High-Fidelity Numerical Simulation of Shallow Water Waves

Total Page:16

File Type:pdf, Size:1020Kb

High-Fidelity Numerical Simulation of Shallow Water Waves High-Fidelity Numerical Simulation of Shallow Water Waves Amir Zainali Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geosciences Robert Weiss, Chair Scott D. King Jennifer L. Irish Heng Xiao Nina Stark December 2, 2016 Blacksburg, Virginia Keywords: tsunami, dispersive waves, coastal vegetation Copyright 2016, Amir Zainali High-Fidelity Numerical Simulation of Shallow Water Waves Amir Zainali ABSTRACT Tsunamis impose significant threat to human life and coastal infrastructure. The goal of my dissertation is to develop a robust, accurate, and computationally efficient numerical model for quantitative hazard assessment of tsunamis. The length scale of the physical domain of interest ranges from hundreds of kilometers, in the case of landslide-generated tsunamis, to thousands of kilometers, in the case of far-field tsunamis, while the water depth varies from couple of kilometers, in deep ocean, to few centimeters, in the vicinity of shoreline. The large multi-scale computational domain leads to challenging and expensive numerical simulations. I present and compare the numerical results for different important problems | such as tsunami hazard mitigation due to presence of coastal vegetation, boulder dislodgement and displacement by long waves, and tsunamis generated by an asteroid impact | in risk assessment of tsunamis. I employ depth-integrated shallow water equations and Serre-Green-Naghdi equations for solving the problems and compare them to available three- dimensional results obtained by mesh-free smoothed particle hydrodynamics and volume of fluid methods. My results suggest that depth-integrated equations, given the current hardware computational capacities and the large scales of the problems in hand, can produce results as accurate as three-dimensional schemes while being computationally more efficient by at least an order of a magnitude. High-Fidelity Numerical Simulation of Shallow Water Waves Amir Zainali GENERAL AUDIENCE ABSTRACT A tsunami is a series of long waves that can travel for hundreds of kilometers. They can be initiated by an earthquake, a landslide, a volcanic eruption, a meteorological source, or even an asteroid impact. They impose significant threat to human life and coastal infrastructure. This dissertation presents numerical simulations of tsunamis. The length scale of the physical domain of interest ranges from hundreds of kilometers, in the case of landslide-generated tsunamis, to thousands of kilometers, in the case of far-field tsunamis, while the water depth varies from couple of kilometers, in deep ocean, to few centimeters, in the vicinity of shoreline. The large multi-scale computational domain leads to challenging and expensive numerical simulations. I present and compare the numerical results for different important problems | such as tsunami hazard mitigation due to presence of coastal vegetation, boulder dislodgement and displacement by long waves, and tsunamis generated by an asteroid impact | in risk assessment of tsunamis. I employ two-dimensional governing equations for solving the problems and compare them to available three-dimensional results obtained by mesh-free smoothed particle hydrodynamics and volume of fluid methods. My results suggest that two- dimensional equations, given the current hardware computational capacities and the large scales of the problems in hand, can produce results as accurate as three-dimensional schemes while being computationally more efficient by at least an order of a magnitude. Acknowledgments I would like to express my great appreciation to Dr. Robert Weiss, as my adviser, for his guidance, encouragement, and patience during the course of this work. I would also like to thank my dissertation committee members, Drs. Scott King, Jennifer L. Irish, Nina Stark, and Heng Xiao for their helpful comments on the draft of this thesis. I would also like to thank Kannikha Kolandaivelu and Roberto Marivela for reviewing the earlier versions of this dissertation. The work presented in here is based upon work partially supported by the National Science Foundation under Grants No. NSF-CMMI-1208147 and NSF-CMMI-1206271. iv Contents Acknowledgement iv List of Figures ix List of Tables xvii Nomenclature xix 1 Introduction 1 1.1 Theoretical Background . .6 1.2 Contributions and Outline of the Dissertation . 10 2 Boulder Dislodgement and Transport by Solitary Waves: Insights from Three-Dimensional Numerical Simulations† 14 2.1 Introduction . 15 v Contents vi 2.2 Theoretical Background . 17 2.2.1 Governing Equations and Numerical Method . 17 2.2.2 Model Setup . 19 2.2.3 Non-Dimensional Parameters . 20 2.3 Results . 