Cholinergic Modulation of Sevoflurane Potency in Cortical and Spinal

Total Page:16

File Type:pdf, Size:1020Kb

Cholinergic Modulation of Sevoflurane Potency in Cortical and Spinal Anesthesiology 2007; 106:1147–55 Copyright © 2007, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Cholinergic Modulation of Sevoflurane Potency in Cortical and Spinal Networks In Vitro Christian Grasshoff, M.D.,* Berthold Drexler, M.D.,* Harald Hentschke, Ph.D.,† Horst Thiermann, M.D.,‡ Bernd Antkowiak, Ph.D.§ Background: Victims of organophosphate intoxication with dred thousand casualties every year.6 Scenarios of mass injury cholinergic crisis may have need for sedation and anesthesia, such as the terrorist attack in Tokyo in 1995 with the nerve but little is known about how anesthetics work in these pa- agent sarin occur rarely. However, when they become reality, tients. Recent studies suggest that cholinergic stimulation im- pairs ␥-aminobutyric acid type A (GABA ) receptor function. victims are likely to suffer not only from intoxication but also A 1,7 Because GABAA receptors are major targets of general anesthet- from physical trauma. These subjects may have to undergo Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/106/6/1147/364219/0000542-200706000-00015.pdf by guest on 01 October 2021 ics, the authors investigated interactions between acetylcholine surgical interventions, raising the need for general anesthesia.8 and sevoflurane in spinal and cortical networks. So far, little is known about how general anesthetics act Methods: Cultured spinal and cortical tissue slices were ob- in patients afflicted with cholinergic crisis. This problem is tained from embryonic and newborn mice. Drug effects were assessed by extracellular voltage recordings of spontaneous of relevance because there is clear evidence in the litera- ␥ action potential activity. ture that -aminobutyric acid type A (GABAA) receptor– Results: Sevoflurane caused a concentration-dependent de- mediated inhibition, a molecular mechanism that is in- ؍ crease in spontaneous action potential firing in spinal (EC50 volved in mediating the sedative and hypnotic actions of .mM) slices 0.01 ؎ 0.29 ؍ mM) and cortical (EC 0.02 ؎ 0.17 50 most clinically used anesthetics, is hampered by cholin- Acetylcholine elevated neuronal excitation in both prepara- tions and diminished the potency of sevoflurane in reducing ergic stimulation: In rat cerebral cortical slices, it was dem- action potential firing in cortical but not in spinal slices. This onstrated that acetylcholine reduces ␥-aminobutyric acid brain region-specific decrease in sevoflurane potency was mim- (GABA) release from presynaptic terminals by activating 9 icked by the specific GABAA receptor antagonist bicuculline, muscarinic receptors. Furthermore, a recent study has suggesting that (1) GABA receptors are major molecular targets A shown that GABA release is also decreased via nicotinic for sevoflurane in the cortex but not in the spinal cord and (2) receptors.10 Besides these presynaptic actions of acetylcho- acetylcholine impairs the efficacy of GABAA receptor–mediated inhibition. The latter hypothesis was supported by the finding line, further mechanisms may come into play, rendering that acetylcholine reduced the potency of etomidate in depress- GABAA receptor–mediated inhibition ineffective. Excessive ing cortical and spinal neurons. neuronal activity, as observed during cholinergic crisis, Conclusions: The authors raise the question whether cholin- shifts the equilibrium potential for chloride ions toward ergic overstimulation decreases the efficacy of GABAA receptor function in patients with organophosphate intoxication, more positive values, thereby reducing the amplitude of 11,12 thereby compromising anesthetic effects that are mediated pre- GABAA receptor–mediated synaptic events. In addi- dominantly via these receptors such as sedation and hypnosis. tion, extracellular accumulation of GABA may desensitize synaptically located GABAA receptors and, as a conse- MANY potent insecticides and nerve agents belong to the quence, depress synaptic GABAergic transmission. family of organophosphorus compounds. These highly toxic We have previously shown that volatile anesthetics chemicals act by blocking acetylcholinesterase activity, such as halothane, isoflurane, and enflurane depress neu- thereby causing a potentially life-threatening cholinergic crisis ronal activity in cortical networks in vivo and in vitro by hallmarked by centrally mediated symptoms such as