar to that of teiids (seeFig. 10B and F). Most probably,a reversal of the strict pileus control of the lacertid type is here associatedwith the anteriorshift of the parietal foramen (see also Pedioplanis skull in Arnold 1989: fig. 3) to the frontoparietalsuture causing some problems in the pileus characterdisplay.

Conclusions

A fossil lacertid lizard from the middle Eocene Baltic amber,described herein, is as- signedto Succinilacertasuccinea (Boulenger,l9I7), a speciesto which all previous Baltic amberspecimens probably belong (BÓhme & Weitschat1998). Succinilacerta succinea sharesall the synapomorphiesof the pileus of the crown group lacertidspro- posed herein, and is, thus, considereda memberof this group. The synapomorphiesale as follows: The long posteńor extension of the fronto- parietal scaleson the parietaltable associatedwith the centralposition of both the pari- etal foramenand the interparietalscale on this table (3); the large subquadrangularpa- ńetal scales (4); an early ontogeneticcontrol of the pileus pattern (5); the occipital ACTA PALAEONTOLOGTCA POLONTCA (44) (4) 315

Extant Cordyliformes lacertids SucciniIaceńa and Scincids Teiioids

,,GllailIn,, Heefiłdś

Plesiolacerta (stem lacenrd)

Eolacerta

Early Early squamatianstage scincomorphanstage

Fig,17 ' Hypothesized sequenceof the stagesof posteńor pileus evolution in squamatanphylogeny. Clado- gram of scincomorphan relationships roughly according Evans & Chure (1998) with the Paleogene lacertids andMeyasaurusYidal, 1915 included. Frontoparietalscales are shaded.Hońzontal arrows indi. cate the level of the fronto-parietal suture. scale (6) separatingthe parietal Scalesposteńorly; and possibly, two pairs of supra- oculars (I and IV) (2). The long sagittal contact of the frontoparietal scales (1) is considered synapo- morphic for the Scincomorpha,and thus antedatesthe characterstates (f-6). The Eocene genus Plesiolacerta sharesmost, but not all, of the above synapo- morphies of the crown group lacertids. It displays a certain amount of intrageneric variability of the posteriorpileus pattern(lack of strict geneticcontrol of the pattern), a pńmitive fragmentationof parietal scales and a very long occipital. Some features 376 Eocene Baltic ąmber lizard: BORSUK-BIAŁYNICKA et al.

(2 among others)are unknown. The genusrepresents a less advancedstage of lacertid phylogeny than Succinilacerta, and does not belong to the crown group lacertids. In view of scarcity of the pre-oligocene lacertid fossil mateńal, we do not discriminate betweenthese stagesin terms of formal taxonomy.The family Lacertidae Bonaparte, 1831 is here considered as a clade including both crown group and stem group lacertids. According to our results, the lacertid morphoĘpe of the pileus is more ancient than the Oligocene which is to read that the crown group lacertids is to be rooted earlier than theOligocene, in contrastto Mayer & Benyr's (1994)opinion based on moleculardata. Although we cannotdiscriminate between a primitive and a secondary(see p. 373) fragmentationof the pileus in Plesiolącerta andEolacerta,the early stratigraphicage of these genera suggestsa primitive stage of developmentof the pileus ontogenetic control. In contrast,some fragmentation phenomena met with in extantgenera (Timon, AcanthodacĘIus)may be secondary. Though the presentanalysis of the epidermalintegument patterns is not conclusive for the relationshipswithin the scincomorphanclade, it bettermatches the cladogram by Evans & Chure (1998), according to which the teiioids make up the most plesio- morphic branch of the scincomorphanclade, than the earlier hypothesisof Estes et al. (1988) in which they are the most deńved group. \

