ISSN 1050-5164 (print) ISSN 2168-8737 (online) THE ANNALS of APPLIED PROBABILITY

AN OFFICIAL JOURNAL OF THE INSTITUTE OF MATHEMATICAL

Articles Social contact processes and the partner model ERIC FOXALL,RODERICK EDWARDS AND P. VA N D E N DRIESSCHE 1297 Diverse market models of competing Brownian particles with splits andmergers...... IOANNIS KARATZAS AND ANDREY SARANTSEV 1329 A positive temperature phase transition in random hypergraph 2-coloring VICTOR BAPST,AMIN COJA-OGHLAN AND FELICIA RASSMANN 1362 Propagation of chaos for interacting particles subject to environmental noise MICHELE COGHI AND FRANCO FLANDOLI 1407 Approximations of stochastic partial differential equations GIULIA DI NUNNO AND TUSHENG ZHANG 1443 Local asymptotics for controlled martingales SCOTT N. ARMSTRONG AND OFER ZEITOUNI 1467 Stein estimation of the intensity of a spatial homogeneous Poisson MARIANNE CLAUSEL,JEAN-FRANÇOIS COEURJOLLY AND JÉRÔME LELONG 1495 A probabilistic approach to mean field games with major and minor players RENÉ CARMONA AND XIUNENG ZHU 1535 Estimation for stochastic damping Hamiltonian systems under partial observation. III. Diffusionterm.... PATRICK CATTIAUX,JOSÉ R. LEÓN AND CLÉMENTINE PRIEUR 1581 From transience to recurrence with Poisson tree frogs CHRISTOPHER HOFFMAN,TOBIAS JOHNSON AND MATTHEW JUNGE 1620 Bernoulli and tail-dependence compatibility PAUL EMBRECHTS,MARIUS HOFERT AND RUODU WANG 1636 Beyond universality in random matrix theory ALAN EDELMAN,A.GUIONNET AND S. PÉCHÉ 1659 Super-replication with nonlinear transaction costs and volatility uncertainty PETER BANK,YAN DOLINSKY AND SELIM GÖKAY 1698 ThesnappingoutBrownianmotion...... ANTOINE LEJAY 1727 Backward stochastic differential equation driven by a marked point process: An elementary approach with an application to optimal control FULVIA CONFORTOLA,MARCO FUHRMAN AND JEAN JACOD 1743 Entropic Ricci curvature bounds for discrete interacting systems MAX FATHI AND JAN MAAS 1774 Hack’s law in a drainage network model: A Brownian web approach RAHUL ROY,KUMARJIT SAHA AND ANISH SARKAR 1807 Gaussian fluctuations for linear spectral statistics of large random covariancematrices...... JAMAL NAJIM AND JIANFENG YAO 1837 Duality theory for portfolio optimisation under transaction costs CHRISTOPH CZICHOWSKY AND WALTER SCHACHERMAYER 1888 A note on the expansion of the smallest eigenvalue distribution of the LUE atthehardedge...... FOLKMAR BORNEMANN 1942

Vol. 26, No. 3—June 2016 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1297–1328 DOI: 10.1214/15-AAP1117 © Institute of , 2016

SOCIAL CONTACT PROCESSES AND THE PARTNER MODEL

BY ERIC FOXALL1,RODERICK EDWARDS2 AND P. VA N D E N DRIESSCHE2 University of Victoria

We consider a stochastic model of infection spread on the complete graph on N vertices incorporating dynamic partnerships, which we assume to be monogamous. This can be seen as a variation on the contact process in which some form of edge dynamics determines the set of contacts at each moment in time. We identify a basic reproduction number R0 with the property that if R0 < 1 the infection dies out by time O(log N), while if R0 > 1 the infec- tion survives for an amount of time eγN for some γ>0 and hovers around a uniquely determined metastable proportion of infectious individuals. The proof in both cases relies on comparison to a set of mean-field equations when the infection is widespread, and to a when the infection is sparse.

