Excorcising Ghosts , in Pursuit of The

Total Page:16

File Type:pdf, Size:1020Kb

Excorcising Ghosts , in Pursuit of The Exorcising Ghosts In pursuit of the missing solar neutrinos Andrew Hime After thirty years of hints that electron neutrinos slip in and out of existence, new solar-neutrino experiments may finally If neutrinos have mass, then the three separate particles known as the electron neutrino, the catch them in the act. muon neutrino, and the tau neutrino may not be separate at all, but may mix and transform into one another. In this illustration, a large fraction of the electron neutrinos produced in the core of the sun change their identity before they reach the surface (blue curve). They reappear either as muon and/or tau neutrinos (red and yellow curves, respectively). 36 Los Alamos Science Number 25 1997 Number 25 1997 Los Alamos Science xorcising Ghosts Exorcising Ghosts n October 1920, Sir Arthur Edding- is particularly puzzling because scien- the result would be evidence for physics Figure 1. The Primary Neutrino- Neutrino endpoint ton, one of the foremost astrophysi- tists have failed to find errors in the beyond the Standard Model. The models Reaction Producing Reactions in the Sun 1 ν energy (MeV) cists of the century, delivered his standard theoretical framework of the that emerge from elementary particle p + p D + e + e pp Nearly all the Sun’s energy comes from I 2 ν pp 0.42 residential address to the British Asso- Sun or in the terrestrial experiments physics, astrophysics, and cosmology p + e + p D + e pep the fusion of protons into deuterium iation at Cardiff. In his speech, entitled monitoring the neutrinos. would be subject to a new set of con- pep 1.44 nuclei. The deuterium is converted into The Internal Constitution of the Stars,” Where have the solar neutrinos straints and would have to be modified helium-4 by following one of three reaction 7Be 0.86 e referred to a proposal suggested the gone? One intriguing answer may lie with potentially profound implications. pathways (labeled a, b, and c). Of the 8 ear before by the former president of outside our conventional understanding The status of the solar-neutrino p + D 3He + γ B15 reactions shown, four proceed via charge- he association to bore a hole into the of physics. Whereas a remedy based problem, along with how new experi- changing weak interactions (colored rust of the earth in order to discover the upon modifications in solar models ments propose to solve it, forms the 14 % boxes) and therefore produce electron onditions deep below. Motivated by the appears difficult to construct, scientists central theme of this article. Particular neutrinos. Over 95 percent of the neutri- apid progress in astronomy at the time, are particularly excited about the possi- emphasis is reserved for the Sudbury 3He + 4He 7Be + γ nos are created in the pp fusion reaction. ir Eddington proposed something bility that something profound may hap- Neutrino Observatory, an experiment One proton undergoes inverse beta decay, easier” to penetrate, namely, the Sun. pen to the neutrinos as they make their under construction that promises to 86 % 99 % 0.1 % creating a neutron, positron, and an elec- Eddington could scarcely have antic- way out of the Sun en route to Earth. resolve the question of whether neutrino tron neutrino. The neutron then binds to pated the ramifications of his sugges- We know of three different types, or oscillations, and in particular the MSW 7 7 2 7 ν 7 8 γ the proton to form a deuteron (labeled D). Be Be + e Li + e Be + p B + on. After more than seventy-five years flavors, of neutrinos—the electron, effect, are responsible for the observed Other neutrino-producing reactions are f study, the scientific community’s muon, and tau neutrinos. We also know shortfall of solar neutrinos. pep (electron capture), 7Be (electron cap- nvestigations of our closest star have that the nuclear reactions that power the ture), and 8B (beta decay). Notice that 7Be ielded a remarkably detailed under- Sun are energetic enough to produce 3 3 4 7 4 8 4 1 ν 8Bis needed to produce 8B (dashed box). He + He He + 2p Li + p 2 ( He) B 2( He) + e + e anding of what makes the Sun shine. only electron neutrinos. Moreover, Neutrinos from the Sun Modern experiments, however, observe (a) (b) (c) We now know that the Sun is powered existing experiments that detect solar neutrinos from the pp reaction and 8B y thermonuclear fusion and that its hot neutrinos are only sensitive to the elec- Given the enormous power produced decay, but hardly any from 7Be decay. ore can be considered an immense fur- tron flavor. One can thus speculate that by the Sun and its twenty-billion-year ace producing not only heat and light, some of the electron neutrinos produced lifetime, it is a steadfast conclusion that Figure 