Acknowledgements

The authors would like to thank the Direction of the Museum of the Earth, Polish Academy of Sci- ences, and particularly so Professors K. Jakubowski and B. Kosmowska-Ceranowiczfor entrusting us with a study of the amber specimen of Succinilacerta succinea, as well as Mrs. G. Gierłowska for her permission to borrow the specimen, and to publish her photographs. The late Dr. R. Kulicka (MZ) helped us with all kind of information concerning the preservation of amber fossils. Our thanks are also due to Dr. W. Krzęmiński (ISEA) for his comments on the amber specimens. The drawings have been done by one of us (ML), while Mr. A. Kaim prepared the computer version of the illustrations. Photographs IB,2B,6F are by G. Gierłowska, 6E by T.ZiegIer. The senior author would like to express her gratitude to colleagues from Senckenberg Museum Dr. S. Schaal, Mrs. S. .Weber (Paleontological Department) and Dr. G. Koehler and Mrs. M. Laudńn (Zoological De- partment), to Mr. J. Mtiller (Mainz University), as well as to the staff of the Institut und Museum Alexander Koenig, Bonn, for making it possible to study both fossil lizardmaterial (Messel collec- tion) and extant lizard materials, and for many courtesies extended to her during her stay in Ger- many. Dr. Arnold (Natural History Museum, London) kindly discussed with her (MBB) some problems of character variability in lacertids. Dr. J.-C. Rage (Museum d'Histoire Naturelle, Paris) has kindly allowed (to MBB) for studying the Oligocene Plesiolacerta material from France. Dr. S.E. Evans (University College, London) and Dr. J.-C. Rage offered very useful comments. The studies of the extant material have been possible owing to financial support of the Deutsche Forschungsgemeinsch aft (AZ: 43 6 POL I7 I 12198).

References

Andree, K. 1937. Der Bernstein und seine Bedeurung in Natur- und Geisteswissenschafien,Kunst und Kunstgewerbe,Technik, Industrie und Handel,2I9 pp. Grżife&Unzer Verlag, KÓnigsberg. ACTA PALAEONTOLOGTCA POLONTCA (44) (4) 377

