The Mesozoic Corals. Bibliography 1758-1993
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trace Fossils from the Baltoscandian Erratic Boulders in Sw Poland
Annales Societatis Geologorum Poloniae (2017), vol. 87: 229–257 doi: https://doi.org/10.14241/asgp.2017.014 TRACE FOSSILS FROM THE BALTOSCANDIAN ERRATIC BOULDERS IN SW POLAND Alina CHRZĄSTEK & Kamil PLUTA Institute of Geological Sciences, Wrocław University; Maksa Borna 9, 50-204 Wrocław, Poland e-mails: [email protected], [email protected] Chrząstek, A. & Pluta, K, 2017. Trace fossils from the Baltoscandian erratic boulders in SW Poland. Annales Societatis Geologorum Poloniae, 87: 229–257. Abstract: Many well preserved trace fossils were found in erratic boulders and the fossils preserved in them, occurring in the Pleistocene glacial deposits of the Fore-Sudetic Block (Mokrzeszów Quarry, Świebodzice outcrop). They include burrows (Arachnostega gastrochaenae, Balanoglossites isp., ?Balanoglossites isp., ?Chondrites isp., Diplocraterion isp., Phycodes isp., Planolites isp., ?Rosselia isp., Skolithos linearis, Thalassinoides isp., root traces) and borings ?Gastrochaenolites isp., Maeandropolydora isp., Oichnus isp., Osprioneides kamp- to, ?Palaeosabella isp., Talpina isp., Teredolites isp., Trypanites weisei, Trypanites isp., ?Trypanites isp., and an unidentified polychaete boring in corals. The boulders, Cambrian to Neogene (Miocene) in age, mainly came from Scandinavia and the Baltic region. The majority of the trace fossils come from the Ordovician Orthoceratite Limestone, which is exposed mainly in southern and central Sweden, western Russia and Estonia, and also in Norway (Oslo Region). The most interesting discovery in these deposits is the occurrence of Arachnostega gastrochaenae in the Ordovician trilobites (?Megistaspis sp. and Asaphus sp.), cephalopods and hyolithids. This is the first report ofArachnostega on a trilobite (?Megistaspis) from Sweden. So far, this ichnotaxon was described on trilobites from Baltoscandia only from the St. -
The Cretaceous Corals from the Bisbee Group (Sonora; Late Barremian - Early Albian): Solenocoeniidae
Cretaceous corals from the Bisbee Group 13 Paleontología Mexicana Volumen 4, núm. 2, 2015, p. 13-24 The Cretaceous corals from the Bisbee Group (Sonora; Late Barremian - Early Albian): Solenocoeniidae Hannes Lösera,* a Instituto de Geología, Estación Regional del Noroeste, Universidad Nacional Autónoma de México, Blvd. L. D. Colosio S/N y Madrid, Col. Los Arcos, 83250 Hermosillo, Sonora, México. * [email protected] Abstract The current work constitutes the third part of the systematic revision about the corals from the Bisbee Group (Late Barremian to Early Albian) and deals with the Solenocoeniidae. This family taxon is applied instead of the poorly defined Cyathophoridae. The family has three genera in the Cretaceous of Sonora: Confusaforma, Cryptocoenia, and Cyathophoropsis. To distinguish samples within the Sonoran fauna and species of this genus, systematic measurements of the corals were taken and statistically analysed. From the Bisbee Group, two Confusaforma, six Cryptocoenia, and one Cyathophoropsis species are here described and illustrated. Most are common Early Cretaceous species with a wide geographic and stratigraphic distribution. Keywords: corals, Scleractinia, Early Cretaceous, Bisbee Group. Resumen El presente trabajo constituye la tercera parte de la revisión sistemática de los corales del Grupo Bisbee (Barremiano temprano a Aptiano tardío), la cual trata sobre la familia Solenocoeniidae, que se ha aplicado en lugar de la familia Cyathophoridae la cual se encuentra mal definida. La familia tiene tres géneros en el Cretácico de Sonora: Confusaforma, Cryptocoenia y Cyathophoropsis. Para distinguir las muestras dentro de la fauna y las especies del género se hicieron mediciones sistemáticas de los corales y se analizaron estadísticamente. -
Microstructural Evidence of the Stylophyllid Affinity of the Genus Cyathophora (Scleractinia, Mesozoic)