23 2.3.1 Validation of Numerical Results . 23 2.3.2 Boulder Transport by Solitary Waves . 25 2.4 Discussion and Conclusions . 28 3 High-Fidelity Depth-Integrated Numerical Simulations in Comparison to Three-Dimensional Simulations 32 3.1 Introduction . 33 3.1.1 Three-Dimensional Methods . 34 3.1.2 Depth-Integrated Methods . 38 3.2 Results . 39 3.2.1 Non-Breaking Solitary Wave Interaction with a Group of Cylinders . 39 Contents vii 3.2.2 Breaking Solitary Wave Run-Up on a Sloping Beach . 42 3.2.3 Breaking Solitary Type Wave Run-Up on a Sloping Beach . 42 4 Numerical Simulation of Nonlinear Long Waves in the Presence of Discon- tinuous Coastal Vegetation † 45 4.1 Introduction . 46 4.2 Theoretical Background . 49 4.2.1 Initial and Boundary Conditions . 50 4.2.2 Wave Breaking . 51 4.3 Results . 52 4.3.1 Validation of Numerical Results . 52 4.3.2 Breaking Solitary-Type Transient Wave Run-Up in the Presence of Macro-Roughness . 54 4.3.3 Effects of Macro-Roughness on the Local Maximum Local Water Depth 56 4.3.4 Effects of Macro-Roughness on the Local Maximum Momentum Flux . 57 4.3.5 Maximum Run-Up . 58 4.4 Discussion and Conclusion . 61 Contents viii 5 Some Examples for Which Dispersive Effects Can Change the Results Significantly† 64 5.1 Numerical Simulation of Hazard Assessment Generated by Asteroid Impacts on Earth . 65 5.1.1 Numerical Simulation of Tsunami Waves Generated by an Asteroid Explosion near the Ocean Surface . 67 5.1.2 Numerical Simulation of Tsunami Waves Generated by an Asteroid Impact into the Ocean . 69 5.2 Non-Breaking Cnoidal Wave Interaction with Offshore Cylinders . 73 5.3 Hazard Assessment Along the Coastline from the Gaza Strip to the Caesarea, Israel . 76 6 Future Work 79 Bibliography 81 List of Figures 1.1 Location of tsunamis that have happened since 1900 to present day; ( ): caused by a volcanic activity; ( ) caused by a landslide; ( ) caused by an unknown source; ( ) caused by an earthquake. Color codes are as following: dark-red represents the tsunamis that caused more than 1000 casualties or more than 1 billion dollars damage in total; red represents the tsunamis that caused more than 100 casualties or more than 100 million dollars damage in total; orange represents the tsunamis that caused more than 10 casualties or more than 10 million dollars damage in total; yellow represents the tsunamis that caused less than 10 casualties or less than 10 million dollars damage in total . .2 ix List of Figures x 1.2 Histograms of the number of earthquakes versus the death and damage toll. I: less than 10 casualties; II casualties between 10 and 100; III casualties between 100 and 1000; IV casualties between 1000 and 10000; casualties more than 10000. A: damage less than 10 million dollars; B: damage between 10 and 100 million dollars; C: damage between 0.1 and 1 billion dollars; D: damage between 1 and 10 billion dollars; E: damage between 10 and 100 billion dollars; F: damage more than 100 billion dollars; The y-axis is in logarithmic scale. .5 1.3 Casualties and economic loss due to I: unknown source; II: earthquake; III: landslide; IV: volcano; V: meteorological source; The y-axis is in logarithmic scale. .6 1.4 Schematic of a long wave. .7 1.5 Tsunami wave propagation caused by a landslide. The initial ratio between the wavelength and water depth is more than 10. The figure shows the comparison of the three different simulations. (blue) SGN high resolution; (red) SGN low resolution; (green) SWE high resolution. 11 2.1 Sketch of dam-break scenario at t = 0. Water behind the gate starts to flow after sudden gate removal at t = 0. To compare the numerical results with experiments presented by Imamura et al. (2008), we applied: lx = 10 m, ly = 0:45 m, lz = 0:3 m, lxh = 5:5 m, lw = 3 m and hw = 0:15; 0:20; 0:25; 0:3 m. 19 List of Figures xi 2.2 Comparison of numerical and experimental data presented. Experimental −3 data are from Imamura et al. (2008). The case ρb = 1550 kg m is colored in −3 black and case with ρb = 2710 kg m is colored in blue; ( ) experimental results and ( ) SPH simulations. 22 2.3 Time snapshots for scenarios CA, CB and CC with α = 0, (left column) and scenarios CA, CB and CC with α = 1, (right column) with wave height of 0:15m. Please note that different cases are superimposed on the same domain just for illustration purposes. 24 2.4 Contour plots of boulder maximum displacement, db, as a function of non- dimensional parameters. a: aspect ratio in logarithmic scale versus Froude number; (a-1) β = −8~30 (a-2) β = 0 and (a-3) β = 4~30. b: submergence factor versus Froude number; (b-1) α = −1, (b-2) α = 0 and (b-3) α = 1. c: submergence factor versus aspect ratio in logarithmic scale; (c-1) F r = 1:08, (c-2) F r = 1:15 and (c-3) F r = 1:22. White regions indicate no significant −1 boulder movement, i.e.
