Defense Mechanisms of Nyssodesmus Python (Polydesmidae)

Total Page:16

File Type:pdf, Size:1020Kb

Defense Mechanisms of Nyssodesmus Python (Polydesmidae) Defense mechanisms of Nyssodesmus python (Polydesmidae) Sheiphali Gandhi Pott College of Science and Engineering, University of Southern Indiana ABSTRACT The purpose of this study was to examine the effects different characteristics of Nyssodesmus python had on the defense mechanisms of the organism. The defense mechanisms of N. python include: curling into a spiral and chemical defense. It was predicted that sex would not affect defense mechanisms, whereas size and level of calcification would. Populations were found in two locations: La Estación Biológica Monteverde and San Gerardo on different sides of the continental divide. One hundred and twenty millipedes were collected, 42 in Monteverde and 78 in San Gerardo. They were artificially threatened, and the time spent in a protective position and the release of toxin were recorded. The size of the individuals and level of calcification were also recorded. T-tests and chi-squared tests showed that there were significant differences in the defense mechanisms of males and females. Regression analysis showed a significant trend between size of an individual and the time it remained in the protected position, but the relationship may not be due to causation. The millipedes of different populations had some distinctive morphological and behavioral characteristics; additionally, there was a significant difference in their length of time spent in a curled position. RESUMEN El objetivo de este estudio fue examinar los efectos de las diferentes característcas de Nyssodesmus python sobre los mecanismos de defensa de estos organismos. Los mecanismos de defensa de N. python incluyen: doblarse sobre sí mismos y la defensa química. Se predijo que el sexo no afectaría a los mecanismos de defensa, mientras el tamaño y el nivel de calcificación si lo harían. Los individuos se encontraron en dos lugares: La Estación Biológica Monteverde y San Gerardo, en lados diferentes de la división continental. Ciento veinte milpiés se estudiaron en total, 42 en Monteverde y 78 en San Gerardo. Se amenazaron artificialmente, y se registraron el tiempo que pasaron en una posición protectiva y la presencia de la secreción de toxina. También se anotaron el tamaño de los individuos y el nivel de calcificación. Los experimentos indicaron una relación significativa entre el sexo de un milpiés y sus mecanismos de defensa. El análisis de regresión mostró una relación significativa entre el tamaño del individuo y el tiempo que pasó en una posición protectiva. Los milpiés de poblaciones diferentes mostraron diferencias morfológicas y etológicas características; hubo una diferencia significativa en el tiempo en que permanecieron en una posición protectiva. INTRODUCTION Nyssodesmus python, commonly known as the large forest-floor millipede, is usually found on the Caribbean slope of Costa Rica in patches of uncut understory. They feed primarily on rotting wood, like most other Polydesmidae, and are important decomposers in the rainforest ecosystem (Heisler 1983). Adult N. python have twenty body segments, nineteen of which display a pair of horizontal keels that are large and flat, resembling a large isopod. Individuals are dull light yellow with two dark brown longitudinal stripes running down their backs. Sex can be easily determined because on the ventral side of the seventh body segment of male individuals, the first pair of legs is modified into a set of small curved “gonopods.” These structures are used in the transfer of sperm to the female millipede. Additionally, female N. python at 70-100 mm in length are larger than males, who measure on average 65-90 mm (Heisler 1983). Nyssodesmus python molts throughout its entire life cycle even after it has stopped growing; after each molt, an adult N. python is soft and unpigmented. Approximately a month passes until the process of calcification and pigmentation is complete (Heisler 1983). The calcified exoskeleton plays an essential role in resisting the large pressures developed while burrowing. It is thought that calcium salts increase resistance without making the keel unwieldy. In general, the exoskeleton of males is stronger and more resistant than females. Also, as the body mass of females increases, the strength of their exoskeleton increases as well; while this trend does exist in male exoskeletons, it is much less apparent (Borrell 2004). N. python has two forms of protection: an extremely rigid exoskeleton and a toxic chemical excretion. When threatened, it curls into a spiral, protecting its vulnerable underside, and secretes a toxin from its hindgut (Heisler 1983). The predominant components of their cyanogenetic defense secretions are hydrogen cyanide and benzaldehyde, together with other compounds such as phenol, benzoic acid, benzoyl cyanide, and mandelonitrile (Kuwahara et. al. 2002). Their characteristic secretion glands are known as oxadenes. They open laterally on the individual diplosegments