2. Solar-Neutrino Spectrum ut also vast numbers of neutrinos. in the Sun have transformed, or the Sun produces energy via thermonu- The total integrated flux of all solar neutri- Because of the Sun’s enormous size, oscillated, into muon and/or tau neutri- clear fusion. During the late 1920s and Range of Sensitivity nos reaching the earth is about 65 billion he light produced deep in its interior nos as they make their way to Earth, early 1930s, theoretical calculations, 0.23 0.8 7.0 per square centimeter per second. In this akes tens of years to reach its surface. thereby escaping our terrestrial detectors. including the seminal work of a young Gallium figure, the neutrino flux and energy are Chlorine During that lengthy journey, the pho- The probability for oscillations to occur Hans Bethe, elucidated our understand- plotted on log scales; so, for example, 1011 Kamiokande ons that rain down upon us as sunlight may even be enhanced in the Sun in an ing of the details of these processes. pp the pp flux is about 50 times greater than nd make our existence on Earth energy-dependent and resonant manner As shown in Figure 1, the fusion of the 7Be flux. Also shown are the spectra ustainable lose all the information as neutrinos emerge from the dense core. protons into helium proceeds via three 7 of neutrinos produced from the CNO /s) Be oncerning the detailed processes of This phenomenon, an example of the branches. Neutrinos are created in four 2 109 cycle (gray curves). The pp, 8B, and CNO 13 he stellar core. Unlike photons, neutri- Mikheyev, Smirnov, and Wolfenstein different reactions, referred to simply as CNO ( N) neutrinos are created in beta decay reac- os interact so feebly with matter that (MSW) effect, is considered by many the pp, pep, beryllium-7 (7Be), and pep tions. A neutrino so produced shares 8 hey escape from the Sun in about scientists to be the most favored solution boron-8 ( B) reactions. The neutrinos 7 energy with another light particle. Hence, 10 15 seconds. They arrive on Earth a mere to the solar-neutrino problem. flee the Sun and begin their voyage to CNO ( O) all those neutrinos have a broad energy minutes later, and thus the solar Neutrino oscillations, or the periodic Earth. (In Figure 1, we have omitted spectrum. The 7Be and pep neutrinos eutrinos are a unique probe of a star’s changes in neutrino flavor, require that neutrinos that emerge from the carbon- 8B result from electron capture: A proton in 105 CNO (17F) nnermost regions and of the nuclear neutrinos possess mass and that neutrino nitrogen-oxygen, or CNO, cycle. The a nucleus captures an electron from an eactions that fuel them. flavor not be conserved in nature. No cycle is another, though less important, Neutrino Flux (number /cm atomic orbital, turns into a neutron, and During the past thirty years, detailed undebated evidence for neutrino mass set of neutrino-producing reactions a monoenergetic neutrino is created. 3 heoretical and experimental studies exists despite years of painstaking in the Sun.) 10 The sensitivity range of the various solar- ave resulted in very precise predic- research around the world. Indeed, the Figure 2 shows the predictions of the neutrino experiments is also shown here. hep ons about the fluxes and energy spec- Standard Model of elementary particles standard solar model for the flux of The gallium experiments have energy a of neutrinos produced deep within requires that neutrinos be strictly mass- electron neutrinos at the earth’s surface. thresholds around 0.23 MeV and are sen- he Sun. But a problem has emerged. less. Nonetheless, quests for a Grand The flux is the number of neutrinos per 0.1 1.0 10.0 sitive to all solar neutrinos. The chlorine our different experiments have mea- Unified Theory of the fundamental square centimeter per second. (The fig- Neutrino Energy (MeV) experiment detects neutrinos from the ured the flux of solar neutrinos, and forces in nature suggest that neutrinos, ure assumes no electron neutrinos have 7Be and CNO reactions, but is primarily very one of them reports a flux that is like other elementary particles, should oscillated into a different flavor.) The pp sensitive to those from the 8B reaction. gnificantly below theoretical predic- have mass. Consequently, should the reaction is the primary mode of neutrino Kamiokande is a water Cerenkov detector ons. The discrepancy is referred to solar-neutrino problem be resolved by production, and the reaction completely that can detect only the high-energy s the solar-neutrino problem, and it invoking neutrino mass and oscillations, dominates energy production in the Sun. portion of 8B neutrinos. 38 Los Alamos Science Number 25 1997 Number 25 1997 Los Alamos Science xorcising Ghosts Exorcising Ghosts onsequently, it is ultimately linked to to the neutrino.