REFERENCES

[1] BEZUIDENHOUT,C.andGRIMMETT, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462–1482. MR1071804 [2] BROMAN, E. I. (2007). Stochastic domination for a hidden with applications to the contact process in a randomly evolving environment. Ann. Probab. 35 2263–2293. MR2353388 [3] CHATTERJEE,S.andDURRETT, R. (2009). Contact processes on random graphs with power law degree distributions have critical value 0. Ann. Probab. 37 2332–2356. MR2573560 [4] DURRETT, R. (1980). On the growth of one-dimensional contact processes. Ann. Probab. 8 890–907. MR0586774 [5] DURRETT, R. (2010). Probability: Theory and Examples, 4th ed. Cambridge Univ. Press, Cam- bridge. MR2722836 [6] HARRIS, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355–378. MR0488377 [7] HARRIS, T. E. (2002). The Theory of Branching Processes. Dover, Mineola, NY. MR1991122 [8] LIGGETT, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wis- senschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New York. MR0776231 [9] LIGGETT, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Pro- cesses. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 324. Springer, Berlin. MR1717346 [10] MOUNTFORD,T.,VALESIN,D.andYAO, Q. (2013). Metastable densities for the contact process on power law random graphs. Electron. J. Probab. 18 1–36. MR3145050 [11] PEMANTLE, R. (1992). The contact process on trees. Ann. Probab. 20 2089–2116. MR1188054

MSC2010 subject classifications. Primary 60J25; secondary 92B99. Key words and phrases. SIS model, contact process, interacting particle systems. [12] PETERSON, J. (2011). The contact process on the complete graph with random vertex- dependent infection rates. . Appl. 121 609–629. MR2763098 [13] REMENIK, D. (2008). The contact process in a dynamic random environment. Ann. Appl. Probab. 18 2392–2420. MR2474541 [14] VA N D E N DRIESSCHE,P.andWATMOUGH, J. (2002). Reproduction numbers and sub- threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180 29–48. MR1950747 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1329–1361 DOI: 10.1214/15-AAP1118 © Institute of Mathematical Statistics, 2016

DIVERSE MARKET MODELS OF COMPETING BROWNIAN PARTICLES WITH SPLITS AND MERGERS1

BY IOANNIS KARATZAS AND ANDREY SARANTSEV Columbia University and University of Washington

We study models of regulatory breakup, in the spirit of Strong and Fouque [Ann. Finance 7 (2011) 349–374] but with a fluctuating number of companies. An important class of market models is based on systems of com- peting Brownian particles: each company has a capitalization whose loga- rithm behaves as a with drift and diffusion coefficients de- pending on its current rank. We study such models with a fluctuating number of companies: If at some moment the share of the total market capitaliza- tion of a company reaches a fixed level, then the company is split into two parts of random size. Companies are also allowed to merge, when an expo- nential clock rings. We find conditions under which this system is nonexplo- sive (i.e., the number of companies remains finite at all times) and diverse, yet does not admit arbitrage opportunities.

REFERENCES

[1] AUDRINO,F.,FERNHOLZ,E.R.andFERRETTI, R. G. (2007). A forecasting model for stock market diversity. Ann. Finance 3 213–240. [2] BANNER,A.D.,FERNHOLZ,E.R.andKARATZAS, I. (2005). Atlas models of equity mar- kets. Ann. Appl. Probab. 15 2296–2330. MR2187296 [3] BANNER,A.D.andGHOMRASNI, R. (2008). Local times of ranked continuous semimartin- gales. Stochastic Process. Appl. 118 1244–1253. MR2428716 [4] BASS,R.F.andPARDOUX, É. (1987). Uniqueness for diffusions with piecewise constant coefficients. Probab. Theory Related Fields 76 557–572. MR0917679 [5] BORODIN,A.N.andSALMINEN, P. (2002). Handbook of Brownian Motion—Facts and For- mulae, 2nd ed. Birkhäuser, Basel. MR1912205 [6] CHATTERJEE,S.andPAL, S. (2010). A phase transition behavior for Brownian motions inter- acting through their ranks. Probab. Theory Related Fields 147 123–159. MR2594349 [7] DEMBO,A.andZEITOUNI, O. (2010). Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability 38. Springer, Berlin. MR2571413 [8] FERNHOLZ, E. R. (2002). Stochastic Portfolio Theory. Applications of Mathematics (New York) 48. Springer, New York. MR1894767 [9] FERNHOLZ,E.R.,ICHIBA,T.andKARATZAS, I. (2013). Two Brownian particles with rank- based characteristics and skew-elastic collisions. Stochastic Process. Appl. 123 2999– 3026. MR3062434 [10] FERNHOLZ,E.R.,ICHIBA,T.andKARATZAS, I. (2013). A second-order stock market model. Ann. Finance 9 439–454. MR3082660