Recommended publications
  • Well-Balanced Schemes for the Shallow Water Equations with Coriolis Forces
    Well-balanced schemes for the shallow water equations with Coriolis forces Alina Chertock, Michael Dudzinski, Alexander Kurganov & Mária Lukáčová- Medvid’ová Numerische Mathematik ISSN 0029-599X Volume 138 Number 4 Numer. Math. (2018) 138:939-973 DOI 10.1007/s00211-017-0928-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Numer. Math. (2018) 138:939–973 Numerische https://doi.org/10.1007/s00211-017-0928-0 Mathematik Well-balanced schemes for the shallow water equations with Coriolis forces Alina Chertock1 · Michael Dudzinski2 · Alexander Kurganov3,4 · Mária Lukáˇcová-Medvid’ová5 Received: 28 April 2014 / Revised: 19 September 2017 / Published online: 2 December 2017 © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract In the present paper we study shallow water equations with bottom topog- raphy and Coriolis forces. The latter yield non-local potential operators that need to be taken into account in order to derive a well-balanced numerical scheme.
    [Show full text]
  • Downloaded 09/24/21 11:26 AM UTC 966 JOURNAL of PHYSICAL OCEANOGRAPHY VOLUME 46
    MARCH 2016 G R I M S H A W E T A L . 965 Modelling of Polarity Change in a Nonlinear Internal Wave Train in Laoshan Bay ROGER GRIMSHAW Department of Mathematical Sciences, Loughborough University, Loughborough, United Kingdom CAIXIA WANG AND LAN LI Physical Oceanography Laboratory, Ocean University of China, Qingdao, China (Manuscript received 23 July 2015, in final form 29 December 2015) ABSTRACT There are now several observations of internal solitary waves passing through a critical point where the coefficient of the quadratic nonlinear term in the variable coefficient Korteweg–de Vries equation changes sign, typically from negative to positive as the wave propagates shoreward. This causes a solitary wave of depression to transform into a train of solitary waves of elevation riding on a negative pedestal. However, recently a polarity change of a different kind was observed in Laoshan Bay, China, where a periodic wave train of elevation waves converted to a periodic wave train of depression waves as the thermocline rose on a rising tide. This paper describes the application of a newly developed theory for this phenomenon. The theory is based on the variable coefficient Korteweg–de Vries equation for the case when the coefficient of the quadratic nonlinear term undergoes a change of sign and predicts that a periodic wave train will pass through this critical point as a linear wave, where a phase change occurs that induces a change in the polarity of the wave, as observed. A two-layer model of the density stratification and background current shear is developed to make the theoretical predictions specific and quantitative.
    [Show full text]
  • Part II-1 Water Wave Mechanics
    Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32
    [Show full text]
  • Fluid Simulation Using Shallow Water Equation
    Fluid Simulation using Shallow Water Equation Dhruv Kore Itika Gupta Undergraduate Student Graduate Student University of Illinois at Chicago University of Illinois at Chicago [email protected] [email protected] 847-345-9745 312-478-0764 ABSTRACT rivers and channel. As the name suggest, the main In this paper, we present a technique, which shows how characteristic of shallow Water flows is that the vertical waves once generated from a small drop continue to ripple. dimension is much smaller as compared to the horizontal Waves interact with each other and on collision change the dimension. Naïve Stroke Equation defines the motion of form and direction. Once the waves strike the boundary, fluids and from these equations we derive SWE. they return with the same speed and in sometime, depending on the delay, you can see continuous ripples in In Next section we talk about the related works under the the surface. We use shallow water equation to achieve the heading Literature Review. Then we will explain the desired output. framework and other concepts necessary to understand the SWE and wave equation. In the section followed by it, we Author Keywords show the results achieved using our implementation. Then Naïve Stroke Equation; Shallow Water Equation; Fluid finally we talk about conclusion and future work. Simulation; WebGL; Quadratic function. LITERATURE REVIEW INTRODUCTION In [2] author in detail explains the Shallow water equation In early years of fluid simulation, procedural surface with its derivation. Since then a lot of authors has used generation was used to represent waves as presented by SWE to present the formation of waves in water.