Recommended publications
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • The Particle World
    The Particle World ² What is our Universe made of? This talk: ² Where does it come from? ² particles as we understand them now ² Why does it behave the way it does? (the Standard Model) Particle physics tries to answer these ² prepare you for the exercise questions. Later: future of particle physics. JMF Southampton Masterclass 22–23 Mar 2004 1/26 Beginning of the 20th century: atoms have a nucleus and a surrounding cloud of electrons. The electrons are responsible for almost all behaviour of matter: ² emission of light ² electricity and magnetism ² electronics ² chemistry ² mechanical properties . technology. JMF Southampton Masterclass 22–23 Mar 2004 2/26 Nucleus at the centre of the atom: tiny Subsequently, particle physicists have yet contains almost all the mass of the discovered four more types of quark, two atom. Yet, it’s composite, made up of more pairs of heavier copies of the up protons and neutrons (or nucleons). and down: Open up a nucleon . it contains ² c or charm quark, charge +2=3 quarks. ² s or strange quark, charge ¡1=3 Normal matter can be understood with ² t or top quark, charge +2=3 just two types of quark. ² b or bottom quark, charge ¡1=3 ² + u or up quark, charge 2=3 Existed only in the early stages of the ² ¡ d or down quark, charge 1=3 universe and nowadays created in high energy physics experiments. JMF Southampton Masterclass 22–23 Mar 2004 3/26 But this is not all. The electron has a friend the electron-neutrino, ºe. Needed to ensure energy and momentum are conserved in ¯-decay: ¡ n ! p + e + º¯e Neutrino: no electric charge, (almost) no mass, hardly interacts at all.
    [Show full text]
  • Atomic Diffusion in Star Models of Type Earlier Than G
    A&A 390, 611–620 (2002) Astronomy DOI: 10.1051/0004-6361:20020768 & c ESO 2002 Astrophysics Atomic diffusion in star models of type earlier than G P. Morel and F. Thevenin ´ D´epartement Cassini, UMR CNRS 6529, Observatoire de la Cˆote d’Azur, BP 4229, 06304 Nice Cedex 4, France Received 7 February 2002 / Accepted 15 May 2002 Abstract. We introduce the mixing resulting from the radiative diffusivity associated with the radiative viscosity in the calcula- tion of stellar evolution models. We find that the radiative diffusivity significantly diminishes the efficiency of the gravitational settling in the external layers of stellar models corresponding to types earlier than ≈G. The surface abundances of chemical species predicted by the models are successfully compared with the abundances determined in members of the Hyades open cluster. Our modeling depends on an efficiency parameter, which is evaluated to a value close to unity, that we calibrate in this study. Key words. diffusion – stars: abundances – stars: evolution – Hertzsprung-Russell (HR) and C-M diagrams 1. Introduction stars do not show low surface metallicities. This large helium depletion is not likely to be observed in main sequence B-stars, ff Microscopic di usion, sometimes named “atomic” or “ele- as supported by their spectral classification which is mainly ff ment” di usion, when used in the computation of models of based on the relative strength of the helium spectral lines. main sequence stars produces (see Chaboyer et al. 2001 for The large efficiency of the atomic diffusion in the outer lay- an abridged revue) a change in the surface abundances from ers results from the large temperature and pressure gradients.