MSC2010 subject classifications. Primary 60K35, 60J60; secondary 91B26. Key words and phrases. Competing Brownian particles, splits, mergers, diverse markets, arbi- trage opportunity, portfolio. [11] FERNHOLZ,E.R.andKARATZAS, I. (2005). Relative arbitrage in volatility-stabilized mar- kets. Ann. Finance 1 149–177. [12] FERNHOLZ,E.R.andKARATZAS, I. (2009). Stochastic portfolio Theory: An Overview. Handb. Numer. Anal. 15 89–167. [13] FERNHOLZ,E.R.,KARATZAS,I.andKARDARAS, C. (2005). Diversity and relative arbitrage in equity markets. Finance Stoch. 9 1–27. MR2210925 [14] ICHIBA, T. (2009). Topics in multi-dimensional diffusion theory: Attainability, reflection, er- godicity and rankings. Ph.D. thesis, Columbia University, ProQuest LLC, Ann Arbor, MI. MR2717746 [15] ICHIBA,T.andKARATZAS, I. (2010). On collisions of Brownian particles. Ann. Appl. Probab. 20 951–977. MR2680554 [16] ICHIBA,T.,KARATZAS,I.andSHKOLNIKOV, M. (2013). Strong solutions of stochastic equations with rank-based coefficients. Probab. Theory Related Fields 156 229–248. MR3055258 [17] ICHIBA,T.,PAL,S.andSHKOLNIKOV, M. (2013). Convergence rates for rank-based mod- els with applications to portfolio theory. Probab. Theory Related Fields 156 415–448. MR3055264 [18] ICHIBA,T.,PAPATHANAKOS,V.,BANNER,A.,KARATZAS,I.andFERNHOLZ, E. R. (2011). Hybrid atlas models. Ann. Appl. Probab. 21 609–644. MR2807968 [19] IKEDA,N.andWATANABE, S. (1989). Stochastic Differential Equations and Diffusion Pro- cesses, 2nd ed. North-Holland Mathematical Library 24. North-Holland, Amsterdam. MR1011252 [20] KARATZAS,I.,PAL,S.andSHKOLNIKOV, M. (2016). Systems of Brownian particles with asymmetric collisions. Ann. Inst. Henri Poincaré Probab. Stat. 52 323–354. [21] KARATZAS,I.andSHREVE, S. E. (1991). Brownian Motion and , 2nd ed. Graduate Texts in Mathematics 113. Springer, New York. MR1121940 [22] KARDARAS, C. (2008). Balance, growth and diversity of financial markets. Ann. Finance 4 369–397. [23] KAZAMAKI, N. (1994). Continuous Exponential Martingales and BMO. Lecture Notes in Math. 1579. Springer, Berlin. MR1299529 [24] OSTERRIEDER,J.R.andRHEINLANDER, T. (2006). Arbitrage opportunities in diverse mar- kets via a non-equivalent measure change. Ann. Finance 2 287–301. [25] PAL,S.andPITMAN, J. (2008). One-dimensional Brownian particle systems with rank- dependent drifts. Ann. Appl. Probab. 18 2179–2207. MR2473654 [26] PAL,S.andSHKOLNIKOV, M. (2014). Concentration of measure for Brownian particle sys- tems interacting through their ranks. Ann. Appl. Probab. 24 1482–1508. MR3211002 [27] RUF,J.andRUNGGALDIER, W. (2013). A systematic approach to constructing market models with arbitrage. Preprint. Available at arXiv:1309.1988. [28] SARANTSEV, A. (2014). On a class of diverse market models. Ann. Finance 10 291–314. MR3193785 [29] SARANTSEV, A. (2015). Infinite systems of competing Brownian particles. Preprint. Available at arXiv:1403.4229. [30] SARANTSEV, A. (2015). Multiple collisions in systems of competing Brownian particles. Preprint. Available at arXiv:1309.2621. [31] SARANTSEV, A. (2015). Triple and simultaneous collisions of competing Brownian particles. Electron. J. Probab. 20 1–28. MR3325099 [32] SHKOLNIKOV, M. (2011). Competing particle systems evolving by interacting Lévy processes. Ann. Appl. Probab. 21 1911–1932. MR2884054 [33] STRONG, W. (2014). Fundamental theorems of asset pricing for piecewise of stochastic dimension. Finance Stoch. 18 487–514. MR3232014 [34] STRONG,W.andFOUQUE, J.-P. (2011). Diversity and arbitrage in a regulatory breakup model. Ann. Finance 7 349–374. MR2879921 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1362–1406 DOI: 10.1214/15-AAP1119 © Institute of Mathematical Statistics, 2016