Annales Societatis Geologorum Poloniae (2016), vol. 86: 1–16. doi: http://dx.doi.org/10.14241/asgp.2015.023 MICROSTRUCTURAL EVIDENCE OF THE STYLOPHYLLID AFFINITY OF THE GENUS CYATHOPHORA (SCLERACTINIA, MESOZOIC) El¿bieta MORYCOWA1 & Ewa RONIEWICZ2 1 Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-630 Kraków, Poland; e-mail: [email protected] 2 Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 01-818 Warszawa, Poland; e-mail: [email protected] Morycowa, E. & Roniewicz, E., 2016. Microstructural evidence of the stylophyllid affinity of the genus Cyatho- phora (Scleractinia, Mesozoic). Annales Societatis Geologorum Poloniae, 86: 1–16. Abstract: The genus Cyathophora Michelin, 1843 (Cyathophoridae) is removed from the suborder Stylinina Alloiteau, 1952 and transferred to the Stylophyllina Beauvais, 1980. Morphologically, it differs from stylinine corals in that rudimentary septa are developed in the form of ridges or spines on the wall and may continue onto the endothecal elements as amplexoid septa. Relics of primary aragonite microstructure, preserved in silicified colonies of Cyathophora steinmanni Fritzsche, 1924 (Barremian–early Aptian) and in a calcified colony of C. richardi Michelin, 1843 (middle Oxfordian), indicate a non-trabecular structure of their skeletons. The scleren- chyme of radial elements is differentiated into fascicles of fibres, and in the form of fascicles or a non-differen- tiated layer of fibres, it continues as the upper part of endothecal elements and as the incremental layers of the wall. A micro-lamellation of the skeleton corresponds to the accretionary mode of skeleton growth found in Recent corals. A similarity between the septal microstructure of Cyathophora and that of the stylophyllid genera, the Triassic Anthostylis Roniewicz, 1989 and the Triassic–Early Jurassic Stylophyllopsis Frech, 1890, is interpre- ted as a result of their being phylogenetically related. -
Late Jurassic Reef Bioerosion – the Dawning of a New Era
Late Jurassic reef bioerosion – the dawning of a new era MARKUS BERTLING Bertling, M.: Late Jurassic reef bioerosion - the dawning of a new era. Bulletin of the Geological Society of Denmark, Vol. 45, pp. 173–176. Copenhagen 1999– 01–30. Coral reefs of the Late Jurassic (Oxfordian) in northern Germany and France have a style of bioerosion that is closer to that of Late Triassic reefs than of modern ones. Boring sponges played minor roles here but gradually became more important in more southerly regions during the Tithonian. This is likely to be linked to a falling sea-level whose increased nutrient input triggered microbial growth in shallow water. With sponges feeding on microbes, the Late Jurassic was the time of a change to modern borer associations in reefs. Key words: Bioerosion, reefs, Jurassic, nutrients, sponges. M. Bertling [[email protected]], Geologisch-Paläontologisches Museum, Pferdegasse 3, D - 48143 Münster, Germany. 1 September 1998. The bioerosion of modern reefs is characterised by vironment has been documented before (Bertling the prevalent action of grazing sea urchins and fishes; 1993; Bertling & Insalaco 1998). The study sites (Fig. clionid sponges generally are the most important 1) are similar in depth (0–20 m) as well as climatic, macroborers, with lithophagine bivalves and micro- nutrient and salinity conditions but represent various polychaetes being locally abundant (e.g. Hutchings environments regarding water energy and sedimenta- 1986). Neither Lithophaginae nor sponges of the fam- tion (including turbidity): a high-energy coral-micro- ily Clionidae (or related forms) have been reported bial reef (Novion-Porcien NP), an occurrence within from reefs older than Late Triassic age (own observa- permanently turbulent water with slight intermittent tions); and grazing reef fish families only originated (storm) sedimentation (Luchsholklippe LU), a deep- in the Eocene (Bellwood 1996). -
Experiential Training in Florida and the Florida Keys. a Pretrip Training Manual
DOCUMENT RESUME ED 341 547 SE 052 352 AUTHOR Baker, Claude D., Comp.; And Others TITLE Experiential Training in Florida and the Florida Keys. A Pretrip Training Manual. PUB DATE May 91 NOTE 82p.; For field trip guidelines, see ED 327 394. PUB TYPE Guides - Non-Classroom Use (055) -- Guides - Classroom Use - Teaching Guides (For Teacher)(052) EDRS PRICE MF01/PC04 Plus Postage. DESCRIPTORS Animals; Classification; *Ecology; Environmental Education; Estuaries; *Field Trips; Higher Educatioa; Ichthyology; *Marine Biology; Plant Identification; Plants (Botany); *Resource Materials; Science Activities; Science Education; Secondary Education IDENTIFIERS Coral Reefs; Dichotomous Keys; *Florida ABSTRACT This document is a pretrip instruction manual that can be used by secondary school and college teachers who are planning trips to visit the tropical habitats in South Florida. The material is divided into two parts:(1) several fact sheets on the various habitats in South Florida; and (2) a number of species lists for various areas. Factsheets on the classification of marine environments, the zones of the seashore, estuaries, mangroves, seagrass meadows, salt marshes, and coral reefs are included. The species lists included algae, higher plants, sponges, worms, mollusks, bryozoans, arthropods, echinoderms, vertebrates,I insects, and other invertebrates. The scientific name, common name, and a brief description are supplied for all species. Activities on the behavior and social life of fish, a dichotomous key for seashells, and a section that lists -