    [Show full text]
  • Shallow Water Waves and Solitary Waves Article Outline Glossary
    Shallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, USA Article Outline Glossary I. Definition of the Subject II. Introduction{Historical Perspective III. Completely Integrable Shallow Water Wave Equations IV. Shallow Water Wave Equations of Geophysical Fluid Dynamics V. Computation of Solitary Wave Solutions VI. Water Wave Experiments and Observations VII. Future Directions VIII. Bibliography Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depth. Internal wave A internal wave travels within the interior of a fluid. The maximum velocity and maximum amplitude occur within the fluid or at an internal boundary (interface). Internal waves depend on the density-stratification of the fluid. Shallow water A surface wave is said to be in shallow water if its wavelength is much larger than the local water depth. Shallow water waves Shallow water waves correspond to the flow at the free surface of a body of shallow water under the force of gravity, or to the flow below a horizontal pressure surface in a fluid. Shallow water wave equations Shallow water wave equations are a set of partial differential equations that describe shallow water waves. 1 Solitary wave A solitary wave is a localized gravity wave that maintains its coherence and, hence, its visi- bility through properties of nonlinear hydrodynamics. Solitary waves have finite amplitude and propagate with constant speed and constant shape. Soliton Solitons are solitary waves that have an elastic scattering property: they retain their shape and speed after colliding with each other.
    [Show full text]
  • Shallow-Water Equations and Related Topics
    CHAPTER 1 Shallow-Water Equations and Related Topics Didier Bresch UMR 5127 CNRS, LAMA, Universite´ de Savoie, 73376 Le Bourget-du-Lac, France Contents 1. Preface .................................................... 3 2. Introduction ................................................. 4 3. A friction shallow-water system ...................................... 5 3.1. Conservation of potential vorticity .................................. 5 3.2. The inviscid shallow-water equations ................................. 7 3.3. LERAY solutions ........................................... 11 3.3.1. A new mathematical entropy: The BD entropy ........................ 12 3.3.2. Weak solutions with drag terms ................................ 16 3.3.3. Forgetting drag terms – Stability ............................... 19 3.3.4. Bounded domains ....................................... 21 3.4. Strong solutions ............................................ 23 3.5. Other viscous terms in the literature ................................. 23 3.6. Low Froude number limits ...................................... 25 3.6.1. The quasi-geostrophic model ................................. 25 3.6.2. The lake equations ...................................... 34 3.7. An interesting open problem: Open sea boundary conditions .................... 41 3.8. Multi-level and multi-layers models ................................. 43 3.9. Friction shallow-water equations derivation ............................. 44 3.9.1. Formal derivation ....................................... 44 3.10.
    [Show full text]
  • Waves in Water from Ripples to Tsunamis and to Rogue Waves
    Waves in Water from ripples to tsunamis and to rogue waves Vera Mikyoung Hur (Mathematics) (Image from Flickr) The motion of a fluid can be very complicated as we know whenever we see waves break on a beach, (Image from the Internet) The motion of a fluid can be very complicated as we know whenever we fly in an airplane, (Image from the Internet) The motion of a fluid can be very complicated as we know whenever we look at a lake on a windy day. (Image from the Internet) Euler in the 1750s proposed a mathematical model of an incompressible fluid. @u + (u · r)u + rP = F, @t r · u = 0. Here, u(x; t) is the velocity of the fluid at the point x and time t, P(x; t) is the pressure, and F(x; t) is an outside force. The Navier-Stokes equations (adding ν∆u) allow the fluid to be viscous. It is concise and captures the essence of fluid behavior. The theory of fluids has provided source and inspiration to many branches of mathematics, e.g. Cauchy's complex function theory. Difficulties of understanding fluids are profound. e.g. the global-in-time solution of the Navier-Stokes equations in 3 dimensions is a Clay Millennium Problem! Waves, jets, drops come to mind when thinking of fluids. They involve one or more fluids separated by an unknown surface. In the mathematical community, they go by free boundary problems. (Image from the Internet) Free boundaries are mathematically challenging in their own right. They occur in many other situations, such as melting of ice stretching a membrane over an obstacle.