    [Show full text]
  • Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model
    Lepton Flavor and Number Conservation, and Physics Beyond the Standard Model Andr´ede Gouv^ea1 and Petr Vogel2 1 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, 60208, USA 2 Kellogg Radiation Laboratory, Caltech, Pasadena, California, 91125, USA April 1, 2013 Abstract The physics responsible for neutrino masses and lepton mixing remains unknown. More ex- perimental data are needed to constrain and guide possible generalizations of the standard model of particle physics, and reveal the mechanism behind nonzero neutrino masses. Here, the physics associated with searches for the violation of lepton-flavor conservation in charged-lepton processes and the violation of lepton-number conservation in nuclear physics processes is summarized. In the first part, several aspects of charged-lepton flavor violation are discussed, especially its sensitivity to new particles and interactions beyond the standard model of particle physics. The discussion concentrates mostly on rare processes involving muons and electrons. In the second part, the sta- tus of the conservation of total lepton number is discussed. The discussion here concentrates on current and future probes of this apparent law of Nature via searches for neutrinoless double beta decay, which is also the most sensitive probe of the potential Majorana nature of neutrinos. arXiv:1303.4097v2 [hep-ph] 29 Mar 2013 1 1 Introduction In the absence of interactions that lead to nonzero neutrino masses, the Standard Model Lagrangian is invariant under global U(1)e × U(1)µ × U(1)τ rotations of the lepton fields. In other words, if neutrinos are massless, individual lepton-flavor numbers { electron-number, muon-number, and tau-number { are expected to be conserved.
    [Show full text]
  • The Gran Sasso Underground Laboratory Program
    The Gran Sasso Underground Laboratory Program Eugenio Coccia INFN Gran Sasso and University of Rome “Tor Vergata” [email protected] XXXIII International Meeting on Fundamental Physics Benasque - March 7, 2005 Underground Laboratories Boulby UK Modane France Canfranc Spain INFN Gran Sasso National Laboratory LNGSLNGS ROME QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. L’AQUILA Tunnel of 10.4 km TERAMO In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction In 1982 the Parliament approved the construction, finished in 1987 In 1989 the first experiment, MACRO, started taking data LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage cosmic µ reduction= 10–6 (1 /m2 h) underground area: 18 000 m2 external facilities Research lines easy access • Neutrino physics 756 scientists from 25 countries Permanent staff = 66 positions (mass, oscillations, stellar physics) • Dark matter • Nuclear reactions of astrophysics interest • Gravitational waves • Geophysics • Biology LNGS Users Foreigners: 356 from 24 countries Italians: 364 Permanent Staff: 64 people Administration Public relationships support Secretariats (visa, work permissions) Outreach Environmental issues Prevention, safety, security External facilities General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab
    [Show full text]
  • Radiochemical Solar Neutrino Experiments, "Successful and Otherwise"
    BNL-81686-2008-CP Radiochemical Solar Neutrino Experiments, "Successful and Otherwise" R. L. Hahn Presented at the Proceedings of the Neutrino-2008 Conference Christchurch, New Zealand May 25 - 31, 2008 September 2008 Chemistry Department Brookhaven National Laboratory P.O. Box 5000 Upton, NY 11973-5000 www.bnl.gov Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]
  • The Masses of the First Family of Fermions and of the Higgs Boson Are Equal to Integer Powers of 2 Nathalie Olivi-Tran
    The masses of the first family of fermions and of the Higgs boson are equal to integer powers of 2 Nathalie Olivi-Tran To cite this version: Nathalie Olivi-Tran. The masses of the first family of fermions and of the Higgs boson are equal to integer powers of 2. QCD14, S.Narison, Jun 2014, MONTPELLIER, France. pp.272-275, 10.1016/j.nuclphysbps.2015.01.057. hal-01186623 HAL Id: hal-01186623 https://hal.archives-ouvertes.fr/hal-01186623 Submitted on 27 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273127325 The masses of the first family of fermions and of the Higgs boson are equal to integer powers of 2 ARTICLE · JANUARY 2015 DOI: 10.1016/j.nuclphysbps.2015.01.057 1 AUTHOR: Nathalie Olivi-Tran Université de Montpellier 77 PUBLICATIONS 174 CITATIONS SEE PROFILE Available from: Nathalie Olivi-Tran Retrieved on: 27 August 2015 The masses of the first family of fermions and of the Higgs boson are equal to integer powers of 2 a, Nathalie Olivi-Tran ∗ aLaboratoire Charles Coulomb, UMR CNRS 5221, cc.