to exude the repugnant liquid (Wright 1999). The composition of each toxin secretion is species-specific (Kuwahara et. al. 2002), and the secretion of N. python is commonly known for its pleasing cherry-almond scent. This liquid can be expelled violently up to a distance of 30 cm (Heisler 1983). Research has been done on the reproductive behavior of this species by Hyatt (1993) and Arnold (1998), but little else is known about the natural history of N. python (Heisler 1983). The present study explored significant trends in defense mechanisms dependent on sex, size, and population. It was predicted that sex would not affect defense mechanisms, whereas size and level of calcification would. The hypothesis was based on the fact that little distinction exists between the morphology of males and females, whereas a clear disparity can be seen in size and calcification. MATERIALS AND METHODS Study site Nyssodesmus python were collected in two locations: the forest close to La Estación Biológica Monteverde and the forest in San Gerardo. The forest close to La Estación Biológica is on the Pacific slope in the lower montane wet forest life zone with an elevation of 1400-1800 m (Haber et al. 2000). San Gerardo sits at approximately 1300 meters in elevation on the Atlantic slope in the premontane rain forest life zone. Collection occurred close to trails due to accessibility (Fig. 1). Data collection The millipedes from the forest above La Estación Biológica Monteverde were collected in plastic bags and brought to the station by CIEE students. The millipedes collected in San Gerardo by Alan Masters were placed in a plastic container containing leaf litter and brought back to La Estación Biológica Monteverde to be tested. All subjects were collected between July 21, 2005 and August 1, 2005. They were kept at the biological station in terraria containing leaf litter collected on station property and covered with plastic wrap to maintain a moist environment. The millipedes from the two life zones were kept in separate terraria. The millipedes were left alone for one day to allow for acclimation. Multiple terraria were maintained so that simultaneous acclimation periods could be used for millipedes collected on different days. No more than ten millipedes were kept in a terrarium at the same time. After the acclimation period, the millipedes were taken out of the terraria individually. The subject was then placed on a table and was artificially threatened by roughly turning it over onto its dorsal side. The amount of time the millipede remained curled in a spiral was recorded. The presence of toxin was determined by the presence of a sweet/cyanide smell and recorded. The length and width of the millipede were measured in millimeters by holding the millipede on it ventral side against a ruler on the table. These measures were multiplied to produce a size index for the comparison of different individuals. The new layer of exoskeleton, after molting, is unpigmented; therefore, the amount of calcification of the exoskeleton can be determined by its pigmentation. This was rated on a scale from one to ten with ten being the darkest and one the lightest. Calcification was recorded for only the Monteverde population because the pigmentation trend is only known for this population of millipedes (Heisler 1983). Statistical analysis Parametric tests were used to compare values. The log of the time of protection was taken to generate a normal data set. Unpaired t-tests were used to compare the protection time and size index of millipedes found in different locations. A chi-squared test was used to determine if the secretion of toxin differed between populations at the two sites. Unpaired t-tests were used to compare the curling time of males and females. Because there is a significant size difference between the two sexes (Heisler 1983) (Fig. 2), separate tests compared the size index and the protection time of each sex using simple regression analysis. Similarly, separate unpaired t-tests were run comparing the size index and presence of toxin of each sex. A chi-squared test was run to compare the presence of toxin for both sexes. Lastly, simple regression analysis was used to see if the protection time was a function of calcification. RESULTS A total of 120 Nyssodesmus python were collected. Close to La Estación Biológica Monteverde, 42 millipedes were collected, whereas 78 were collected in the San Gerardo forest. There were 46 females collected (16 in Monteverde and 30 in San Gerardo), while 74 males were collected (26 in Monteverde and 48 in San Gerardo). The ratio of females to males for each population was approximately 5 to 8. Effect of sex The protection time for the different sexes was found to be significantly different (p=0.0034). The mean protection time for females was 266.32248.530 seconds, the mean protection time for males was 141.59722.641 seconds. There was also a significant relationship between the sex of a millipede and the secretion of toxin (X2=10.781, DF=1, p=0.0010). Females were more likely to secrete toxin than males.