    [Show full text]
  • Modified Shallow Water Equations for Significantly Varying Seabeds Denys Dutykh, Didier Clamond
    Modified Shallow Water Equations for significantly varying seabeds Denys Dutykh, Didier Clamond To cite this version: Denys Dutykh, Didier Clamond. Modified Shallow Water Equations for significantly varying seabeds: Modified Shallow Water Equations. Applied Mathematical Modelling, Elsevier, 2016, 40 (23-24), pp.9767-9787. 10.1016/j.apm.2016.06.033. hal-00675209v6 HAL Id: hal-00675209 https://hal.archives-ouvertes.fr/hal-00675209v6 Submitted on 26 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Denys Dutykh CNRS, Université Savoie Mont Blanc, France Didier Clamond Université de Nice – Sophia Antipolis, France Modified Shallow Water Equations for significantly varying seabeds arXiv.org / hal Last modified: April 26, 2016 Modified Shallow Water Equations for significantly varying seabeds Denys Dutykh∗ and Didier Clamond Abstract. In the present study, we propose a modified version of the Nonlinear Shal- low Water Equations (Saint-Venant or NSWE) for irrotational surface waves in the case when the bottom undergoes some significant variations in space and time. The model is derived from a variational principle by choosing an appropriate shallow water ansatz and imposing some constraints.
    [Show full text]
  • Dissipative Cnoidal Waves (Turing Rolls) and the Soliton Limit in Microring Resonators
    Research Article Vol. X, No. X / Febrary 1046 B.C. / OSA Journal 1 Dissipative cnoidal waves (Turing rolls) and the soliton limit in microring resonators ZHEN QI1,*,S HAOKANG WANG1,J OSÉ JARAMILLO-VILLEGAS2,M INGHAO QI3, ANDREW M. WEINER3,G IUSEPPE D’AGUANNO1,T HOMAS F. CARRUTHERS1, AND CURTIS R. MENYUK1 1University of Maryland at Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA 2Technological University of Pereira, Cra. 27 10-02, Pereira, Risaralda 660003, Colombia 3Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA *Corresponding author: [email protected] Compiled May 27, 2019 Single solitons are a special limit of more general waveforms commonly referred to as cnoidal waves or Turing rolls. We theoretically and computationally investigate the stability and acces- sibility of cnoidal waves in microresonators. We show that they are robust and, in contrast to single solitons, can be easily and deterministically accessed in most cases. Their bandwidth can be comparable to single solitons, in which limit they are effectively a periodic train of solitons and correspond to a frequency comb with increased power. We comprehensively explore the three-dimensional parameter space that consists of detuning, pump amplitude, and mode cir- cumference in order to determine where stable solutions exist. To carry out this task, we use a unique set of computational tools based on dynamical system theory that allow us to rapidly and accurately determine the stable region for each cnoidal wave periodicity and to find the instabil- ity mechanisms and their time scales. Finally, we focus on the soliton limit, and we show that the stable region for single solitons almost completely overlaps the stable region for both con- tinuous waves and several higher-periodicity cnoidal waves that are effectively multiple soliton trains.