Arnold, E.N. 1973.Relationships of the palaearctichzards assignedto the generaLacerta,Algyroide,s and Psammodromzs (Reptilia: Lacertidae).- Bulletin of the British Museum (Natural History) Zootogy 25,9,291-366. Arnold, E.N. 1989. Towards a phylogeny and biogeography of the Lacertidae: relationships within an old-world family of lizards derived from morphology. - Bulletin of theBritish Museum (Natural His- tory)Zoology Series 55,2,209-257. Augó, M' 1988. Une nouvelle espbce de Lacertidae (Sauria, Lacertilia) de l'oligocbne frangais..Lącerta ftIhoti, Place de cette espdce dans l'histoire de l'Eocene supórieur au Miocbne infórieur. - Neues Jahrbuchfiir Geologie und Palrjontologie8,46Ą 478. Augó,M.1990.LafaunedeLózardsetAmphisbaenesdel'EocbneinfórieurdeCondó-en-Brie(France).- Bulletin du Museum national d'Histoire Nąturelle,Paris, 4e sÓńe,12,2, 11-141. Bischoff, W. 1990. Ubersicht der Arten und Unterarten der Familie Lacertidae. 1. Die Gattungen Acanthodactylus' Adolphus wdAustrąlolacerta. - Die Eidechse 1.,1813. Bischoff, W. 1991a. Ubersicht der Arten und Unterarten der Familię Lacertidaę. 2. Dię Gattungen Eremias, Gallotia, Gastopholis, Heliobolus, Holaspis wd lchnotropis. - Die Eidechse 2, I4-2I. Bischoff, W. 1991b.Ubersicht der Arten und Unterartender Famite Lacertidae. 3. Die Gattung Lacerta. - Die Eidechse 3, 5-16. Bischoff, W. 1991C. Ubersicht der Arten und Unterarten der Familie Lacertidae. 4. Die Gattungen Latastia, Meroles, Mesalina, Nucras, Ophisops, Pedioplanis, und Philochortus. - Die Eidechse 5, 6-20 ( Bischoff, W . l992a.Ubersicht der Arten und Unterartender Familie Lacertidae.- Die Eidechse 6, t8-23 Bischoff,W.Igg}b.Ubersicht derArtenundUnterartenderFamilieLacertidae. -D ie EidechseT,L3-!7 Bischoff'W.,Cheylan,P.,&BÓhme,w.1984.LącertalepidaDaudin,1802-Perleidechse.In:W.BÓhme (ed.),Handbuch der Reptilien und Amphibien Europas 2/1,I81-2I0, Aula Verlag, Wiesbaden. Bóhme, W. & Weitschat, W. 1998. Redescription of the Eocene lacertid llzard Nucras succinea Boulen- ger, l9L7 from Baltic amber and its allocation to Succinilacerta n. gen. - Mitteilungen des Geologisch-Pakiontologischen Instituts der Universitdt Hamburg 81.,203-222. Borsuk-Białynicka,M. 1984.Anguimorphans andrelated|iznds.In: Z.KielatJaworowska (ed.),Results ofthePolishMongolianPalaeontologicalExpeditions'PartX.-PalaeontologiaPolonicą46,5-105. Borsuk.Białynicka, M. 1988. Globąurą venusta gen. et sp. n' and Eoxąnta lacertifrons gen. et sp..n. - non-teiid lacertoids from the late Cretaceous of Mongolia. - Acta Palaeontologica Polonica 33, zLt-248. Boulenger, G.A' 1917' Arevisionof thelizards of the genusNucra.s,Gray. -Annals of the South,Ąfrican Museum13,6,L95-2I5. Boulenger, G.A. 1920-192I Monograph of the Lacertidae,l-2. British Museum (Natural History), Lon- don. Camp, C. 1923. Classification of the lizards. - Bulletin of the American Museum of Natural History 48, 28948r. Darevski, I.S. (Darevsky, I.S.) 1967. Rock lizards of Caucasus [in Russian).214 pp. Izdatielstwo Nauka, Leningrad. Estes, R' 1983. Sauńa terrestria,Amphisbaetia. In: P. Wellnhofer (ed.),Handbuch der Pąltiontologie 10A, Gustav Fischer Verlag. Stuttgart.XXII+249 pp. Estes, R., de Queiroz, K., & Gauthier,J. 1988.Phylogenetic relationshipswithin Squamata.ln: R. Estes & G. Pregill (eds), Phylogenetic Relationships of the Lizard Fąmilies, II9_28I. Stanford University Press, Stanford, California. Evans, S.E. & Barbadillo, J . 1997. Early Cretaceouslizards from Las Hoyas, Spain. - Zoological Journal of the Linnean SocieĘ !l9,2349. Evans, S.E. & Chure, D.C. 1998.Paramacellodid lizard from the Jurassic Morrison Formation at Dinosaur National Monument, Utah. - Journal of VertebratePąleontology 18,99_II4. Friedeńch, U' 1978.Der Pileus der Squamata.- StuttgarterBeitrdge zur Naturkunde A (Biologie)307, t-64. Haubold, H. 1977. Zur Kenntnis der Sauria (Lacertilia) aus dem Eozdn des Geiseltals. 1n:H.ril. Mathes & B. Thaler (eds),Eociine Wirbeltiere des Geiseltales - Kongress- und Tagungsberichte,107-I[Z.Mar- tin-Luther-Universitat Halle-Wittenberg. Wissenschaftliche Beitriige 197712(P5) Halle/Saale. 318 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et al.