general- potentiating GABAA receptor–mediated synaptic inhibi- ized convulsions, respiratory failure, and cardiovascular insta- tion at concentrations causing sedation and hypno- bility.1–3 Furthermore, peripheral symptoms including rhinor- sis.13,14 Assuming that actions on the molecular and rhea, hypersalivation, bronchoconstriction, and network level are linked causally, how does a cholin- 1,4,5 neuromuscular block are commonly observed. Suicidal ergic-induced suppression of GABAA receptor function and accidental poisoning by organophosphates is a wide- affect the potency of general anesthetics in depressing spread problem in the developing world, causing several hun- neuronal activity? In the current study, interactions be- tween acetylcholine and sevoflurane were analyzed be- * Research Assistant, † Assistant Professor, § Professor of Experimental Anes- cause volatile anesthetics were recommended for main- thesiology, Experimental Anesthesiology Section, Department of Anesthesiology, tenance of anesthesia in nerve agent–intoxicated University of Tuebingen, Tuebingen, Germany. ‡ Postdoctoral University Lec- 1 turer of Pharmacology and Toxicology, GAF Institute of Pharmacology and patients. Experiments were conducted in organotypic Toxicology, Munich, Germany. slice cultures derived from the neocortex and spinal Received from the Experimental Anesthesiology Section, Department of An- cord because these neuronal microcircuits are important esthesiology and Intensive Care, Eberhard-Karls-University, Tuebingen, Germany. Submitted for publication September 25, 2006. Accepted for publication Febru- substrates for producing major components of general ary 9, 2007. Supported in part by contract No. M SAB1 3A014 from the German anesthesia such as amnesia, hypnosis, and immobili- Ministry of Defense, Munich, Germany. 14–20 Address correspondence to Dr. Grasshoff: Experimental Anesthesiology Sec- ty. The results indicate that cholinergic stimulation tion, Department of Anesthesiology and Intensive Care, Eberhard-Karls-Univer- reverses the depressant effects of sevoflurane by differ- sity, Schaffhausenstr. 113, D-72072 Tuebingen, Germany. [email protected]. Individual article reprints may be pur- ent mechanisms in cortical compared with spinal net- chased through the Journal Web site, www.anesthesiology.org. works (1) by increasing neuronal excitability in both Anesthesiology, V 106, No 6, Jun 2007 1147 1148 GRASSHOFF ET AL. brain regions and (2) by decreasing anesthetic potency required to suppress movement in response to noxious stim- in cortical networks. ulation in 50% of subjects. We used the EC50 values for general anesthesia proposed by Franks and Lieb.30 Therefore, we assumed that 1 MAC corresponds to an aqueous concentra- 26 Materials and Methods tion of 0.35 mM sevoflurane. Sevoflurane was administered via bath perfusion using Spinal Slice Cultures gastight syringe pumps (ZAK Medicine Technique, Markt- All procedures were approved by the animal care com- heidenfeld, Germany), which were connected to the ex- mittee (Eberhard-Karls-University, Tuebingen, Germany) perimental chamber via Teflon tubing (Lee, Frankfurt, Ger- and were in accord with the German law on animal many). The flow rate was approximately 1 ml/min. To experimentation. Spinal cord slices were prepared from ensure steady state conditions, recordings during anes- embryos of pregnant 129/SvJ mice (days 14 and 15) Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/106/6/1147/364219/0000542-200706000-00015.pdf by guest on 01 October 2021 thetic treatment were conducted 10–15 min after starting according to the method described by Braschler et al.21 the perfusate change. The calibration of the recording Neocortical slices were obtained from 2- to 5-day-old system was performed as previously reported.31 129/SvJ mice as previously reported.22,23 Excised slices were placed on a coverslip and embedded Data Analysis in a plasma clot (Sigma, Taufkirchen, Germany). The cov- Data were bandpass filtered between 3 and 10 kHz as erslips were transferred into plastic tubes containing 0.75 acquired on a personal computer using the Digidata ml of nutrient fluid and incubated with 95% oxygen and 5% 1200 analog-to-digital/digital-to-analog interface (Axon carbon dioxide at 36.0°C for 1–2 h. One hundred milliliters Instruments, Union City, CA). Records were in addition of nutrient fluid consisted of 25 ml horse serum (Invitro- stored on a Sony data recorder PC 204A (Racal Elek- gen, Karlsruhe, Germany), 25 ml Hanks’ Balanced Salt So- tronik, Bergisch Gladbach, Germany). Further analysis lution (Sigma), and 50 ml Basal Medium Eagle (Sigma). For was performed using self-written software in OriginPro spinal slices, nutrient fluid included 10 nM Neuronal version 7 (OriginLab Corporation, Northampton, MA) Growth Factor (Sigma). The roller tube technique was used and MATLAB 6.5 (The MathWorks Inc., Natick, MA). to culture the tissue.24 After 1 day in culture, antimitotics Data analysis was conducted as described previously.26 (10 ␮M 5-fluoro-2-deoxyuridine, 10 ␮M cytosine-b-d-arabino- After close inspection of the data, a threshold was set furanoside,