Recommended publications
  • Supra-Familial Taxon Names of the Diplopoda Table 4A
    Milli-PEET, Taxonomy Table 4 Page - 1 - Table 4: Supra-familial taxon names of the Diplopoda Table 4a: List of current supra-familial taxon names in alphabetical order, with their old invalid counterpart and included orders. [Brackets] indicate that the taxon group circumscribed by the old taxon group name is not recognized in Shelley's 2003 classification. Current Name Old Taxon Name Order Brannerioidea in part Trachyzona Verhoeff, 1913 Chordeumatida Callipodida Lysiopetalida Chamberlin, 1943 Callipodida [Cambaloidea+Spirobolida+ Chorizognatha Verhoeff, 1910 Cambaloidea+Spirobolida+ Spirostreptida] Spirostreptida Chelodesmidea Leptodesmidi Brölemann, 1916 Polydesmida Chelodesmidea Sphaeriodesmidea Jeekel, 1971 Polydesmida Chordeumatida Ascospermophora Verhoeff, 1900 Chordeumatida Chordeumatida Craspedosomatida Jeekel, 1971 Chordeumatida Chordeumatidea Craspedsomatoidea Cook, 1895 Chordeumatida Chordeumatoidea Megasacophora Verhoeff, 1929 Chordeumatida Craspedosomatoidea Cheiritophora Verhoeff, 1929 Chordeumatida Diplomaragnoidea Ancestreumatoidea Golovatch, 1977 Chordeumatida Glomerida Plesiocerata Verhoeff, 1910 Glomerida Hasseoidea Orobainosomidi Brolemann, 1935 Chordeumatida Hasseoidea Protopoda Verhoeff, 1929 Chordeumatida Helminthomorpha Proterandria Verhoeff, 1894 all helminthomorph orders Heterochordeumatoidea Oedomopoda Verhoeff, 1929 Chordeumatida Julida Symphyognatha Verhoeff, 1910 Julida Julida Zygocheta Cook, 1895 Julida [Julida+Spirostreptida] Diplocheta Cook, 1895 Julida+Spirostreptida [Julida in part[ Arthrophora Verhoeff,
    [Show full text]
  • Diversity of Millipedes Along the Northern Western Ghats
    Journal of Entomology and Zoology Studies 2014; 2 (4): 254-257 ISSN 2320-7078 Diversity of millipedes along the Northern JEZS 2014; 2 (4): 254-257 © 2014 JEZS Western Ghats, Rajgurunagar (MS), India Received: 14-07-2014 Accepted: 28-07-2014 (Arthropod: Diplopod) C. R. Choudhari C. R. Choudhari, Y.K. Dumbare and S.V. Theurkar Department of Zoology, Hutatma Rajguru Mahavidyalaya, ABSTRACT Rajgurunagar, University of Pune, The different vegetation type was used to identify the oligarchy among millipede species and establish India P.O. Box 410505 that millipedes in different vegetation types are dominated by limited set of species. In the present Y.K. Dumbare research elucidates the diversity of millipede rich in part of Northern Western Ghats of Rajgurunagar Department of Zoology, Hutatma (MS), India. A total four millipedes, Harpaphe haydeniana, Narceus americanus, Oxidus gracilis, Rajguru Mahavidyalaya, Trigoniulus corallines taxa belonging to order Polydesmida and Spirobolida; 4 families belongs to Rajgurunagar, University of Pune, Xystodesmidae, Spirobolidae, Paradoxosomatidae and Trigoniulidae and also of 4 genera were India P.O. Box 410505 recorded from the tropical or agricultural landscape of Northern Western Ghats. There was Harpaphe haydeniana correlated to the each species of millipede which were found in Northern Western Ghats S.V. Theurkar region of Rajgurunagar. At the time of diversity study, Trigoniulus corallines were observed more than Senior Research Fellowship, other millipede species, which supports the environmental determinism condition. Narceus americanus Department of Zoology, Hutatma was single time occurred in the agricultural vegetation landscape due to the geographical location and Rajguru Mahavidyalaya, habitat differences. Rajgurunagar, University of Pune, India Keywords: Diplopod, Northern Western Ghats, millipede diversity, Narceus americanus, Trigoniulus corallines 1.
