A Study of Several Macrocyclic Beta-Ketoamines and Their Metal Chelates

Total Page:16

File Type:pdf, Size:1020Kb

A Study of Several Macrocyclic Beta-Ketoamines and Their Metal Chelates Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1983 A Study of Several Macrocyclic Beta-Ketoamines and Their etM al Chelates. Charles Louis Modenbach III Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Modenbach, Charles Louis III, "A Study of Several Macrocyclic Beta-Ketoamines and Their eM tal Chelates." (1983). LSU Historical Dissertations and Theses. 3933. https://digitalcommons.lsu.edu/gradschool_disstheses/3933 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. University Micrcxilms International 300 N. Zeeb Road Ann Arbor, Ml 48106 8409589 Modenbach, Charles Louis, III A STUDY OF SEVERAL MACROCYCLIC BETA-KETOAMINES AND THEIR METAL CHELATES The Louisiana State University and Agricultural and Mechanical Col. Ph.D. 1983 University Microfilms International 300 N. Zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V . 1. Glossy photographs or pages ______ 2. Colored illustrations, paper or print ______ 3. Photographs with dark background ______ 4. Illustrations are poor copy _______ 5. Pages with black marks, not original copy ______ 6. Print shows through as there is text on both sides of page ______ 7. Indistinct, broken or small print on several pages 8. Print exceeds margin requirements _____ 9. Tightly bound copy with print lost in spine ______ 10. Computer printout pages with indistinct print ______ 11. Page(s) ____________lacking when material received, and not available from school or author. 12. Page(s) ____________seem to be missing in numbering only as text follows. 13. Two pages numbered _____________. Text follows. 14. Curling and wrinkled pages ______ 15. Other __________________________________________________________________________ University Microfilms International A STUDY OF SEVERAL MACROCYCLIC 3-KETOAMINES AND THEIR METAL CHELATES A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillm ent of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Charles Louis Modenbach I I I B.S., Southeastern Louisiana University, 1978 December 1983 DEDICATION This work is dedicated to my wife, Lee, whose patience and understanding I deeply appreciate, and to my parents, Charles and Emelda, whose guidance allowed me to reach this point. ACKNOWLEDGEMENTS The author is grateful for the advice and support of Dr. Eugene W. Berg who directed this work. Appreciation is extended to Dr. Thomas C. Taylor who provided the macrocyclic 3-diketones used in this study and to Dr. Frank R. Fronczek for his contribution and assistance in the crystallographic portion of this work. Financial assistance from the Dr. Charles E. Coates Memorial Fund donated by George H. Coates for publication of this work is gratefully acknowledged. TABLE OF CONTENTS Page DEDICATION ................... ii ACKNOWLEDGEMENTS . ............................................................................................ i i i TABLE OF CONTENTS .............................................................................................. iv LIST OF ABBREVIATIONS ...................................................................................... vi LIST OF TABLES ..................................................................................................... vii LIST OF FIGURES ......................... ix ABSTRACT .................................................................................................................. x I. INTRODUCTION .............................................................................................. 1 A. Review of 3-Diketone Chemistry .............................................. 1 B. Amino Derivatives of 3-Diketones .......................................... 4 C. Macrocyclic 3-Ketoamines ........................................................... 9 I I . EXPERIMENTAL ............................................................................................. 12 A. Reagents and Solvents .................................................................. 12 B. Single Crystal X-Ray Diffraction Analysis ....................... 13 C. Instruments and Measurements ..................................................... 18 D. Preparation of 3-Ketoamines ..................................................... 