    [Show full text]
  • Introduction to Subatomic- Particle Spectrometers∗
    IIT-CAPP-15/2 Introduction to Subatomic- Particle Spectrometers∗ Daniel M. Kaplan Illinois Institute of Technology Chicago, IL 60616 Charles E. Lane Drexel University Philadelphia, PA 19104 Kenneth S. Nelsony University of Virginia Charlottesville, VA 22901 Abstract An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle in- teractions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrom- eters and exemplify the combined use of several detection techniques to characterize interaction events more-or-less completely. arXiv:physics/9805026v3 [physics.ins-det] 17 Jul 2015 ∗To appear in the Wiley Encyclopedia of Electrical and Electronics Engineering. yNow at Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723. 1 Contents 1 Introduction 5 2 Overview of Subatomic Particles 5 2.1 Leptons, Hadrons, Gauge and Higgs Bosons . 5 2.2 Neutrinos . 6 2.3 Quarks . 8 3 Overview of Particle Detection 9 3.1 Position Measurement: Hodoscopes and Telescopes . 9 3.2 Momentum and Energy Measurement . 9 3.2.1 Magnetic Spectrometry . 9 3.2.2 Calorimeters . 10 3.3 Particle Identification . 10 3.3.1 Calorimetric Electron (and Photon) Identification . 10 3.3.2 Muon Identification . 11 3.3.3 Time of Flight and Ionization . 11 3.3.4 Cherenkov Detectors . 11 3.3.5 Transition-Radiation Detectors . 12 3.4 Neutrino Detection . 12 3.4.1 Reactor Neutrinos . 12 3.4.2 Detection of High Energy Neutrinos .
    [Show full text]
  • Neutrino Opacity I. Neutrino-Lepton Scattering*
    PHYSICAL REVIEW VOLUME 136, NUMBER 4B 23 NOVEMBER 1964 Neutrino Opacity I. Neutrino-Lepton Scattering* JOHN N. BAHCALL California Institute of Technology, Pasadena, California (Received 24 June 1964) The contribution of neutrino-lepton scattering to the total neutrino opacity of matter is investigated; it is found that, contrary to previous beliefs, neutrino scattering dominates the neutrino opacity for many astro­ physically important conditions. The rates for neutrino-electron scattering and antineutrino-electron scatter­ ing are given for a variety of conditions, including both degenerate and nondegenerate gases; the rates for some related reactions are also presented. Formulas are given for the mean scattering angle and the mean energy loss in neutrino and antineutrino scattering. Applications are made to the following problems: (a) the detection of solar neutrinos; (b) the escape of neutrinos from stars; (c) neutrino scattering in cosmology; and (d) energy deposition in supernova explosions. I. INTRODUCTION only been discussed for the special situation of electrons 13 14 XPERIMENTS1·2 designed to detect solar neu­ initially at rest. · E trinos will soon provide crucial tests of the theory In this paper, we investigate the contribution of of stellar energy generation. Other neutrino experiments neutrino-lepton scattering to the total neutrino opacity have been suggested as a test3 of a possible mechanism of matter and show, contrary to previous beliefs, that for producing the high-energy electrons that are inferred neutrino-lepton scattering dominates the neutrino to exist in strong radio sources and as a means4 for opacity for many astrophysically important conditions. studying the high-energy neutrinos emitted in the decay Here, neutrino opacity is defined, analogously to photon of cosmic-ray secondaries.
    [Show full text]
  • Astrophysical Neutrinos at the Low and High Energy Frontiers by Lili Yang A
    Astrophysical neutrinos at the low and high energy frontiers by Lili Yang A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved November 2013 by the Graduate Supervisory Committee: Cecilia Lunardini, Chair Ricardo Alarcon Igor Shovkovy Francis Timmes Tanmay Vachaspati ARIZONA STATE UNIVERSITY December 2013 ABSTRACT For this project, the diffuse supernova neutrino background (DSNB) has been calcu- lated based on the recent direct supernova rate measurements and neutrino spectrum from SN1987A. The estimated diffuse n¯ flux is 0.10 – 0.59 cm 2s 1 at 99% confi- e ⇠ − − dence level, which is 5 times lower than the Super-Kamiokande 2012 upper limit of 3.0 2 1 cm− s− , above energy threshold of 17.3 MeV. With a Megaton scale water detector, 40 events could be detected above the threshold per year. In addition, the detectability of neutrino bursts from direct black hole forming col- lapses (failed supernovae) at Megaton detectors is calculated. These neutrino bursts are energetic and with short time duration, 1s. They could be identified by the time coin- ⇠ cidence of N 2 or N 3 events within 1s time window from nearby (4 – 5 Mpc) failed ≥ ≥ supernovae. The detection rate of these neutrino bursts could get up to one per decade. This is a realistic way to detect a failed supernova and gives a promising method for studying the physics of direct black hole formation mechanism. Finally, the absorption of ultra high energy (UHE) neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the back- ground on the resonant annihilation channel, is discussed.