Recommended publications
  • Electrophysiologic Evidence for Increased Endogenous Gabaergic but Not Glycinergic Inhibitory Tone in the Rat Spinal Nerve Ligation Model of Neuropathy Vesa K
    Anesthesiology 2001; 94:333–9 © 2001 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Electrophysiologic Evidence for Increased Endogenous GABAergic but Not Glycinergic Inhibitory Tone in the Rat Spinal Nerve Ligation Model of Neuropathy Vesa K. Kontinen, M.D., Ph.D.,* Louise C. Stanfa, Ph.D.,† Amlan Basu,‡ Anthony H. Dickenson, Ph.D.§ Background: Changes in the inhibitory activity mediated by There is evidence that both GABA and glycinergic inter- ␥-aminobutyric acid (GABA) and glycine, acting at spinal GABA A neurons are preferentially associated with the control of receptors and strychnine-sensitive glycine receptors, are of in- 6–9 terest in the development of neuropathic pain. There is ana- low-threshold afferent input to the spinal cord. Con- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/94/2/333/402482/0000542-200102000-00024.pdf by guest on 29 September 2021 tomic evidence for changes in these transmitter systems after sistent with this, intrathecal administration of the 10 nerve injuries, and blocking either GABAA or glycine receptors GABAA-receptor antagonist bicuculline or the glycine- has been shown to produce allodynia-like behavior in awake receptor antagonist strychnine10,11 produces segmen- normal animals. tally localized tactile allodynia-like behavior in conscious Methods: In this study, the possible changes in GABAergic and glycinergic inhibitory activity in the spinal nerve ligation rats and increased responses to mechanical stimulation 12 model of neuropathic pain were studied by comparing the in anesthetized cats. Intrathecal strychnine has also effects of the GABAA-receptor antagonist bicuculline and the been shown to produce in anesthetized rats reflex re- glycine-receptor antagonist strychnine in neuropathic rats to sponses similar to those produced by nociceptive stim- their effects in sham-operated and nonoperated control rats.
    [Show full text]
  • Amnestic Concentrations of Sevoflurane Inhibit Synaptic
    Anesthesiology 2008; 108:447–56 Copyright © 2008, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Amnestic Concentrations of Sevoflurane Inhibit Synaptic Plasticity of Hippocampal CA1 Neurons through ␥-Aminobutyric Acid–mediated Mechanisms Junko Ishizeki, M.D.,* Koichi Nishikawa, M.D., Ph.D.,† Kazuhiro Kubo, M.D.,‡ Shigeru Saito, M.D., Ph.D.,§ Fumio Goto, M.D., Ph.D.࿣ Background: The cellular mechanisms of anesthetic-induced for surgical procedures do not have recollection of ac- amnesia are still poorly understood. The current study exam- tually being awake despite being awake and cooperative ined sevoflurane at various concentrations in the CA1 region of during the procedure.1 Galinkin et al.2 compared sub- rat hippocampal slices for effects on excitatory synaptic trans- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/108/3/447/366512/0000542-200803000-00017.pdf by guest on 29 September 2021 mission and on long-term potentiation (LTP), as a possible jective, psychomotor, cognitive, and analgesic effects of mechanism contributing to anesthetic-induced loss of recall. sevoflurane (0.3% and 0.6%) with those of nitrous oxide Methods: Population spikes and field excitatory postsynaptic at equal minimum alveolar concentrations (MACs) in potentials were recorded using extracellular electrodes after healthy volunteers. They found that sevoflurane pro- electrical stimulation of Schaffer-collateral-commissural fiber inputs. Paired pulse facilitation was used as a measure of pre- duced a greater degree of amnesia and psychomotor synaptic effects of the anesthetic. LTP was induced using tetanic impairment than did an equal MAC of nitrous oxide but stimulation (100 Hz, 1 s). Sevoflurane at concentrations from had no analgesic actions.