20 E. Preparation of Metal 3-Ketoamine Chelates ....................... 25 I I I . RESULTS AND DISCUSSION ........................................................................ 35 A. The Crystal and Molecular Structures of Bis(cyclodecane-l,3-dionato)copper(II) and Bis(cyclotridecane-l,3-dionato)copper(II) ...................... 35 B. Preparation of Macrocyclic 3-Ketoamines ........................... 41 C. Chelation Behavior of Several 3-KetoaminesDerived From Macrocyclic 3-Diketones and Acetyl acetone ........... 42 D. Spectral Characterization of Macrocyclic 3-Ketoamines iv And Their Metal Chelates .......................................................... 49 E. Fractional Sublimation Studies ............................................. 69 IV. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK ............................ 73 BIBLIOGRAPHY ............................................ 75 APPENDIX I Supplementary MaterialFrom Crystal 1ographic Study ........................................................................................ 82 APPENDIX II Infrared Spectra ............................................................ 87 APPENDIX I I I Nuclear MagneticResonance Spectra .............................. 103 APPENDIX IV Mass Spectra .......................................................................... 114 VITA ........................................................................................................................ 136 v LIST OF ABBREVIATIONS Compound Abbreviation Acetyl acetone H(AA) (2,4-pentanedione) 4-amino-3-penten-2-one H(AP) bi sacetylacetone-ethylenediimine H 2 en(AA)2 [4,4'-(l,2-ethanediyldinitrilo)bis-2-pentanone] bi sacetylacetone-propylenedi imine H2pn(AA)2 [4,4'-(l,2-propanediyldinitrilo)bis-2-pentanone] cyclohexane-l,3-dione H(CHD) cyclononane-l,3-dione H(CND) cyclodecane-l,3-dione H(CDD) cyclotridecane-l,3-dione H(CTDD) 3-amino-2-cyclohexen-l-one H(ACH) 3-amino-2-cyclononen-l-one H(ACN) 3-ami no-2-cyclodecen-l-one H(ACD) 3-amino-2-cyclotridecen-l-one H(ACTD) biscyclohexane-l,3-dione-ethylendi imine H2en(CHD)2 bi scyclononane-l,3-dione-ethylendiimine H2en(CND)2 bi scyclodecane-l,3-dione-ethylendiimine H2en(COD)2 bi scyclotri decane-1,3-di one-ethylenedi imine H2en(CTDD)2 LIST OF TABLES PaaS. Crystal Data and Data Collection Summary ........................ 14 Coordinates and Equivalent Isotropic Thermal Parameters for Non-Hydrogen Atoms - Cu(CDD )2 ............... 16 Coordinates and Equivalent Isotropic Thermal Parameters for Non-Hydrogen Atoms - Cu(CTDD )2 ............. 17 Chelation Survey of Ammonia and Ethylenediamine Derivatives of Acetyl acetone ................................................. 43 Chelation Survey of Ammonia Derivatives of Macrocyclic
Recommended publications
  • First Principles Prediction of Thermodynamic Properties
    2 First Principles Prediction of Thermodynamic Properties Hélio F. Dos Santos and Wagner B. De Almeida NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química, ICE Universidade Federal de Juiz de Fora (UFJF), Campus Universitário Martelos, Juiz de Fora LQC-MM: Laboratório de Química Computacional e Modelagem Molecular Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG) Campus Universitário, Pampulha, Belo Horizonte Brazil 1. Introduction The determination of the molecular structure is undoubtedly an important issue in chemistry. The knowledge of the tridimensional structure allows the understanding and prediction of the chemical-physics properties and the potential applications of the resulting material. Nevertheless, even for a pure substance, the structure and measured properties reflect the behavior of many distinct geometries (conformers) averaged by the Boltzmann distribution. In general, for flexible molecules, several conformers can be found and the analysis of the physical and chemical properties of these isomers is known as conformational analysis (Eliel, 1965). In most of the cases, the conformational processes are associated with small rotational barriers around single bonds, and this fact often leads to mixtures, in which many conformations may exist in equilibrium (Franklin & Feltkamp, 1965). Therefore, the determination of temperature-dependent conformational population is very much welcomed in conformational analysis studies carried out by both experimentalists and theoreticians.