Hecht, M. & Hoffstetter, R. 1962. Note próliminaire sur les amphibiens at les squamatesdu Landenien superieur et du Tongrien de Belgique. - Bulletin de l'Institut Royal des Sciences naturelles de Belgique38,1-30. Hoffstetter, R. 1942, Sur les restes des Sauria du Nummulitique europóen rapportós d la famille des Iguanidae.- Bulletin du Museum National d,Histoire Nąturelle, Paris 1'4,233_240, Jefferies,R.P.S.l9T9.TheOriginofChordates-aMethodologicalEssay.ln;M.R.House(ed.),Theori- gin of Major invertebrategroups. -The SystematicsAssociation SpecialVolume 12,443477. Aca- demic Press, London. Juszczyk,w. 1987.Płązy i gady krajowe.T.III Gady.2I4pp. PwN, Warszawa. Kimura,M.l9S2.Theneutraltheoryasabasisforunderstandingthemechanismofevolutionandvariation at the molecular level. In: M, Kimura (ed.),Moleculąr Evolution, Protein Polymorphism and theNeu- tral Theory,3-56. Japan Scientific Society Press, Tokyo & Springer, Berlin. Klebs, R. 1910. Ueber Bernsteineinschliisse im allgemeinen und die Coleopteren meiner Bernstein- sammlung.- Schriften der physikalisch-ókonornischenGesellschaft 51,2t7-242. Klemmer, K. 1957. Untersuchungenzur osteologie und Taxonomie der europżiischenMauereidechsen. - Abhandlungen der SenckenbergischenNaturforschenden Gesellschaft 496,I-56. Kosmowska-Ceranowicz,B., Kulicka, R., & GierłowskaG. 1997.Nowe znaleziskojaszczurki w burszty- nie bałtyckim.- Przeglqd Geologiczny 45, I0,1028-1030. Kuhn, O.1944. Weitere Lacertilier, insbesonderelguanidae, aus dem Eozdndes Geiseltales. - Paldon- tologi sche Ze itschrift 23, 3I 4, 360-368. Lang, M. 1991' Geneńc relationships within Cordyliformes (Reptilia, Squamata).- Bulletin van het Koninklijk Belgisch Instituut voor Natuurwetenschappen,Biologie 61, 121-188. Mayer, W. & Benyr, G. 1994. Albumin-Evolution und Phylogenesein der Familie Lacertidae (Reptilia: Sauńa) - Annalen des Naurhistorischen Museums in Wien 96B., 621448. Mayer, w. & Bischoff w. 1996. Beitrżigezur taxonomischen Revision der Gattung Lacerta (Reptilia: Lacertidae)Teil 1:Zootoca, omanosaura, TimonundTeiraa|seigenstżindigeGattungen. -^Salaman- dra32,3, 163-L70. Mtiller, J. 1998. osteologie und phylogenetische Stellung von Eo|acerta robusta NÓth, 1940, einem I'acertilier aus denMitteleocdnvon Messel und dernGeiseltal (Reptilia, Scincomorp,ha).Unpublished Msc Thesis. Mainz. NÓth, L. 1940.Eolącertą robusta n. g., n. sp., ein Lacertilier aus dem mittleren Eozln des Geiseltales.- Nova Acta Leopoldina (N.F.) 8, 53, 44M60. Peters,G, 1964.Sekundiire Geschlechtsmerkmale, Wachstum und FoĘflanzung bei einigen transkauka- sischen Eremiąs_Formen (Reptilia, Lacertidae).- Senckenbergianabiologicą 45,445467. Rage, J-c. 1987.Extinctions chez les Squamates() i la fin de l'oligocÓne en France. Adaptations et modifications de l'environment. - Mćmoires de Ia Societć gćologique de France N.s. 150, 145-150. Rage, J-C' & Augó, M. 1993. Squamatesfrom the Cainozoic of the Western part of Europe. - Revue de Paleobiolo gie, vol. spec. 7, 100-216. Richter, A.1994. Der problematischeLacertiher Ilerdaesaurus(Eeptilia, Squamata)aus der Unter-Kreide von Una und Galve (Spanien).- Berliner geowissenschaftlicheAbhandlungen13,135-161. Ritzkowski, s. 1997.K-Ar Altersbestimmungender BernsteinfiihrendenSedimente des SamlandesPalżio- gen, Bezirk Kaliningrad. 1z; R. Slotta & M. Ganzelewski (eds), InternationalesSymposium im Deutschen Bergbau Museum. SonderheftMetalla, Bochum 1997. - Neue Erkenntnisse zum Bern- stein66,19-23. Ritzkowski, S. (inpress).DieEidechseNucrassuccineaBoulenger, 1917, derEhemahligenKónigsberger BernsteinSammlung.In:B.Kosmowska-Ceranowicz&H.Paner(eds),Balticamberandotherfossil resins, Gdańsk 1997.Prcceedings of the Intemationalinterdisciplinary Symposium. Schaal, S . &.Ziegler, W. (eds) 1988.Messel - Ein Schaufensterin die Geschichteder Erde und desLebens . 315 pp. Verlag Waldemar Kramer, Frankfurt a/l\tl. Weitschat,W. & Wichard, W. 1998.Atlas der Pflanzen und Tiere im Baltischen Berntein. f56 pp.Verlag Dr. Friedrich Pfeil. Mtnchen. ACTA PALAEONTOLOGTCA POLONTCA (44) (4) 379