    [Show full text]
  • Wild About Learning
    WILD ABOUT LEARNING An Interdisciplinary Unit Fostering Discovery Learning Written on a 4th grade reading level, Wild Discoveries: Wacky New Animals, is perfect for every kid who loves wacky animals! With engaging full-color photos throughout, the book draws readers right into the animal action! Wild Discoveries features newly discovered species from around the world--such as the Shocking Pink Dragon and the Green Bomber. These wacky species are organized by region with fun facts about each one's amazing abilities and traits. The book concludes with a special section featuring new species discovered by kids! Heather L. Montgomery writes about science and nature for kids. Her subject matter ranges from snake tongues to snail poop. Heather is an award-winning teacher who uses yuck appeal to engage young minds. During a typical school visit, petrified parts and tree guts inspire reluctant writers and encourage scientific thinking. Heather has a B.S. in Biology and a M.S. in Environmental Education. When she is not writing, you can find her painting her face with mud at the McDowell Environmental Center where she is the Education Coordinator. Heather resides on the Tennessee/Alabama border. Learn more about her ten books at www.HeatherLMontgomery.com. Dear Teachers, Photo by Sonya Sones As I wrote Wild Discoveries: Wacky New Animals, I was astounded by how much I learned. As expected, I learned amazing facts about animals and the process of scientifically describing new species, but my knowledge also grew in subjects such as geography, math and language arts. I have developed this unit to share that learning growth with children.
    [Show full text]
  • Apheloria Polychroma, a New Species of Millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae) PAUL E. MAREK1*
    Apheloria polychroma, a new species of millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae) PAUL E. MAREK1*, JACKSON C. MEANS1, DEREK A. HENNEN1 1Virginia Polytechnic Institute and State University, Department of Entomology, Blacksburg, Virginia 24061, U.S.A. *Corresponding author, email: [email protected] Abstract Millipedes of the genus Apheloria occur in temperate broadleaf forests throughout eastern North America and west of the Mississippi River in the Ozark and Ouachita Mountains. Chemically defended with toxins made up of cyanide and benzaldehyde, the genus is part of a community of xystodesmid millipedes that compose several Müllerian mimicry rings in the Appalachian Mountains. We describe a model species of these mimicry rings, Apheloria polychroma n. sp., one of the most variable in coloration of all species of Diplopoda with more than six color morphs, each associated with a separate mimicry ring. Keywords: aposematic, Appalachian, Myriapoda, taxonomy, systematics Introduction Millipedes in the family Xystodesmidae are most diverse in the Appalachian Mountains where about half of the family’s species occur. In the New World, the family is distributed throughout eastern and western North America and south to El Salvador (Marek et al. 2014, Marek et al. 2017). Xystodesmidae occur in the Old World in the Mediterranean, the Russian Far East, Japan, western and eastern China, Taiwan and Vietnam. Taxa include species that are bioluminescent (genus Motyxia) and highly gregarious (genera Parafontaria and Pleuroloma); some form Müllerian mimicry rings. Despite their fascinating biology and critical ecological function as native decomposers in broadleaf deciduous forests in the U.S., their alpha-taxonomy is antiquated, and scores of new species remain undescribed.
    [Show full text]
  • Apheloria Polychroma, a New Species of Millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae)
    Zootaxa 4375 (3): 409–425 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4375.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:10892E3E-B6E5-4118-8E15-CA1B10ADCCA9 Apheloria polychroma, a new species of millipede from the Cumberland Mountains (Polydesmida: Xystodesmidae) PAUL E. MAREK1,2, JACKSON C. MEANS1 & DEREK A. HENNEN1 1Virginia Polytechnic Institute and State University, Department of Entomology, Blacksburg, Virginia 24061, U.S.A. 1Corresponding author. E-mail: [email protected] Abstract Millipedes of the genus Apheloria Chamberlin, 1921 occur in temperate broadleaf forests throughout eastern North Amer- ica and west of the Mississippi River in the Ozark and Ouachita Mountains. Chemically defended with toxins made up of cyanide and benzaldehyde, the genus is part of a community of xystodesmid millipedes that compose several Müllerian mimicry rings in the Appalachian Mountains. We describe a model species of these mimicry rings, Apheloria polychroma n. sp., one of the most variable in coloration of all species of Diplopoda with more than six color morphs, each associated with a separate mimicry ring. Keywords: aposematic, Appalachian, Myriapoda, taxonomy, systematics Introduction Millipedes in the family Xystodesmidae are most diverse in the Appalachian Mountains where about half of the family’s species occur. In the New World, the family is distributed throughout eastern and western North America and south to El Salvador (Marek et al. 2014, Marek et al. 2017). Xystodesmidae occur in the Old World in the Mediterranean, the Russian Far East, Japan, western and eastern China, Taiwan and Vietnam.