    [Show full text]
  • Comparing Models for Measuring Ring Strain of Common Cycloalkanes
    The Corinthian Volume 6 Article 4 2004 Comparing Models for Measuring Ring Strain of Common Cycloalkanes Brad A. Hobbs Georgia College Follow this and additional works at: https://kb.gcsu.edu/thecorinthian Part of the Chemistry Commons Recommended Citation Hobbs, Brad A. (2004) "Comparing Models for Measuring Ring Strain of Common Cycloalkanes," The Corinthian: Vol. 6 , Article 4. Available at: https://kb.gcsu.edu/thecorinthian/vol6/iss1/4 This Article is brought to you for free and open access by the Undergraduate Research at Knowledge Box. It has been accepted for inclusion in The Corinthian by an authorized editor of Knowledge Box. Campring Models for Measuring Ring Strain of Common Cycloalkanes Comparing Models for Measuring R..ing Strain of Common Cycloalkanes Brad A. Hobbs Dr. Kenneth C. McGill Chemistry Major Faculty Sponsor Introduction The number of carbon atoms bonded in the ring of a cycloalkane has a large effect on its energy. A molecule's energy has a vast impact on its stability. Determining the most stable form of a molecule is a usefol technique in the world of chemistry. One of the major factors that influ­ ence the energy (stability) of cycloalkanes is the molecule's ring strain. Ring strain is normally viewed as being directly proportional to the insta­ bility of a molecule. It is defined as a type of potential energy within the cyclic molecule, and is determined by the level of "strain" between the bonds of cycloalkanes. For example, propane has tl1e highest ring strain of all cycloalkanes. Each of propane's carbon atoms is sp3-hybridized.
    [Show full text]
  • Text Related to Segment 5.02 ©2002 Claude E. Wintner from the Previous Segment We Have the Value of the Heat of Combustion Of
    Text Related to Segment 5.02 ©2002 Claude E. Wintner From the previous segment we have the value of the heat of combustion of an "unstrained" methylene unit as -157.4 kcal/mole. On this basis one would predict that combustion of "unstrained" cyclopropane should liberate 3 X 157.4 = 472.2 kcal/mole; however, when cyclopropane is burned, a value of 499.8 kcal/mole is measured for the actual heat of combustion. The difference of 27.6 kcal/mole is interpreted as representing the higher internal energy ("strain energy") of real cyclopropane as compared to a postulated strain-free "model." ("Model" in this usage speaks of a proposal, or postulate.) These facts are graphed conveniently on an energy diagram as follows: "Strain Energy" represents the error units: kcal/mole not to scale in the "strain-free model" real cyclopropane + 4.5 O2 27.6 "strain-free model" of cyclopropane 499.8 observed heat of combustion + 4.5 O2 472.2 3CO2 + 3H2O heat of combustion predicted for "strain-free model" Note that this estimate of the strain energy in cyclopropane amounts to 9.2 kcal/mole of strain per methylene group (dividing 27.6 by 3, because of the three carbon atoms). Comparable values in kcal/mole for other small and medium rings are given in the following table. As one might expect, in general the strain decreases as the ring is enlarged. units: kcal/mole n Total Strain Strain per CH2 3 27.6 9.2 (CH2)n 4 26.3 6.6 5 6.2 1.2 6 0.1 0.0 ! 7 6.2 0.9 8 9.7 1.2 9 12.6 1.4 10 12.4 1.2 12 4.1 0.3 15 1.9 0.1 Without entering into a discussion of the relevant bonding concepts here, and instead relying on geometry alone, interpretation of the source of the strain energy in cyclopropane and cyclobutane is to some extent self-evident.
    [Show full text]
  • The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”
    chemengineering Article Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Robert J. Meier Pro-Deo Consultant, 52525 Heinsberg, North-Rhine Westphalia, Germany; [email protected] Abstract: Group contribution (GC) methods to predict thermochemical properties are of eminent importance to process design. Compared to previous works, we present an improved group contri- bution parametrization for the heat of formation of organic molecules exhibiting chemical accuracy, i.e., a maximum 1 kcal/mol (4.2 kJ/mol) difference between the experiment and model, while, at the same time, minimizing the number of parameters. The latter is extremely important as too many parameters lead to overfitting and, therewith, to more or less serious incorrect predictions for molecules that were not within the data set used for parametrization. Moreover, it was found to be important to explicitly account for common chemical knowledge, e.g., geminal effects or ring strain. The group-related parameters were determined step-wise: first, alkanes only, and then only one additional group in the next class of molecules. This ensures unique and optimal parameter values for each chemical group. All data will be made available, enabling other researchers to extend the set to other classes of molecules. Keywords: enthalpy of formation; thermodynamics; molecular modeling; group contribution method; quantum mechanical method; chemical accuracy; process design Citation: Meier, R.J. Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”. 1. Introduction ChemEngineering 2021, 5, 24. To understand chemical reactivity and/or chemical equilibria, knowledge of thermo- o https://doi.org/10.3390/ dynamic properties such as gas-phase standard enthalpy of formation DfH gas is a necessity.