A POSITIVE TEMPERATURE PHASE TRANSITION IN RANDOM HYPERGRAPH 2-COLORING1

BY VICTOR BAPST,AMIN COJA-OGHLAN AND FELICIA RASSMANN Goethe University

Diluted mean-field models are graphical models in which the geometry of interactions is determined by a sparse or hypergraph. Based on a nonrigorous but analytic approach called the “cavity method”, physicists have predicted that in many diluted mean-field models a phase transition oc- curs as the inverse temperature grows from 0 to ∞ [Proc. National Academy of Sciences 104 (2007) 10318–10323]. In this paper, we establish the exis- tence and asymptotic location of this so-called condensation phase transition in the random hypergraph 2-coloring problem.

REFERENCES

[1] ACHLIOPTAS,D.andCOJA-OGHLAN, A. (2008). Algorithmic barriers from phase transitions. Proc.49th FOCS 793–802. [2] ACHLIOPTAS,D.andMOORE, C. (2002). On the 2-colorability of random hypergraphs. In Randomization and Approximation Techniques in Computer Science. Lecture Notes in Computer Science 2483 78–90. Springer, Berlin. MR2047021 [3] ACHLIOPTAS,D.andTHEODOROPOULOS, P. (2014). Manuscript in preparation. [4] BAPST,V.,COJA-OGHLAN,A.,HETTERICH,S.,RASSMANN,F.andVILENCHIK, D. (2014). The condensation phase transition in random graph coloring. Preprint. Available at arXiv:1404.5513. [5] BAYATI,M.,GAMARNIK,D.andTETALI, P. (2013). Combinatorial approach to the interpo- lation method and scaling limits in sparse random graphs. Ann. Probab. 41 4080–4115. [6] COJA-OGHLAN,A.andZDEBOROVÁ, L. (2012). The condensation transition in random hy- pergraph 2-coloring. In Proceedings of the Twenty-Third Annual ACM–SIAM Symposium on Discrete Algorithms 241–250. ACM, New York. MR3205212 [7] CONTUCCI,P.,DOMMERS,S.,GIARDINÀ,C.andSTARR, S. (2013). Antiferromagnetic on the Erdos–Rényi˝ random graph. Comm. Math. Phys. 323 517–554. MR3096530 [8] DALL’ASTA,L.,RAMEZANPOUR,A.andZECCHINA, R. (2008). Entropy landscape and non- Gibbs solutions in constraint satisfaction problems. Phys. Rev. E 77 031118. [9] JANSON,S.,ŁUCZAK,T.andRUCINSKI´ , A. (2000). Random Graphs. Wiley, New York. [10] KAUZMANN, W. (1948). The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43 219–256. [11] KRZAKALA,F.,MÉZARD,M.,SAUSSET,F.,SUN,Y.andZDEBOROVÁ, L. (2012). Proba- bilistic reconstruction in compressed sensing: Algorithms, phase diagrams, and threshold achieving matrices. J. Stat. Mech. P08009. [12] KRZAKALA,F.,MONTANARI,A.,RICCI-TERSENGHI,F.,SEMERJIAN,G.andZDE- BOROVA, L. (2007). Gibbs states and the set of solutions of random constraint satisfaction problems. Proc. National Academy of Sciences 104 10318–10323.