    [Show full text]
  • Diplopoda: Polydesmida) from Vietnam
    Polydesmidae in Vietnam 63 International Journal of Myriapodology 1 (2009) 63-68 Sofi a–Moscow A new species of the family Polydesmidae (Diplopoda: Polydesmida) from Vietnam Nguyen Duc Anh Institute of Ecology and Biological Resources, 18, Hoangquocviet Rd., Caugiay, Hanoi, Vietnam. E-mail: [email protected] / [email protected] Abstract Polydesmus vietnamicus sp. nov. is described from northern Vietnam. Th e new species is closely related to a geographically relatively remote congener P. liber Golovatch, 1991, from Hong Kong, China, diff ering in minor details of gonopod structure. Keywords Vietnam, Polydesmidae, Polydesmus, new species Introduction Polydesmidae is almost strictly Holarctic, encompassing more than 60 nominal genera or subgenera and nearly 400 species and subspecies (Hoff man 1980, Golovatch 1991). Most species are found in the Mediterranean area, whereas Central and East Asia, as well as the entire Nearctic region, have lower generic, and to a lesser degree, species diversity (Golovatch 1991, Djursvoll et al. 2001). Larger species of Polydesmidae seem to be particularly rare in Asia. Th e family is only represented there by a few species of the diverse, mainly East Asian genus Epanerchodus Attems, 1901 from southern and eastern China, Japan and the Korean peninsula (Golovatch 1991, Murakami 1968, Mikhaljova & Lim 2006); by three species of Pacidesmus Golovatch, 1991 in southern China and one more in northern Th ailand (Golovatch 1991, Golovatch & Geoff roy 2006); and by one species each in Usbekodesmus Lohmander, 1933 and Polydesmus Latreille, 1802/1803 from southern China (Golovatch 1991, Geoff roy & Golovatch 2004, Golovatch & Geoff roy 2006, Golovatch et al. 2007). Unlike Pacidesmus which seems to be endemic to the East © Koninklijke Brill NV and Pensoft, 2009 DOI: 10.1163/187525409X462421 Downloaded from Brill.com09/28/2021 09:39:46PM via free access 64 Nguyen Duc Anh / International Journal of Myriapodology 1 (2009) 63-68 Asian region, Usbekodesmus also has several species in Central Asia and the Hima- layas of Nepal.
    [Show full text]
  • Curriculum Vitae (PDF)
    CURRICULUM VITAE Steven J. Taylor April 2020 Colorado Springs, Colorado 80903 [email protected] Cell: 217-714-2871 EDUCATION: Ph.D. in Zoology May 1996. Department of Zoology, Southern Illinois University, Carbondale, Illinois; Dr. J. E. McPherson, Chair. M.S. in Biology August 1987. Department of Biology, Texas A&M University, College Station, Texas; Dr. Merrill H. Sweet, Chair. B.A. with Distinction in Biology 1983. Hendrix College, Conway, Arkansas. PROFESSIONAL AFFILIATIONS: • Associate Research Professor, Colorado College (Fall 2017 – April 2020) • Research Associate, Zoology Department, Denver Museum of Nature & Science (January 1, 2018 – December 31, 2020) • Research Affiliate, Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign (16 February 2018 – present) • Department of Entomology, University of Illinois at Urbana-Champaign (2005 – present) • Department of Animal Biology, University of Illinois at Urbana-Champaign (March 2016 – July 2017) • Program in Ecology, Evolution, and Conservation Biology (PEEC), School of Integrative Biology, University of Illinois at Urbana-Champaign (December 2011 – July 2017) • Department of Zoology, Southern Illinois University at Carbondale (2005 – July 2017) • Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana- Champaign (2004 – 2007) PEER REVIEWED PUBLICATIONS: Swanson, D.R., S.W. Heads, S.J. Taylor, and Y. Wang. A new remarkably preserved fossil assassin bug (Insecta: Heteroptera: Reduviidae) from the Eocene Green River Formation of Colorado. Palaeontology or Papers in Palaeontology (Submitted 13 February 2020) Cable, A.B., J.M. O’Keefe, J.L. Deppe, T.C. Hohoff, S.J. Taylor, M.A. Davis. Habitat suitability and connectivity modeling reveal priority areas for Indiana bat (Myotis sodalis) conservation in a complex habitat mosaic.