    [Show full text]
  • New Chemistry of Donor-Acceptor Cycloalkanes and Studies Towards the Synthesis of Streptorubin B
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-2-2016 12:00 AM New Chemistry of Donor-Acceptor Cycloalkanes and Studies Towards the Synthesis of Streptorubin B Naresh Vemula The University of Western Ontario Supervisor Prof. Brian L. Pagenkopf The University of Western Ontario Graduate Program in Chemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Naresh Vemula 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Organic Chemistry Commons Recommended Citation Vemula, Naresh, "New Chemistry of Donor-Acceptor Cycloalkanes and Studies Towards the Synthesis of Streptorubin B" (2016). Electronic Thesis and Dissertation Repository. 3895. https://ir.lib.uwo.ca/etd/3895 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract and Keywords Abstract This dissertation presents two separate chapters within the broad area of synthetic organic chemistry. The first chapter describes the annelation chemistry of donor-acceptor (DA) cyclopropanes and cyclobutanes for the synthesis of heterocycles. The Yb(OTf)3-catalyzed [4+2] cycloaddition between DA cyclobutanes and nitrosoarenes facilitated the synthesis of tetrahydro-1,2-oxazines in good to excellent yields as single diastereomers. Additionally, an unexpected deoxygenation occurred with electron-rich nitrosoarenes under MgI2-catalysis that afforded pyrrolidine products. The GaCl3-catalyzed [4+2] cycloaddition of DA cyclobutanes and cis-diazenes provided hexahydropyridazine derivatives in good to excellent yields as single diastereomers.
    [Show full text]
  • Baeyer Strain Theory Introduction Van't Hoff and Lebel Proposed
    Baeyer Strain Theory instable cycloalkanes. The large ring systems involve negative strain hence do not exists. Introduction The bond angles in cyclohexane and higher Van’t Hoff and Lebel proposed tetrahedral cycloalkanes (cycloheptane, cyclooctane, geometry of carbon. The bond angel is of 109˚ cyclononane……..) are not larger than 109.5 28' (or 109.5˚) for carbon atom in tetrahedral because the carbon rings of those compounds geometry (methane molecule). Baeyer are not planar (flat) but they are puckered observed different bond angles for different (Wrinkled). cycloalkanes and also observed some These assumptions are helpful to understand different properties and stability .On this instability of cycloalkane ring systems. basis, he proposed angle strain theory. The theory explains reactivity and stability of Cyclopropane is more prone to cycloalkanes. Baeyer proposed that the undergo ring opening reaction than optimum overlap of atomic orbitals is cyclobutane or cyclopentane achieved for bond angel of 109.5 .In short, it is Cyclopropane is more reactive than ideal bond angle for alkane compounds. cyclobutane and cyclopentane Effective and optimum overlap of atomic orbitals produces maximum bond strength The ring of cyclopropane is triangle. hance stable molecule. All the three angles are of 60 in place of 109.5 (normal bond angle for If bond angles deviate from the ideal carbon atom) to adjust them into then ring produce strain. triangle ring system. Higher the strain higher the In same manner, cyclobutane is instability. square and the bond angles are of 90o in place of 109.5o (normal bond Higher strain increases reactivity and angle for carbon atom) to adjust them increases heat of combustion.