MSC2010 subject classifications. 05C80, 68Q87, 05C15. Key words and phrases. Discrete structures, random hypergraphs, phase transitions, positive tem- perature. [13] KRZAKALA,F.andZDEBOROVÁ, L. (2008). Potts glass on random graphs. Europhys. Lett. 81 57005. [14] MCDIARMID, C. (1998). Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics 195–248. Springer, Berlin. [15] MÉZARD,M.andMONTANARI, A. (2009). Information, Physics and Computation. Oxford Univ. Press, London. The Annals of Applied Probability 2016, Vol. 26, No. 3, 1407–1442 DOI: 10.1214/15-AAP1120 © Institute of Mathematical Statistics, 2016

PROPAGATION OF CHAOS FOR INTERACTING PARTICLES SUBJECT TO ENVIRONMENTAL NOISE

BY MICHELE COGHI AND FRANCO FLANDOLI Scuola Normale Superiore and University of Pisa

A system of interacting particles described by stochastic differential equations is considered. As oppopsed to the usual model, where the noise perturbations acting on different particles are independent, here the particles are subject to the same space-dependent noise, similar to the (noninteracting) particles of the theory of diffusion of passive scalars. We prove a result of propagation of chaos and show that the limit PDE is stochastic and of invis- cid type, as opposed to the case when independent noises drive the different particles.

REFERENCES

[1] AMBROSIO,L.,GIGLI,N.andSAVA R É , G. (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed. Birkhäuser, Basel. MR2401600 [2] CARLEN,E.A.,CARVALHO,M.C.,LE ROUX,J.,LOSS,M.andVILLANI, C. (2010). En- tropy and chaos in the Kac model. Kinet. Relat. Models 3 85–122. MR2580955 [3] DELARUE,F.,FLANDOLI,F.andVINCENZI, D. (2014). Noise prevents collapse of Vlasov– Poisson point charges. Comm. Pure Appl. Math. 67 1700–1736. MR3251910 [4] DERMOUNE, A. (2003). Propagation and conditional propagation of chaos for pressureless gas equations. Probab. Theory Related Fields 126 459–476. MR2001194 [5] DOBRUŠIN, R. L. (1979). Vlasov equations. Funktsional. Anal. i Prilozhen. 13 48–58, 96. MR0541637 [6] FOURNIER,N.andGUILLIN, A. (2013). On the rate of convergence in wasserstein distance of the empirical measure. Available at arXiv:1312.2128v1. [7] FOURNIER,N.,HAURAY,M.andMISCHLER, S. (2014). Propagation of chaos for the 2D viscous vortex model. J. Eur. Math. Soc.(JEMS) 16 1423–1466. MR3254330 [8] HAURAY,M.andMISCHLER, S. (2014). On Kac’s chaos and related problems. J. Funct. Anal. 266 6055–6157. MR3188710 [9] KUNITA, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Stud- ies in Advanced Mathematics 24. Cambridge Univ. Press, Cambridge. MR1070361 [10] PILIPENKO, A. Y. (2005). Measure-valued diffusions and continuous systems of interacting particles in a random environment. Ukraïn. Mat. Zh. 57 1289–1301. MR2216047 [11] PILIPENKO, A. Y. (2006). A functional for flows generated by stochastic equations with interaction. Nel¯ın¯ı˘ın¯ıKoliv. 9 85–97. MR2369777 [12] REVUZ,D.andYOR, M. (1999). Continuous Martingales and Brownian Motion,3rded. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin. MR1725357 [13] SKOROKHOD, A. V. (1997). Measure-valued diffusion. Ukraïn. Mat. Zh. 49 458–464. MR1472230

MSC2010 subject classifications. 60K35, 82C22, 60K37, 60H15. Key words and phrases. Interacting particle system, propagation of chaos, mean field limit, Kraichnan noise, Wasserstain metric. [14] SZNITMAN, A.-S. (1991). Topics in propagation of chaos. In École D’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165–251. Springer, Berlin. MR1108185 [15] ZHENG, W. A. (1995). Conditional propagation of chaos and a class of quasilinear PDE’s. Ann. Probab. 23 1389–1413. MR1349177 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1443–1466 DOI: 10.1214/15-AAP1122 © Institute of Mathematical Statistics, 2016

APPROXIMATIONS OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

BY GIULIA DI NUNNO AND TUSHENG ZHANG University of Oslo and University of Manchester

In this paper, we show that solutions of stochastic partial differential equations driven by Brownian motion can be approximated by stochastic par- tial differential equations forced by pure jump noise/random kicks. Applica- tions to stochastic Burgers equations are discussed.