Eoceńska jaszczurka z blttsztynu bałtyckiego i pochodzenie grupy koronowej lacertidów

MAGDALENABoRsUK-BIAŁYNICKA. MARruSZ LUBKA i woLFGANc nÓrnrłB

Streszczenie opisany w pracy' drugi z kolei, prawie całkowity okaz jaszczurki zachowanej w środkowo- eoceńskim bursztynie bałtyckim został ztaleziony na wtórnym złozu w osadach czwarto- rzędowych koło Gdańska (Kosmowska-Ceranowicz et al. 1996). Jest to przedstawiciel Lacęrtidae, konspecyficzny z okazem pierwszym, odkrytym w tych samych utworach na Sambii (Klebs 1909, oraz dwoma fragmentami z Sambii), zaliczonymi do Succinilacerta succinea (Boulenge4 I9I7) (Bóhme & Weitschat 1998). oznaczęnie opisanego tu okazu oparte jest na diagnostycznej d|a S. succinea specyficznej budowie łusek w okolicy pazu- rowej palców (Fig. 6). okazjest osobnikiem młodocianym. Okaz zachowuje cechy pokrycia łuskowegoskóry, które jest podstawątaksonomii dzisiej- szych jaszczurek. W przypadku materialu kopalnego istnieje z zasady jedynie mozliwość rekonstrukcjipokrycia łuskowegosklepienia czaszkj (zwanegopileusem) na podstawieodcis- ków tego pokrycia na kościach.w pracy przypomniano znane relacje pomiędzy łuskami epidermalnymi akośćmiskórnymi i pokryciem osteodermalnym,przy wyeksponowaniupew- nych aspektów tych relacji, np. wpływuodległości między epidermąa kośćmiskórnymi na styl pokrycia łuskowegoi osteodermalnego,atakżeptzyplJszczalny wpływ rozmiarów ciala na ten styl. Głównym celem pracy jest odtworzenie kolejnościpojawiania się w filogenezie cech pileusa ptzy tlzyciu kladystycznej metody ana|izygrup zewnęttznych,oraz okręśleniepozycji rodzaju Succinilacertaw stosunkudo grupy koronowej (w sensieJefferiesa 1979) lacertidów. Wśród siędmiu cech pokrycia łuskowegocharakterystycznych dla lacertidów, zktórych wszystkie posiada Succinilacerta, dwie:.znaczną rozciągłośćszwu łaczącegołuski fronto- parietalne(1) i ostrązmianę typu pokrycia łuskowegona granicy tułowiai głowy(1),uznano za cechy plezjomorficzfię. Parzyste, zb|izone w zarysie do owalu, nierczczłonkowanełuski parietalne (3) orazutrwalenie stylu tylnej częścipileusna wczesnym etapie ontogenezy(5) to cechy synapomorftcznęgrupy koronowej zwłączeniem do niej rodzajl Succinilacerta.Trzy pozostałecechy: (3) głębokienakładanie się łusekfrontoparietalnych na kośćciemieniową poprzez szew fronto-parietalnyi, związanez nim, centralnepołozenie łuski interparietalneji otworu ciemieniowego(wbrew sugestiomEstesa et al. 1988),obecność (6) trójkątnejłuski potylicznej i, ewentualnie, supraokularii I i Iv (f), uznano za synapomorficzne dla całej rodziny Lacertidae Bonaparte, 1831, którą traktuje się tu jako takson obejmujący zarówno grupę koronową' jak i grupy pniowe, z w|ączeniemrodzaju Plesiolącerta. StwięrdzenieEstesa et al, (1988)'jakoby cęntralnepołozenie otworu ciemieniowego było plezjomorfią u Squamatanie zostałotu podwazone,choć pozornie stoi w sprzecznościz pro- ponowanymtu kierunkiem morfokliny. Wedługproponowanego tu scenariuszaallometryczny wzrost kościciemieniowych ku tyłowi na wczesnym etapie filogenezy Squamata (zgodny z sugestią Estesa et al. 1988) powodował relatywne przesunięcie otworu ciemieniowego w kieunku szwu' a następnie,na etapieprzodków Lacertidae,jego wyrównawczą wędrówkę do Ęła, wraz z towaruyszącyni łuskamiinterparietalną i frontoparietalnymi.Stąd ułozenietych łusekjest synapomorficzne dla Lacertidae WłączenieSuccinilacerta do grupy koronowej wskazuje na conajmniej środkowoeoceński wiek tej grupy, co stoi w sptzęcznościzproponowanym na podstawiemetody zegaramoleku- larnego wiekiem tej grupy nie starszym niz oligoceński @dayer & Benyr 1994). 380 Eocene Baltic amber lizard: BORSUK-BIAŁYMCKA et al.