    [Show full text]
  • Picrotoxin-Like Channel Blockers of GABAA Receptors
    COMMENTARY Picrotoxin-like channel blockers of GABAA receptors Richard W. Olsen* Department of Molecular and Medical Pharmacology, Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735 icrotoxin (PTX) is the prototypic vous system. Instead of an acetylcholine antagonist of GABAA receptors (ACh) target, the cage convulsants are (GABARs), the primary media- noncompetitive GABAR antagonists act- tors of inhibitory neurotransmis- ing at the PTX site: they inhibit GABAR Psion (rapid and tonic) in the nervous currents and synapses in mammalian neu- system. Picrotoxinin (Fig. 1A), the active rons and inhibit [3H]dihydropicrotoxinin ingredient in this plant convulsant, struc- binding to GABAR sites in brain mem- turally does not resemble GABA, a sim- branes (7, 9). A potent example, t-butyl ple, small amino acid, but it is a polycylic bicyclophosphorothionate, is a major re- compound with no nitrogen atom. The search tool used to assay GABARs by compound somehow prevents ion flow radio-ligand binding (10). through the chloride channel activated by This drug target appears to be the site GABA in the GABAR, a member of the of action of the experimental convulsant cys-loop, ligand-gated ion channel super- pentylenetetrazol (1, 4) and numerous family. Unlike the competitive GABAR polychlorinated hydrocarbon insecticides, antagonist bicuculline, PTX is clearly a including dieldrin, lindane, and fipronil, noncompetitive antagonist (NCA), acting compounds that have been applied in not at the GABA recognition site but per- huge amounts to the environment with haps within the ion channel. Thus PTX major agricultural economic impact (2). ͞ appears to be an excellent example of al- Some of the other potent toxicants insec- losteric modulation, which is extremely ticides were also radiolabeled and used to important in protein function in general characterize receptor action, allowing and especially for GABAR (1).
    [Show full text]
  • Unnamed Document
    Mutations M287L and Q266I in the Glycine Receptor ␣1 Subunit Change Sensitivity to Volatile Anesthetics in Oocytes and Neurons, but Not the Minimal Alveolar Concentration in Knockin Mice Cecilia M. Borghese, Ph.D.,* Wei Xiong, Ph.D.,† S. Irene Oh, B.S.,‡ Angel Ho, B.S.,§ S. John Mihic, Ph.D.,ʈ Li Zhang, M.D.,# David M. Lovinger, Ph.D.,** Gregg E. Homanics, Ph.D.,†† Edmond I. Eger 2nd, M.D.,‡‡ R. Adron Harris, Ph.D.§§ ABSTRACT What We Already Know about This Topic • Inhibitory spinal glycine receptor function is enhanced by vol- Background: Volatile anesthetics (VAs) alter the function of atile anesthetics, making this a leading candidate for their key central nervous system proteins but it is not clear which, immobilizing effect if any, of these targets mediates the immobility produced by • Point mutations in the ␣1 subunit of glycine receptors have been identified that increase or decrease receptor potentiation VAs in the face of noxious stimulation. A leading candidate is by volatile anesthetics the glycine receptor, a ligand-gated ion channel important for spinal physiology. VAs variously enhance such function, and blockade of spinal glycine receptors with strychnine af- fects the minimal alveolar concentration (an anesthetic What This Article Tells Us That Is New EC50) in proportion to the degree of enhancement. • Mice harboring specific mutations in their glycine receptors Methods: We produced single amino acid mutations into that increased or decreased potentiation by volatile anesthetic in vitro did not have significantly altered changes in anesthetic the glycine receptor ␣1 subunit that increased (M287L, third potency in vivo transmembrane region) or decreased (Q266I, second trans- • These findings indicate that this glycine receptor does not me- membrane region) sensitivity to isoflurane in recombinant diate anesthetic immobility, and that other targets must be receptors, and introduced such receptors into mice.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Environmental Properties of Chemicals Volume 2