    [Show full text]
  • On Mass Migrations in Millipedes Based on A
    ZOOLOGICAL RESEARCH New observations - with older ones reviewed - on mass migrations in millipedes based on a recent outbreak on Hachijojima (Izu Islands) of the polydesmid diplopod (Chamberlinius hualienensis, Wang 1956): Nothing appears to make much sense Victor Benno MEYER-ROCHOW1,2,* 1 Research Institute of Luminous Organisms, Hachijo, 2749 Nakanogo (Hachijojima), Tokyo, 100-1623, Japan 2 Department of Biology (Eläinmuseo), University of Oulu, SF-90014 Oulu, P.O. Box 3000, Finland ABSTRACT individuals occurring together at close proximity. It is concluded that mass migrations and aggregations in Mass aggregations and migrations of millipedes millipedes do not have one common cause, but despite numerous attempts to find causes for their represent phenomena that often are seasonally occurrences are still an enigma. They have been recurring events and appear identical in their reported from both southern and northern outcome, but which have evolved as responses to hemisphere countries, from highlands and lowlands different causes in different millipede taxa and of both tropical and temperate regions and they can therefore need to be examined on a case-to-case involve species belonging to the orders Julida and basis. Spirobolida, Polydesmida and Glomerida. According Keywords: Myriapoda; Spawning migration; Aggregation to the main suggestions put forward in the past, 1 mass occurrences in Diplopoda occur: (1) because behaviour; Diplopod commensals and parasites of a lack of food and a population increase beyond sustainable levels; (2) for the purpose of INTRODUCTION reproduction and in order to locate suitable oviposition sites; (3) to find overwintering or Mass aggregations of millipedes are not a recent phenomenon aestivation sites; (4) because of habitat disruption (Hopkin & Read, 1992).
    [Show full text]
  • This File Was Created by Scanning the Printed Publication. Text Errors Identified by the Software Have Been Corrected
    IBiJ BRILL TerrestrialArthropod Reviews 4 (2011) 203-220 brill.nlttar Habitats and seasonality of riparian-associated millipedes in southwest Washington, USA Alex D. Foster* and Shannon M. Claeson USDA Forest Service, PNW Research Station, 3625 93rd Avenue SW; Olympia, Washington 98512, USA *Corresponding author; e-mail: [email protected] Received: 12 May 2011; accepted: 9 June 2011 Summary Millipedes are a diverse and ancient group of poorly known terrestrial organisms. While recent advances in their taxonomy and distribution have occurred in some areas of the world, our knowledge about the distribution and ecology of many taxa in the Pacific Northwest is limited. We review the ecology of taxa we observed and present results from a fieldstudy relating millipede abundance and community composi­ tion to enviroumental conditions of geology, vegetation, and climate. Millipedes of southwest Washington State were surveyed in the spring and fall of 2005 and 2006 along twelve headwater streams in forested landscapes. Overall, we observed 10 families of millipedes, with confirmed identification of 15 species. Millipede community composition differed strongly between seasons and across sites. For each season, we report family-specificmultiple regressions relating millipede abundance/presence to environmental condi­ tions. Given the ecological importance of millipedes as detritivores, more information on taxonomy and environmental relationships is needed. This research provides insight into the parterns and distribution of riparian-associated millipedes in the PacificNorthwest. © Koninklijke Brill NY, Leiden, 2011 Keywords Diplopoda; ecology; Pacific Northwest; riparian; biodiversity; detritivore Introduction Millipedes, as detritivores, feed on decaying plant material and, as they are adapted for burrowing in the substrate, contribute to soil nutrient and mineral cycling.