Appendix Extant lizard material examined Lacertidae AcanthodacĘIus tristrami (Giinther' 1864) AI gy roides ni gropunctatr,ls(Dumóril & Bibron' 18 39) Eremias arguta deserti (Gmelin, 1789) Gallotia galloti (Oudart, 1839) I-acerta agilis Linnaeus, 1758 I-acerta triline atą Bedriaga, 1886 Lacerta viridis (Laurenti, 1768) Nucras boulengeri Neumann, 1900 Nucras ląląndii (Mi1ne-Edwards, l 829) Nucras tessellata (A. Smith,1838) P odarcis erhardii (Bedriaga, I 876) Podarcis muralis (Laurenti, 1768) Podarcis pityusensis (Bosca, 1888) Psammodromus sp. Succinilac erta s uccineo (Boulen ger, 19 17) Talqłdromussexlineatus (Daudin, 1802) kira d. dugesii (Milne-Edwards, 1829) Timon lepidus (Daudin, 1802) Timon princeps (Blanford, 1872) Zootoca vivipara (Jacquin, I1 87) Scincidae Chalcides ocellatus (Forskal, 1758) Eumeces schneideri (Daudin, 1802)

Xantusiidae Lepidophyma gaigeae Mosauer, 1936 Lepidophymaflavimaculatum Dumeril, 185 1 Teiidae Ameiva ameiva (Linneus, 1758) Ameiva ameiva laeta Cope, 1862 Ameiva ameiva petersi Cope, 1886 Ameiva undulata (Wiegmann, 1834) Callopistes maculatus Gravenhorst, I 838 Cnemidophorus lemnisc atus lemni sc atus (Linneus, I 75 8) Cnemidophorus lemniscatus ni gricolor (Peters, I 873) Kentropyx calcąratus Spix, 1825 kius teyou (Daudin" 1802)