REFERENCES

[1] ALBEVERIO,S.,WU,J.-L.andZHANG, T.-S. (1998). Parabolic SPDEs driven by Poisson . Stochastic Process. Appl. 74 21–36. MR1624076 [2] ASMUSSEN,S.andROSINSKI´ , J. (2001). Approximations of small jumps of Lévy processes with a view towards simulation. J. Appl. Probab. 38 482–493. MR1834755 [3] BENTH,F.E.,DI NUNNO,G.andKHEDHER, A. (2011). Robustness of option prices and their deltas in markets modelled by jump-diffusions. Commun. Stoch. Anal. 5 285–307. MR2814479 [4] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York. MR1700749 [5] CHOW, P.-L. (2007). Stochastic Partial Differential Equations. Chapman & Hall/CRC, Boca Raton, FL. MR2295103 [6] DA SILVA,J.L.andERRAOUI, M. (2011). The α-dependence of stochastic differential equa- tions driven by variants of α-stable processes. Comm. Statist. Theory Methods 40 3465– 3478. MR2860751 [7] DA PRATO,G.andZABCZYK, J. (1992). Stochastic Equations in Infinite Dimensions. En- cyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge. MR1207136 [8] DA PRATO,G.andZABCZYK, J. (1996). for Infinite-Dimensional Systems.Cam- bridge Univ. Press, Cambridge. MR1417491 [9] DI NUNNO,G.,KHEDHER,A.andVANMAELE, M. (2015). Robustness of quadratic hedging in finance via backward stochastic differential equations. Appl. Math. Optim. 72 353–389. [10] EVANS, L. C. (1998). Partial Differential Equations. Amer. Math. Soc., Providence, RI. MR1625845 [11] FUKUSHIMA,M.,OSHIMA,Y.andTAKEDA, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin. MR1303354 [12] GYÖNGY, I. (1982). On stochastic equations with respect to semimartingales. III. Stochastics 7 231–254. MR0674448 [13] GYÖNGY,I.andKRYLOV, N. V. (1980/81). On stochastic equations with respect to semi- martingales. I. Stochastics 4 1–21. MR0587426

MSC2010 subject classifications. Primary 60H15; secondary 93E20, 35R60. Key words and phrases. Stochastic partial differential equations, approximations, jump noise, tightness, weak convergence, stochastic Burgers equations. [14] GYÖNGY,I.andKRYLOV, N. V. (1981/82). On stochastics equations with respect to semi- martingales. II. Itô formula in Banach spaces. Stochastics 6 153–173. MR0665398 [15] IKEDA,N.andWATANABE, S. (1989). Stochastic Differential Equations and Diffusion Pro- cesses, 2nd ed. North-Holland Mathematical Library 24. North-Holland, Amsterdam. MR1011252 [16] JAKUBOWSKI, A. (1986). On the Skorokhod topology. Ann. Inst. Henri Poincaré Probab. Stat. 22 263–285. MR0871083 [17] KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York. MR1876169 [18] KRYLOV,N.V.andROZOVSKII˘, B. L. (1979). Stochastic evolution equations. In Current Problems in Mathematics, Vol.14(Russian) 71–147. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow. MR0570795 [19] LIU,W.andRÖCKNER, M. (2013). Local and global well-posedness of SPDE with generalized coercivity conditions. J. Differential Equations 254 725–755. MR2990049 [20] PARDOUX, E. (1979). Stochastic partial differential equations and filtering of diffusion pro- cesses. Stochastics 3 127–167. MR0553909 [21] PRÉVÔT,C.andRÖCKNER, M. (2007). A Concise Course on Stochastic Partial Differential Equations. Springer, Berlin. MR2329435 [22] RÖCKNER,M.andZHANG, T. (2007). Stochastic evolution equations of jump type: Existence, uniqueness and large deviation principles. Potential Anal. 26 255–279. MR2286037 [23] TRIEBEL, H. (1978). Interpolation Theory, Function Spaces, Differential Operators.North- Holland, Amsterdam. MR0503903 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1467–1494 DOI: 10.1214/15-AAP1123 © Institute of Mathematical Statistics, 2016

LOCAL ASYMPTOTICS FOR CONTROLLED MARTINGALES

∗ BY SCOTT N. ARMSTRONG AND OFER ZEITOUNI1,†,‡ Université Paris-Dauphine∗, Weizmann Institute of Science† and New York University‡

We consider controlled martingales with bounded steps where the controller is allowed at each step to choose the distribution of the next step, and where the goal is to hit a fixed ball at the origin at time n. We show that the algebraic rate of decay (as n increases to infinity) of the value function in the discrete setup coincides with its continu- ous counterpart, provided a reachability assumption is satisfied. We also study in some detail the uniformly elliptic case and obtain explicit bounds on the rate of decay. This generalizes and improves upon several re- cent studies of the one dimensional case, and is a discrete analogue of a problem recently investigated in Armstrong and Trokhimtchouck [Calc. Var. Partial Differential Equations 38 (2010) 521– 540].