    [Show full text]
  • THE BOREXINO IMPACT in the GLOBAL ANALYSIS of NEUTRINO DATA Settore Scientifico Disciplinare FIS/04
    UNIVERSITA’ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA SCUOLA DI DOTTORATO IN FISICA, ASTROFISICA E FISICA APPLICATA CICLO XXIV THE BOREXINO IMPACT IN THE GLOBAL ANALYSIS OF NEUTRINO DATA Settore Scientifico Disciplinare FIS/04 Tesi di Dottorato di: Alessandra Carlotta Re Tutore: Prof.ssa Emanuela Meroni Coordinatore: Prof. Marco Bersanelli Anno Accademico 2010-2011 Contents Introduction1 1 Neutrino Physics3 1.1 Neutrinos in the Standard Model . .4 1.2 Massive neutrinos . .7 1.3 Solar Neutrinos . .8 1.3.1 pp chain . .9 1.3.2 CNO chain . 13 1.3.3 The Standard Solar Model . 13 1.4 Other sources of neutrinos . 17 1.5 Neutrino Oscillation . 18 1.5.1 Vacuum oscillations . 20 1.5.2 Matter-enhanced oscillations . 22 1.5.3 The MSW effect for solar neutrinos . 26 1.6 Solar neutrino experiments . 28 1.7 Reactor neutrino experiments . 33 1.8 The global analysis of neutrino data . 34 2 The Borexino experiment 37 2.1 The LNGS underground laboratory . 38 2.2 The detector design . 40 2.3 Signal processing and Data Acquisition System . 44 2.4 Calibration and monitoring . 45 2.5 Neutrino detection in Borexino . 47 2.5.1 Neutrino scattering cross-section . 48 2.6 7Be solar neutrino . 48 2.6.1 Seasonal variations . 50 2.7 Radioactive backgrounds in Borexino . 51 I CONTENTS 2.7.1 External backgrounds . 53 2.7.2 Internal backgrounds . 54 2.8 Physics goals and achieved results . 57 2.8.1 7Be solar neutrino flux measurement . 57 2.8.2 The day-night asymmetry measurement . 58 2.8.3 8B neutrino flux measurement .
    [Show full text]
  • The Solar Wind in Time: a Change in the Behaviour of Older Winds?
    MNRAS 000,1{11 (2017) Preprint 14 February 2018 Compiled using MNRAS LATEX style file v3.0 The solar wind in time: a change in the behaviour of older winds? D. O´ Fionnag´ain? and A. A. Vidotto School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland Accepted XXX. Received YYY; in original form ZZZ ABSTRACT In the present paper, we model the wind of solar analogues at different ages to in- vestigate the evolution of the solar wind. Recently, it has been suggested that winds of solar type stars might undergo a change in properties at old ages, whereby stars older than the Sun would be less efficient in carrying away angular momentum than what was traditionally believed. Adding to this, recent observations suggest that old solar-type stars show a break in coronal properties, with a steeper decay in X-ray lumi- nosities and temperatures at older ages. We use these X-ray observations to constrain the thermal acceleration of winds of solar analogues. Our sample is based on the stars from the `Sun in time' project with ages between 120-7000 Myr. The break in X-ray properties leads to a break in wind mass-loss rates (MÛ ) at roughly 2 Gyr, with MÛ (t < 2 Gyr) / t−0:74 and MÛ (t > 2 Gyr) / t−3:9. This steep decay in MÛ at older ages could be the reason why older stars are less efficient at carrying away angular mo- mentum, which would explain the anomalously rapid rotation observed in older stars. We also show that none of the stars in our sample would have winds dense enough to produce thermal emission above 1-2 GHz, explaining why their radio emissions have not yet been detected.
    [Show full text]