    1 t ENVIRONMENTAL 1 PROTECTION Esa Nikunen . Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 1 O O O O O O O O OO O OOOOOO Ol OIOOO FINNISH ENVIRONMENT INSTITUTE • EDITA Esa Nikunen e Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 HELSINKI 1000 OlO 00000001 00000000000000000 Th/s is a second revfsed version of Environmental Properties of Chemica/s, published by VAPK-Pub/ishing and Ministry of Environment, Environmental Protection Department as Research Report 91, 1990. The pubiication is also available as a CD ROM version: EnviChem 2.0, a PC database runniny under Windows operating systems. ISBN 951-7-2967-2 (publisher) ISBN 952-7 1-0670-0 (co-publisher) ISSN 1238-8602 Layout: Pikseri Julkaisupalvelut Cover illustration: Jussi Hirvi Edita Ltd. Helsinki 2000 Environmental properties of chemicals Volume 2 _____ _____________________________________________________ Contents . VOLUME ONE 1 Contents of the report 2 Environmental properties of chemicals 3 Abbreviations and explanations 7 3.1 Ways of exposure 7 3.2 Exposed species 7 3.3 Fffects________________________________ 7 3.4 Length of exposure 7 3.5 Odour thresholds 8 3.6 Toxicity endpoints 9 3.7 Other abbreviations 9 4 Listofexposedspecies 10 4.1 Mammais 10 4.2 Plants 13 4.3 Birds 14 4.4 Insects 17 4.5 Fishes 1$ 4.6 Mollusca 22 4.7 Crustaceans 23 4.8 Algae 24 4.9 Others 25 5 References 27 Index 1 List of chemicals in alphabetical order - 169 Index II List of chemicals in CAS-number order
    [Show full text]
  • Exploring the Activity of an Inhibitory Neurosteroid at GABAA Receptors
    1 Exploring the activity of an inhibitory neurosteroid at GABAA receptors Sandra Seljeset A thesis submitted to University College London for the Degree of Doctor of Philosophy November 2016 Department of Neuroscience, Physiology and Pharmacology University College London Gower Street WC1E 6BT 2 Declaration I, Sandra Seljeset, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I can confirm that this has been indicated in the thesis. 3 Abstract The GABAA receptor is the main mediator of inhibitory neurotransmission in the central nervous system. Its activity is regulated by various endogenous molecules that act either by directly modulating the receptor or by affecting the presynaptic release of GABA. Neurosteroids are an important class of endogenous modulators, and can either potentiate or inhibit GABAA receptor function. Whereas the binding site and physiological roles of the potentiating neurosteroids are well characterised, less is known about the role of inhibitory neurosteroids in modulating GABAA receptors. Using hippocampal cultures and recombinant GABAA receptors expressed in HEK cells, the binding and functional profile of the inhibitory neurosteroid pregnenolone sulphate (PS) were studied using whole-cell patch-clamp recordings. In HEK cells, PS inhibited steady-state GABA currents more than peak currents. Receptor subtype selectivity was minimal, except that the ρ1 receptor was largely insensitive. PS showed state-dependence but little voltage-sensitivity and did not compete with the open-channel blocker picrotoxinin for binding, suggesting that the channel pore is an unlikely binding site. By using ρ1-α1/β2/γ2L receptor chimeras and point mutations, the binding site for PS was probed.