Paleoecology ...Of ... Reefs from the Late Jurassic
Project: Le “Vergleichende Palokologie und Faziesentwicklung oberjurassischer Riffstrukturen des westlichen Tethys-Nordrandes * und des Lusitanischen Beckens (Zentraiportugal)/E, Project Leader: R. Leinfelder (Stuttgart) . Paleoecology, Growth Parameters and Dynamics of Coral, Sponge and Microbolite Reefs from the Late Jurassic Reinhold R. Werner, Martin Nose, Dieter U. Schmid, Laternser, Martin Takacs & Dorothea Area of Study: Portugal, Spain, Southern Germany, France, Poland Environment: Shallow to deep carbonate platforms Stratigraphy: Late Jurassic Organisms: Corals, siliceous sponges, microbes, microen- crusters Depositional Setting: Brackish-lagoonal to deep ramp set- tings Constructive Processes: Frame-building, baffling and binding (depending on reef type and type of reef- building organisms) Destructive Processes: Borings by bivalves and sponges; wave action Preservation: Mostly well preserved Research Topic: Comparative facies analysis and paleo- ecology of Upper Jurassic reefs, reef organisms and communities Spongiolitic facies Fig. I: Distribution of Upper Jurassic reefs studied in detail. Abstract framework and pronounced relief whenever microbolite crusts provided stabilization. Reefs in steepened slope set- Reefs from the Late Jurassic comprise various types of tings are generally rich in microbolites because of bypass coral reefs, siliceous sponge reefs and microbolite reefs. possibilities for allochthonous sediment. Reef rimmed shal- Upper Jurassic corals had a higher ratio of heterotrophic low-water platforms did occur but only developed on pre- versus autotrophic energy uptake than modern ones, which existing uplifts. Upper Jurassic sponge-microbolite mud explains their frequent occurrence in terrigenous settings. mounds grew in subhorizontal mid to outer ramp settings Coral communities changed along a bathymetric gradient and reflect a delicate equilibrium of massive and peloidal but sedimentation exerted a stronger control on diversities microbolite precipitation and accumulation of allochthonous than bathymetry. -
A Brief Review of the Stony Coral (Cnidaria: Anthozoa: Scleractinia) Papers Published by Zootaxa in Its First 20 Years
Zootaxa 4979 (1): 212–214 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Correspondence ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.19 http://zoobank.org/urn:lsid:zoobank.org:pub:EB14E6FA-91DC-43FE-BE00-05462DBBB0CC A brief review of the stony coral (Cnidaria: Anthozoa: Scleractinia) papers published by Zootaxa in its first 20 years STEPHEN D. CAIRNS1 & ROSEMARIE C. BARON-SZABO1,2 1 Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, USA; [email protected]; https://orcid.org/0000-0001-7209-9271 2 Senckenberg Research Institute, Frankfurt/Main, Germany; Corresponding author: [email protected]; https://orcid.org/0000-0002-6439-5334 Abstract In the 20 year history of Zootaxa, thirty-two papers have been published having Scleractinia as its primary focus. Twenty- four of the 32 scleractinian papers deal with Recent taxa, most of which belonging to shallow-water, reef corals. The 8 publications dealing with fossil Scleractinia include 3 monographic works, three papers discussing nomenclatural issues of individual taxa, and 2 papers deal with various aspects of select genera. Since its launch in 2001, thirty-two papers having Scleractinia as its primary focus have been published in Zootaxa. This constitutes about 0.10% of the papers published by Zootaxa. Scleractinian papers were not published in the first three years of Zootaxa history or in 2014 or 2019. Otherwise, papers have been published in all other years, 2013 being the peak year, with four papers. For our analysis, scleractinian papers have been divided into those pertaining to Recent (living) species and those that are exclusively fossil. -