    [Show full text]
  • Cycloalkanes, Cycloalkenes, and Cycloalkynes
    CYCLOALKANES, CYCLOALKENES, AND CYCLOALKYNES any important hydrocarbons, known as cycloalkanes, contain rings of carbon atoms linked together by single bonds. The simple cycloalkanes of formula (CH,), make up a particularly important homologous series in which the chemical properties change in a much more dramatic way with increasing n than do those of the acyclic hydrocarbons CH,(CH,),,-,H. The cyclo- alkanes with small rings (n = 3-6) are of special interest in exhibiting chemical properties intermediate between those of alkanes and alkenes. In this chapter we will show how this behavior can be explained in terms of angle strain and steric hindrance, concepts that have been introduced previously and will be used with increasing frequency as we proceed further. We also discuss the conformations of cycloalkanes, especially cyclo- hexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo- alkenes and cycloalkynes. 12-1 NOMENCLATURE AND PHYSICAL PROPERTIES OF CYCLOALKANES The IUPAC system for naming cycloalkanes and cycloalkenes was presented in some detail in Sections 3-2 and 3-3, and you may wish to review that ma- terial before proceeding further. Additional procedures are required for naming 446 12 Cycloalkanes, Cycloalkenes, and Cycloalkynes Table 12-1 Physical Properties of Alkanes and Cycloalkanes Density, Compounds Bp, "C Mp, "C diO,g ml-' propane cyclopropane butane cyclobutane pentane cyclopentane hexane cyclohexane heptane cycloheptane octane cyclooctane nonane cyclononane "At -40". bUnder pressure. polycyclic compounds, which have rings with common carbons, and these will be discussed later in this chapter.
    [Show full text]
  • In This Handout, All of Our Functional Groups Are Presented As Condensed Line Formulas, 2D and 3D Formulas and with Nomenclature Prefixes and Suffixes (If Present)
    In this handout, all of our functional groups are presented as condensed line formulas, 2D and 3D formulas and with nomenclature prefixes and suffixes (if present). Organic names are built on a foundation of alkanes, alkenes and alkynes. Those examples are presented first and you need to know those rules. The strategies can be found in Chapter 4 of our textbook (alkanes: pages 93-98, cycloalkanes 102-104, alkenes: pages 104-110, alkynes: pages 112-113 and combinations of all of them 113-115). After introducing examples of alkanes, alkenes, alkynes and combinations of them, the functional groups are presented in order of priority. A few nomenclature examples are provided for each of the functional groups. Examples of the various functional groups are presented on pages 115-135 in the textbook. Two overview pages are on pages 136-137. Some functional groups have a suffix name when they are the highest priority functional group and a prefix name when they are not the highest priority group, and these are added to the skeletal names with identifying numbers and stereochemistry terms (E and Z for alkenes, R and S for chiral centers and cis and trans for rings). Several low priority functional groups only have a prefix name. A few additional special patterns are shown on pages 98-102. The only way to learn this topic is practice (over and over). The best practice approach is to actually write out the names (on an extra piece of paper or on a white board, and then do it again). The same functional groups are used throughout the entire course.
    [Show full text]
  • Conversion of Waste Plastic Into Liquid Hydrocarbons (ENERGY) by Cuco 3 Catalyst: Application of Scientific Research on Plastic Pollution