    [Show full text]
  • Toxicological and Pharmacological Profile of Amanita Muscaria (L.) Lam
    Pharmacia 67(4): 317–323 DOI 10.3897/pharmacia.67.e56112 Review Article Toxicological and pharmacological profile of Amanita muscaria (L.) Lam. – a new rising opportunity for biomedicine Maria Voynova1, Aleksandar Shkondrov2, Magdalena Kondeva-Burdina1, Ilina Krasteva2 1 Laboratory of Drug metabolism and drug toxicity, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, Bulgaria 2 Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Bulgaria Corresponding author: Magdalena Kondeva-Burdina ([email protected]) Received 2 July 2020 ♦ Accepted 19 August 2020 ♦ Published 26 November 2020 Citation: Voynova M, Shkondrov A, Kondeva-Burdina M, Krasteva I (2020) Toxicological and pharmacological profile of Amanita muscaria (L.) Lam. – a new rising opportunity for biomedicine. Pharmacia 67(4): 317–323. https://doi.org/10.3897/pharmacia.67. e56112 Abstract Amanita muscaria, commonly known as fly agaric, is a basidiomycete. Its main psychoactive constituents are ibotenic acid and mus- cimol, both involved in ‘pantherina-muscaria’ poisoning syndrome. The rising pharmacological and toxicological interest based on lots of contradictive opinions concerning the use of Amanita muscaria extracts’ neuroprotective role against some neurodegenerative diseases such as Parkinson’s and Alzheimer’s, its potent role in the treatment of cerebral ischaemia and other socially significant health conditions gave the basis for this review. Facts about Amanita muscaria’s morphology, chemical content, toxicological and pharmacological characteristics and usage from ancient times to present-day’s opportunities in modern medicine are presented. Keywords Amanita muscaria, muscimol, ibotenic acid Introduction rica, the genus had an ancestral origin in the Siberian-Be- ringian region in the Tertiary period (Geml et al.
    [Show full text]
  • Strychnine Poisoning
    0++- Poison HOTLINE Partnership between UnityPoint Health and University of Iowa Hospitals and Clinics November 2013 Strychnine Poisoning Strychnine is a chemical naturally found in the seeds of the tree Strychnos nux- vomica. It is mainly used as a pesticide to control rats, moles, gophers, and coyotes. Commercial baits are pelleted and often dyed red or green. Strychnine has on rare occasions been found to be mixed with street drugs such as LSD, heroin, and cocaine. Strychnine is a white, odorless, bitter tasting crystalline powder that can be taken by mouth, inhaled or given intravenously. Strychnine is highly toxic and Did you know …… only a small amount is needed to produce severe health effects in people. As little as 30 mg may cause death in an adult. Vaporizing alcohol and “smoking” the vapors (inhaling Strychnine blocks the action of the neurotransmitter glycine which controls how is a more accurate term) is a nerve signals are sent to muscles. Glycine is an inhibitory neurotransmitter and new method for alcohol works like an “off switch” for muscles. When this “off switch” is not working consumption. The alcohol is because it is being blocked by strychnine, muscles throughout the body have poured into a vaporizing severe, painful spasms. While these spasms may look like the patient is having machine or over dry ice and a seizure, it is not a true seizure and there is no post-ictal phase. Repetitive inhaled. The alcohol enters muscle spasms caused by strychnine will lead to fever, muscle break down the lungs where it is rapidly (rhabdomyolysis), severe metabolic acidosis and respiratory failure.
    [Show full text]
  • A Systematic Review on Main Chemical Constituents of Papaver Bracteatum
    Journal of Medicinal Plants A Systematic Review on Main Chemical Constituents of Papaver bracteatum Soleymankhani M (Ph.D. student), Khalighi-Sigaroodi F (Ph.D.)*, Hajiaghaee R (Ph.D.), Naghdi Badi H (Ph.D.), Mehrafarin A (Ph.D.), Ghorbani Nohooji M (Ph.D.) Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran * Corresponding author: Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O.Box: 33651/66571, Karaj, Iran Tel: +98 - 26 - 34764010-9, Fax: +98 - 26-34764021 E-mail: [email protected] Received: 17 April 2013 Accepted: 12 Oct. 2014 Abstract Papaver bracteatum Lindly (Papaveraceae) is an endemic species of Iran which has economic importance in drug industries. The main alkaloid of the plant is thebaine which is used as a precursor of the semi-synthetic and synthetic compounds including codeine and naloxone, respectively. This systematic review focuses on main component of Papaver bracteatum and methods used to determine thebaine. All studies which assessed the potential effect of the whole plant or its extract on clinical or preclinical studies were reviewed. In addition, methods for determination of the main components, especially thebaine, which have been published from 1948 to March 2013, were included. Exclusion criteria were agricultural studies that did not assess. This study has listed alkaloids identified in P. bracteatum which reported since 1948 to 2013. Also, the biological activities of main compounds of Papaver bracteatum including thebaine, isothebaine, (-)-nuciferine have been reviewed. As thebaine has many medicinal and industrial values, determination methods of thebaine in P. bracteatum were summarized. The methods have being used for determination of thebaine include chromatographic (HPLC, GC and TLC) and non chromatographic methods.