    [Show full text]
  • ATM 500: Atmospheric Dynamics End-Of-Semester Review, December 4 2018 Here, in Bullet Points, Are the Key Concepts from the Second Half of the Course
    ATM 500: Atmospheric Dynamics End-of-semester review, December 4 2018 Here, in bullet points, are the key concepts from the second half of the course. They are not meant to be self-contained notes! Refer back to your course notes for notation, derivations, and deeper discussion. Static stability The vertical variation of density in the environment determines whether a parcel, disturbed upward from an initial hydrostatic rest state, will accelerate away from its initial position, or oscillate about that position. For an incompressible or Boussinesq fluid, the buoyancy frequency is g dρ~ N 2 = − ρ~dz For a compressible ideal gas, the buoyancy frequency is g dθ~ N 2 = θ~dz (the expressions are different because density is not conserved in a small upward displacement of a compressible fluid, but potential temperature is conserved) Fluid is statically stable if N 2 > 0; otherwise it is statically unstable. Typical value for troposphere: N = 0:01 s−1, with corresponding oscillation period of 10 minutes. Dry adiabatic lapse rate g −1 Γd = = 9:8 K km cp The rate at which temperature decreases during adiabatic ascent (for which Dθ Dt = 0) \Dry" here means that there is no latent heating from condensation of water vapor. Static stability criteria for a dry atmosphere Environment is stable to dry con- vection if dθ~ dT~ > 0 or − < Γ dz dz d and otherwise unstable. 1 Buoyancy equation for Boussinesq fluid with background stratification Db0 + N 2w = 0 Dt where we have separated the full buoyancy into a mean vertical part ^b(z) and 0 2 d^b 2 everything else (b ), and N = dz .
    [Show full text]
  • Multilayer Shallow Water Equations with Complete Coriolis Force. Part I: Derivation on a Non-Traditional Beta-Plane
    Accepted for publication in the Journal of Fluid Mechanics °c 2010 Cambridge University Press 1 doi:10.1017/S0022112009993922 Multilayer shallow water equations with complete Coriolis force. Part I: Derivation on a non-traditional beta-plane By ANDREW L. STEWART and PAUL J. DELLAR OCIAM, Mathematical Institute, 24–29 St Giles’, Oxford, OX1 3LB, UK [email protected], [email protected] (Received 22 May 2009; revised 9 December 2009; accepted 9 December 2009) We derive equations to describe the flow of multiple superposed layers of inviscid, incompressible fluids with con- stant densities over prescribed topography in a rotating frame. Motivated by geophysical applications, these equations incorporate the complete Coriolis force. We do not make the widely used “traditional approximation” that omits the contribution to the Coriolis force from the locally horizontal part of the rotation vector. Our derivation is performed by averaging the governing Euler equations over each layer, and from two different forms of Hamilton’s variational principle that differ in their treatment of the coupling between layers. The coupling may be included implicitly through the map from Lagrangian particle labels to particle coordinates, or explicitly by adding terms representing the work done on each layer by the pressure exerted by the layers above. The latter approach requires additional terms in the Lagrangian, but extends more easily to many layers. We show that our equations obey the expected conservation laws for energy, momentum, and potential vorticity. The conserved momentum and potential vorticity are modified by non-traditional effects. The vertical component of the rotation vector that appears in the potential vorticity for each layer under the traditional approximation is replaced by the component perpendicular to the layer’s midsurface.
    [Show full text]
  • A Particle-In-Cell Method for the Solution of Two-Layer Shallow-Water Equations
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2000; 32: 515–543 A particle-in-cell method for the solution of two-layer shallow-water equations Benoit Cushman-Roisina,*, Oleg E. Esenkovb and Benedict J. Mathiasc a Thayer School of Engineering, Dartmouth College, Hano6er, NH 03755-8000, U.S.A. b Rosenstiel School of Marine and Atmospheric Science, Uni6ersity of Miami, Miami, FL 33149-1098, U.S.A. c i2 Technologies, 303 Twin Dolphin Dri6e, Redwood City, CA 94065, U.S.A. SUMMARY A particle-in-cell (PIC) numerical method developed for the study of shallow-water dynamics, when the moving fluid layer is laterally confined by the intersection of its top and bottom surfaces, is described. The effect of ambient rotation is included for application to geophysical fluids, particularly open-ocean buoyant vortices in which the underlying density interface outcrops to the surface around the rim of the vortex. Extensions to include the dynamical effect of a second moving layer (baroclinicity) and the presence of a lateral rigid boundary (sidewall) are also described. Although the method was developed for oceanographic investigations, applications to other fluid mechanics problems would be straightforward. Copyright © 2000 John Wiley & Sons, Ltd. KEY WORDS: open-ocean; particle-in-cell; shallow-water equation 1. INTRODUCTION There are a number of situations, mostly geophysical in nature, where fluid flows occur in layers that are much thinner than they are wide. In such cases, hydrostatic equilibrium is invoked in the vertical, and the equations of motion reduce to the so-called St. Venant or shallow-water equations [1].
    [Show full text]