    [Show full text]
  • United States National Museum ^^*Fr?*5J Bulletin 212
    United States National Museum ^^*fr?*5j Bulletin 212 CHECKLIST OF THE MILLIPEDS OF NORTH AMERICA By RALPH V. CHAMBERLIN Department of Zoology University of Utah RICHARD L. HOFFMAN Department of Biology Virginia Polytechnic Institute SMITHSONIAN INSTITUTION • WASHINGTON, D. C. • 1958 Publications of the United States National Museum The scientific publications of the National Museum include two series known, respectively, as Proceedings and Bulletin. The Proceedings series, begun in 1878, is intended primarily as a medium for the publication of original papers based on the collections of the National Museum, that set forth newly acquired facts in biology, anthropology, and geology, with descriptions of new forms and revisions of limited groups. Copies of each paper, in pamphlet form, are distributed as published to libraries and scientific organizations and to specialists and others interested in the different subjects. The dates at which these separate papers are published are recorded in the table of contents of each of the volumes. The series of Bulletins, the first of which was issued in 1875, contains separate publications comprising monographs of large zoological groups and other general systematic treatises (occasionally in several volumes), faunal works, reports of expeditions, catalogs of type specimens, special collections, and other material of similar nature. The majority of the volumes are octavo in size, but a quarto size has been adopted in a few in- stances. In the Bulletin series appear volumes under the heading Contribu- tions from the United States National Herbarium, in octavo form, published by the National Museum since 1902, which contain papers relating to the botanical collections of the Museum.
    [Show full text]
  • Daily Activities of the Giant Pill-Millipede Zephronia Cf
    Zoological Studies 51(7): 913-926 (2012) Daily Activities of the Giant Pill-Millipede Zephronia cf. viridescens Attems, 1936 (Diplopoda: Sphaerotheriida: Zephroniidae) in a Deciduous Forest in Northern Thailand Nattarin Wongthamwanich1,2, Somsak Panha1,2, Duangkhae Sitthicharoenchai1,2, Art-ong Pradatsundarasar1,2, Tosak Seelanan1,3, Henrik Enghoff4, and Kumthorn Thirakhupt1,2,* 1Biological Science Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 3Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 4Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15,0 Copenhagen DK-210, Denmark (Accepted July 25, 2012) Nattarin Wongthamwanich, Somsak Panha, Duangkhae Sitthicharoenchai, Art-ong Pradatsundarasar, Tosak Seelanan, Henrik Enghoff, and Kumthorn Thirakhupt (2012) Daily activities of the giant pill-millipede Zephronia cf. viridescens Attems, 1936 (Diplopoda: Sphaerotheriida: Zephroniidae) in a deciduous forest in northern Thailand. Zoological Studies 51(7): 913-926. For the 1st time in the order Sphaerotheriida, daily activities of the giant pill-millipede Zephronia cf. viridescens Attems, 1936 (family Zephroniidae) were studied. In 2009 and 2010, an investigation was conducted during the rainy season (May-Sept.), the period when millipedes are most active, in a deciduous forest at Wiang Sa District, Nan Province, Thailand. From a total of 20 observation periods of 1 d each, 16 males and 23 females were marked with acrylic paint on the anal shield, and each was optically observed in its natural habitat every 30 min for 24 h. Key visually discernible activities of each individual, such as feeding, walking, mating, and resting, were recorded.
    [Show full text]
  • Millipedes Made Easy
    MILLI-PEET, Introduction to Millipedes; Page - 1 - Millipedes Made Easy A. Introduction The class Diplopoda, or the millipedes, contains about 10,000 described species. The animals have a long distinguished history on our planet, spanning over 400 million year. Their ecological importance is immense: the health and survival of every decidu- ous forest depends on them, since they are one of the prime mechanical decomposers of wood and leaf litter, especially in the tropics. Despite their importance they are very poorly known and have long been neglected in all areas of biological research. Even basic identification of specimens is a challenge. We hope to make millipede identification accessible to many. The first challenge may be to distinguish a millipede from other members of the Myriapoda. Section B demonstrates the differences between the four myriapod groups. Section C provides a very short introduction to millipede morphology. Section D lists a number of tips on how to deal with millipede specimens under the dissecting scope. The illustrated identification key to orders can be found in the section: Key to Orders in several languages. The key was constructed with purely practical considerations in mind. We tried to use characters that are easy to recognize and will allow non-millipede specialists to find the right path to the order quickly. Several couplets are not dichotomous, but are organized on the multiple choice principle: discrete, mutually exclusive alternative characters are listed and the user must choose one of them. After you have become familiar with the identifying features, you may often just use the flow chart at the end of the Identification Key to identify a millipede to order.
    [Show full text]