    [Show full text]
  • Bicuculline and Gabazine Are Allosteric Inhibitors of Channel Opening of the GABAA Receptor
    The Journal of Neuroscience, January 15, 1997, 17(2):625–634 Bicuculline and Gabazine Are Allosteric Inhibitors of Channel Opening of the GABAA Receptor Shinya Ueno,1 John Bracamontes,1 Chuck Zorumski,2 David S. Weiss,3 and Joe Henry Steinbach1 Departments of 1Anesthesiology and 2Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, and 3University of Alabama at Birmingham, Neurobiology Research Center and Department of Physiology and Biophysics, Birmingham, Alabama 35294-0021 Anesthetic drugs are known to interact with GABAA receptors, bicuculline only partially blocked responses to pentobarbital. both to potentiate the effects of low concentrations of GABA and These observations indicate that the blockers do not compete to directly gate open the ion channel in the absence of GABA; with alphaxalone or pentobarbital for a single class of sites on the however, the site(s) involved in direct gating by these drugs is not GABAA receptor. Finally, at receptors containing a1b2(Y157S)g2L known. We have studied the ability of alphaxalone (an anesthetic subunits, both bicuculline and gabazine showed weak agonist steroid) and pentobarbital (an anesthetic barbiturate) to directly activity and actually potentiated responses to alphaxalone. These activate recombinant GABAA receptors containing the a1, b2, and observations indicate that the blocking drugs can produce allo- g2L subunits. Steroid gating was not affected when either of two steric changes in GABAA receptors, at least those containing this mutated b2 subunits [b2(Y157S) and b2(Y205S)] are incorporated mutated b2 subunit. We conclude that the sites for binding ste- into the receptors, although these subunits greatly reduce the roids and barbiturates do not overlap with the GABA-binding site.
    [Show full text]
  • Increased NMDA Receptor Inhibition at an Increased Sevoflurane MAC Robert J Brosnan* and Roberto Thiesen
    Brosnan and Thiesen BMC Anesthesiology 2012, 12:9 http://www.biomedcentral.com/1471-2253/12/9 RESEARCH ARTICLE Open Access Increased NMDA receptor inhibition at an increased Sevoflurane MAC Robert J Brosnan* and Roberto Thiesen Abstract Background: Sevoflurane potently enhances glycine receptor currents and more modestly decreases NMDA receptor currents, each of which may contribute to immobility. This modest NMDA receptor antagonism by sevoflurane at a minimum alveolar concentration (MAC) could be reciprocally related to large potentiation of other inhibitory ion channels. If so, then reduced glycine receptor potency should increase NMDA receptor antagonism by sevoflurane at MAC. Methods: Indwelling lumbar subarachnoid catheters were surgically placed in 14 anesthetized rats. Rats were anesthetized with sevoflurane the next day, and a pre-infusion sevoflurane MAC was measured in duplicate using a tail clamp method. Artificial CSF (aCSF) containing either 0 or 4 mg/mL strychnine was then infused intrathecally at 4 μL/min, and the post-infusion baseline sevoflurane MAC was measured. Finally, aCSF containing strychnine (either 0 or 4 mg/mL) plus 0.4 mg/mL dizocilpine (MK-801) was administered intrathecally at 4 μL/min, and the post- dizocilpine sevoflurane MAC was measured. Results: Pre-infusion sevoflurane MAC was 2.26%. Intrathecal aCSF alone did not affect MAC, but intrathecal strychnine significantly increased sevoflurane requirement. Addition of dizocilpine significantly decreased MAC in all rats, but this decrease was two times larger in rats without intrathecal strychnine compared to rats with intrathecal strychnine, a statistically significant (P < 0.005) difference that is consistent with increased NMDA receptor antagonism by sevoflurane in rats receiving strychnine.
    [Show full text]