Gymnophtalmidae Proctoporus striatus (Peters, 1862) Cordylidae CorĘIus cordylus (Linneus, 1758) Cordylus jonesi (Boulenger, 1891) P seudo c ordylus microlep idotus (Cuvier, 1829)

Gerrhosauridae Gerrho saurus ni gro line atus Hallowell, I 857 Zonurus madagascarensis (Gray, I 83 1) ACTA PALAEONTOLOGTCA POLONTCA (44) (4) 381

Measurements of extant lizards pileus Cat. Nos s-v length Rh index length

Lacertidae ZFMK Ac anthodac Ę lus tń str ami 44347 93 20 2lVo A. tristrami 44346 52 12.5 247o Al gy ro i des ni g ropunc tatus 39608 78 18.5 24Vo A, nigropunctątus 22434 41 I7 36Vo Eremiąs ar7uta deserti 53.2 t2.3 23Vo E. arguta deserti 7tzl 40 9.5 24Vo Gallotia galloti r77 118.5 G. galloti 34871 46.8 Lacerta agilis 24Vo L. agilis 6253 8f.5 17 21Vo L. agilis 6263 39 10.5 29Vo L. viridis 50471 124 29 f3Vo L. viridis 40623 43 10.5 24Vo L. trilineata 21238 50 12 24%o Nucras lalandii 163tt 78.5 13.2 17%o N.lalandii 18578 101 18.5 19%o N. tessellata 40445 70 t4.5 20Vo '7072 N. tessellata 33 7 2lVo Podarcis muralis 584 227o P. muralis 4188 29 7 27Vo P muralis 7028 60 t4.8 257o P. muralis 44190 39.2 9.5 24Vo S uc cinilac erta s uc cin ea 27 app. 10 app. 327o Thlqldro mus s exline ątus 68574 55.5 12.8 23Vo Timon lepidus 31433 t75 38.6 22Vo T.lepidus 25889 60 15 25Vo T.lepidus 396t6 2t0 T.lepidus 38265 40 T. princeps 42723 31.5 8 25Vo T. princeps 42724 60 l5 25Vo T. princeps no no 127 29 23%o Scincidae Chalcides ocellatus 68808 111 t2 llVo Ch. ocellatus 57 9 I6Vo Eumeces schneideri 118 E. schneideri 68 I4 2lVo Teiidae Ameiva ameiva 340f9 150 26Vo A. ameiva 36183 61.5 f6Vo A. ameiva laeta 29995 130 30 23Vo A, ąmeiva laetą 26489 s9.5 I6 25Vo A. ameiva petersi 38297 128 12.3 9.670 A. ameiva petersi 66826 46.2 6.5 I4Vo A. undulatą no no 116 27Vo A. undulata 78068 44.5 3lVo 382 Eocene Baltic amber lizard: BORSUK-BIAŁYNICKA et al.

Cne midopho ru s lemni s c atus 59577 85 fLVo C.lemniscatus 11731 30 7.r 24Vo Kentropyx calcaratus 47677 85.5 20.3 24Vo K. calcaratus 33339 31.3 5.4 33Vo

ZNIE Cnemidophorus l. ni gricolor 26546 64 14.9 f3.3Vo Kentropyx calcaratus 534r 93 f4 f5Vo K. calcaratus 11675 42 I2 297o

Cordyliformes Cordylus cordylus nono 81 C. cordylus no no 52.5 3fVo Zonurus mada gas c arensi s 58459 140 25 ISVo Z. madagascąrensis 13976 48 18 37Vo P seudo c o rdylus microlep idotus 3f706 r40 f5Vo P microlepidotus t8512 50 327o Cordylus jonesi 73659 67 3UVo C. jonesi 13405h 32.5 3f.5Vo G errho saurus ni g roline atus 6I fŻa 78 f47o