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Chemical and Process Engineering Research www.iiste.org ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.48, 2017 Conversion of Waste Plastic into Liquid Hydrocarbons (ENERGY) by Cuco 3 Catalyst: Application of Scientific Research on Plastic Pollution Manvir Singh 1 Sudesh Kumar 1 Moinuddin Sarker 2 1.Department of Chemistry Banasthali University Rajasthan india 2.Waste Technologies LLC, Department of Research & Development, 1376 Chopsey Hill Road, Bridgeport, CT- 06606, USA Abstract Waste plastics were converted into valuable liquid hydrocarbon fuel. it is can be used as different purpose of energy-source such as petrol engines, diesel engines, generators, vehicles and its good source of chemicals etc. Plastics have many properties like light weight, high durability so its demand increases in every sector. Pyrolysis of the waste plastic (hdpe) was carried out with CuCO 3 catalysts and temperature range from 0 °C to 390 °C. The collected liquid hydrocarbons fuel was characterized by FT-IR, NMR, GCxGCMS spectrometer and fuel density was 78 g ml -1 and conversion was very good. The research paper exhibits concentrating on application for solving daily life issues and problems of plastic. Keywords: Pyrolysis, Liquid hydrocarbons fuel, CuCO 3 catalysts, Conversion, Glass reactor, GCxGCMS. Introduction First time plastic was invented by Alexander Parkes in 1862 that has a high molecular weight (Brydson 1999). A molecule formed by repetition of simple units is called polymer. Plastic is also called polymer for example polyethylene (Chanda 2000).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,560,510 B2 Wang Et Al
    US007560510B2 (12) United States Patent (10) Patent No.: US 7,560,510 B2 Wang et al. (45) Date of Patent: *Jul. 14, 2009 (54) NANO-SIZED INORGANIC METAL 4,906,695 A 3, 1990 Blizzard et al. PARTICLES, PREPARATION THEREOF, AND 4,920,160 A 4/1990 Chip et al. APPLICATION THEREOF IN IMPROVING 4.942,209 A 7, 1990 Gunesin RUBBER PROPERTIES 5,036,138 A 7, 1991 Stamhuis et al. (75) Inventors: Xiaorong Wang, Hudson, OH (US); 5,066,729 A 1 1/1991 Srayer, Jr. et al. Georg G. A. Böhm, Akron, OH (US) 5,073,498 A 12/1991 Schwartz et al. 5,075,377 A 12/1991 Kawakubo et al. (73) Assignee: Bridgestone Corporation, Tokyo (JP) 5, 120,379 A 6/1992 Noda et al. (*) Notice: Subject to any disclaimer, the term of this 5,130,377 A 7/1992 Trepka et al. patent is extended or adjusted under 35 5,169,914 A 12, 1992 Kaszas et al. U.S.C. 154(b) by 17 days. 5,194,300 A 3/1993 Cheung 5,219,945 A 6/1993 Dicker et al. This patent is Subject to a terminal dis 5,227419 A 7, 1993 Moczygemba et al. claimer. 5,237,015 A 8, 1993 Urban (21) Appl. No.: 11/642,124 5,241,008 A 8, 1993 Hall 5,247,021 A 9/1993 Fujisawa et al. (22) Filed: Dec. 20, 2006 5,256,736 A 10/1993 Trepka et al. 5,262,502 A 11/1993 Fujisawa et al. (65) Prior Publication Data 5,290,873 A 3, 1994 Noda et al.
    [Show full text]
  • Polypropylene-Based Adhesive Compositions Klebstoffzusammensetzung Auf Polypropylenbasis Compositions Adhésives À Base De Polypropylène
    (19) TZZ Z _T (11) EP 2 627 702 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08L 23/10 (2006.01) C09J 123/10 (2006.01) 27.03.2019 Bulletin 2019/13 (86) International application number: (21) Application number: 11776952.1 PCT/US2011/055875 (22) Date of filing: 12.10.2011 (87) International publication number: WO 2012/051239 (19.04.2012 Gazette 2012/16) (54) POLYPROPYLENE-BASED ADHESIVE COMPOSITIONS KLEBSTOFFZUSAMMENSETZUNG AUF POLYPROPYLENBASIS COMPOSITIONS ADHÉSIVES À BASE DE POLYPROPYLÈNE (84) Designated Contracting States: • MITCHELL, Cynthia, A. AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Houston, TX 77008 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • DATTA, Sudhin PL PT RO RS SE SI SK SM TR Houston, TX 77007 (US) (30) Priority: 15.10.2010 US 393728 P (74) Representative: ExxonMobil Chemical Europe Inc. IP Law Europe (43) Date of publication of application: Hermeslaan 2 21.08.2013 Bulletin 2013/34 1831 Machelen (BE) (73) Proprietor: ExxonMobil Chemical Patents Inc. (56) References cited: Baytown, TX 77520 (US) EP-A2- 2 045 304 US-A- 4 178 272 US-A1- 2003 096 896 (72) Inventors: • TSE, Mun, Fu Seabrook, TX 77586 (US) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Industrial Hydrocarbon Processes
    Handbook of INDUSTRIAL HYDROCARBON PROCESSES JAMES G. SPEIGHT PhD, DSc AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Gulf Professional Publishing is an imprint of Elsevier Gulf Professional Publishing is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First edition 2011 Copyright Ó 2011 Elsevier Inc. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/ permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made British Library Cataloguing in Publication Data
    [Show full text]