Newsletter Number 86
The Palaeontology Newsletter Contents 86 Editorial 2 Association Business 3 Outreach and Education Grants 27 Association Meetings 28 From our correspondents Darwin’s diffidence 33 R for palaeontologists: Introduction 2 40 Future meetings of other bodies 48 Meeting Reports 55 Obituary Dolf Seilacher 64 Sylvester-Bradley reports 67 Outside the Box: independence 80 Publicity Officer: old seas, new fossils 83 Book Reviews 86 Books available to review 90 Palaeontology vol 57 parts 3 & 4 91–92 Special Papers in Palaeontology 91 93 Reminder: The deadline for copy for Issue no 87 is 13th October 2014. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 86 2 Editorial You know you are getting pedantic when you find yourself reading the Constitution of the Palaeontological Association, but the third article does serve as a significant guide to the programme of activities the Association undertakes. The aim of the Association is to promote research in Palaeontology and its allied sciences by (a) holding public meetings for the reading of original papers and the delivery of lectures, (b) demonstration and publication, and (c) by such other means as the Council may determine. Council has taken a significant step under categories (b) and (c) above, by committing significant funds, relative to spending on research and travel, to Outreach and Education projects (see p. 27 for more details). This is a chance for the membership of the Association to explore a range of ways of widening public awareness and participation in palaeontology that is led by palaeontologists. Not by universities, not by research councils or other funding bodies with broader portfolios. -
A New Coral Fauna from the Campanian of Northern Spain (Torallola Village, Prov
Geol. Paläont. Mitt. Innsbruck, ISSN 0378-6870, Band 23, S. 127-191, 1998 A NEW CORAL FAUNA FROM THE CAMPANIAN OF NORTHERN SPAIN (TORALLOLA VILLAGE, PROV. LLEIDA) Rosemarie C. Baron-Szabo With 4 figures, 5 tables and 12 plates Abstract: A new coral fauna is described from the Puimanyons Olisthostrome Member of the Vallcarga Formation (Campanian) in the Torallola area, north Spain. Taxonomic diversity is emphasized by the appearance of 36 genera belonging to 2 orders and 9 suborders. Four species are new: Placophyllia bandeli n. sp., Barysmilia iberica n. sp., Latohelia circularia n. sp., and Gyrodendron leptonema n. sp.. Within the European Province the coral fauna from Torallola represents one of its most complex Campanian coral communities. Zusammenfassung: Vom Puimayons Olisthostrom Member der Vallcarga Formation (Campan), bei Torallola, Nordspanien, wird erstmalig eine Korallenfauna beschrieben. Ihre taxonomische Diversität wird durch das Auftreten von 36 Gattungen, welche 2 Ordnungen und 9 Unterordnungen entstammen, aufgezeigt. Vier Arten werden neu beschrieben: Placophyllia bandeli n. sp., Barysmilia iberica n. sp., Latohelia circularia n. sp. und Gyrodendron leptonema n. sp.. Innerhalb der europäischen Provinz stellt die Korallenfauna von Torallola eine der komplexesten Korallenvergesellschaftungen des Campan dar. 1. Introduction Cretaceous have been reported, mainly of Turon- ian to Santonian or Maastrichtian age (e.g. BA- In the European Province (BARON-SZABO, TALLER, 1936, 1937; ROSELL, 1967; PONS, 1973; 1997) during the Late Cretaceous coral assem- VIDAL, 1980; REIGORIOL, 1989,1992). blages became more and more restricted to local- This paper presents data complementary to that ities in central and southern regions (e.g. TURNSEK, of the working group of K. -
Evolutionary Trends in the Epithecate Scleractinian Corals
Evolutionary trends in the epithecate scleractinian corals EWA RONIEWICZ and JAROSEAW STOLARSKI Roniewicz, E. & Stolarski, J. 1999. Evolutionary trends in the epithecate scleractinian corals. -Acta Palaeontologica Polonica 44,2, 131-166. Adult stages of wall ontogeny of fossil and Recent scleractinians show that epitheca was the prevailing type of wall in Triassic and Jurassic corals. Since the Late Cretaceous the fre- quency of epithecal walls during adult stages has decreased. In the ontogeny of Recent epithecate corals, epitheca either persists from the protocorallite to the adult stage, or is re- placed in post-initial stages by trabecular walls that are often accompanied by extra- -calicular skeletal elements. The former condition means that the polyp initially lacks the edge zone, the latter condition means that the edge zone develops later in coral ontogeny. Five principal patterns in wall ontogeny of fossil and Recent Scleractinia are distinguished and provide the framework for discrimination of the four main stages (grades) of evolu- tionary development of the edge-zone. The trend of increasing the edge-zone and reduction of the epitheca is particularly well represented in the history of caryophylliine corals. We suggest that development of the edge-zone is an evolutionary response to changing envi- ronment, mainly to increasing bioerosion in the Mesozoic shallow-water environments. A glossary is given of microstructural and skeletal terms used in this paper. Key words : Scleractinia, microstructure, thecal structures, epitheca, phylogeny. Ewa Roniewicz [[email protected]]and Jarostaw Stolarski [[email protected]], Instytut Paleobiologii PAN, ul. Twarda 51/55, PL-00-818 Warszawa, Poland. In Memory of Gabriel A. -
University of Nevada Reno Paleoecology of Upper Triassic
University of Nevada Reno Paleoecology of Upper Triassic Bioherms in the Pilot Mountains, Mineral County, West-Central Nevada A tiles is submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Diane Elinor Cornwall May 1979 University of Nevada Reno ACKNOWLEDGEMENTS I would like to thank Dr. James R. Firby for his supervision, support and for his guidance through those difficult "rough spots." Dan Howe was a constant source of interesting ideas and enthusiasm, especially during the early stages of the thesis project. Throughout my research Fred Gustafson and I worked together, he always being an interested and understanding coworker and friend throughout the lonely weeks of research. Dr. Joseph Lintz, Jr. was invaluable in his assistance in procurement of materials and equipment and in his unselfish desire to solve any problem. I thank Dr. Mead for joining my committee. I greatly appreciate those hearty souls who ventured out into the desert with me and braved the hazards and extremes; these include Barbara Foster, Mickie Dunn, Micheal Judge and my parents who spent all their vacations in my field area. I would also like to acknowledge the moral support given by my parents, special and other friends. i n ABSTRAC In the Pilot Mountains, Mineral County, Nevada, up to five horizons of bioherms are present within the top 76 meters of the lower member of the Upper Triassic (Karnian) Luning Formation. These bio herms are located in the carbonate portions of small terrigenous- carbonate rhythms. The biohermal mounds, less than 15 meters high^exhibit four of Wilson's (1975) seven facies. -
Colonial Corals from the Early Aptian Siliciclastic Montlivaltia Marls of Jumilla (Murcia, Spain)
CORALS FROM EARLY APTIAN OF JUMILLA COLONIAL CORALS FROM THE EARLY APTIAN SILICICLASTIC Montlivaltia MARLS OF JUMILLA (MURCIA, SPAIN) Hannes LÖSER and José Carlos SALDAÑA VILLodre 2 Estación Regional del Noroeste, Instituto de Geología, Universidad Nacional Autónoma de México, Blvd. Luis Donaldo Colosio S/N y Madrid, Campus UNISON, 83000 Hermosillo, Sonora, México; [email protected] 2 C / Dr. Fleming 46 2° B, 03690 San Vicente del Raspeig, España; [email protected] Löser, H. & Saldaña Villodre, J. C. 2008. Colonial corals from the Early Aptian siliciclastic Montlivaltia Marls of Jumilla (Murcia, Spain). [Corales coloniales del Aptiense Temprano de las margas siliciclásticas de Montlivaltia de Jumilla (Murcia, España).] Revista Española de Paleontología, 23 (), -6. ISSN 023-6937. ABSTRACT Three species of colonial scleractinian corals are reported from Early Aptian sandy marls of the so-called Montlivaltia marls from a section exposed on the SE flank of the Sierra de Sopalmo, south of Jumilla in Murcia, Spain. While solitary corals of the genus Montlivaltia are extremely common in the marls, colonial corals are rare. The three colonial coral species presented here (Cryptocoenia sp. n. aff. C. pygmaea, Holocystis elegans, and Columnocoenia aragonensis) are all common Early Cretaceous species. They range in age from the late Bar- remian to early Albian with the exception of Columnocoenia aragonensis, which ranges from the Valanginian to Cenomanian. Their geographical distribution is large and all species were found in the central Tethys as well as in the Caribbean province. All species were previously found in siliciclastic environments and while Holocystis elegans occurs primarily in such facies, the other two species occur in pure carbonates as well.