REFERENCES

[1] ALEXANDER, K. S. (2013). Controlled with a target site. Electron. Commun. Probab. 18 1–6. MR3070909 [2] ARMSTRONG,S.N.andTROKHIMTCHOUK, M. (2010). Long-time asymptotics for fully nonlinear homogeneous parabolic equations. Calc. Var. Partial Differential Equations 38 521–540. MR2647131 [3] AZUMA, K. (1967). Weighted sums of certain dependent random variables. Tôhoku Math. J.(2) 19 357–367. MR0221571 [4] BERTSEKAS,D.P.andSHREVE, S. E. (1978). Stochastic Optimal Control: The Discrete Time Case. Mathematics in Science and Engineering 139. Academic Press, New York. MR0511544 [5] BUCKDAHN,R.,MA,J.andRAINER, C. (2008). Stochastic control problems for systems driven by normal martingales. Ann. Appl. Probab. 18 632–663. MR2399708 [6] CAFFARELLI,L.A.andCABRÉ, X. (1995). Fully Nonlinear Elliptic Equations. American Mathematical Society Colloquium Publications 43. Amer. Math. Soc., Providence, RI. MR1351007 [7] DYNKIN,E.B.andYUSHKEVICH, A. A. (1979). Controlled Markov Processes. Grundlehren der Mathematischen Wissenschaften 235. Springer, Berlin. MR0554083 [8] GUREL-GUREVICH,O.,PERES,Y.andZEITOUNI, O. (2014). Localization for controlled random walks and martingales. Electron. Commun. Probab. 19 1–8. MR3208322 [9] HALL,P.andHEYDE, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York. MR0624435

MSC2010 subject classifications. 60G42, 93E20. Key words and phrases. Stochastic control, martingale, nonlinear parabolic equation. [10] KAMIN,S.,PELETIER,L.A.andVÁZQUEZ, J. L. (1991). On the Barenblatt equation of elastoplastic filtration. Indiana Univ. Math. J. 40 1333–1362. MR1142718 [11] KRYLOV, N. V. (1980). Controlled Diffusion Processes. Applications of Mathematics 14. Springer, Berlin. MR0601776 [12] LEE,J.,PERES,Y.andSMART, C. K. (2015). A gaussian upper bound for martingale small ball probabilities. Preprint. Available at arXiv:1405.5980 [math.PR]. [13] MCNAMARA, J. M. (1985). A regularity condition on the transition probability measure of a . Stochastics 15 161–182. MR0869198 [14] TRUDINGER, N. S. (1988). Hölder gradient estimates for fully nonlinear elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 108 57–65. MR0931007 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1495–1534 DOI: 10.1214/15-AAP1124 © Institute of Mathematical Statistics, 2016

STEIN ESTIMATION OF THE INTENSITY OF A SPATIAL HOMOGENEOUS

BY MARIANNE CLAUSEL, JEAN-FRANÇOIS COEURJOLLY AND JÉRÔME LELONG University Grenoble Alpes

In this paper, we revisit the original ideas of Stein and propose an es- timator of the intensity parameter of a homogeneous Poisson point process defined on Rd and observed on a bounded window. The procedure is based on a new integration by parts formula for Poisson point processes. We show that our Stein estimator outperforms the maximum likelihood estimator in terms of mean squared error. In many practical situations, we obtain a gain larger than 30%.

REFERENCES

ADAMS, R. A. (1975). Sobolev Spaces. Academic Press, New York. MR0450957 ALBEVERIO,S.,KONDRATIEV,Y.G.andRÖCKNER, M. (1996). Differential geometry of Poisson spaces. C. R. Acad. Sci. Paris Sér. IMath. 323 1129–1134. MR1423438 ALBEVERIO,S.,KONDRATIEV,YU.G.andRÖCKNER, M. (1998). Analysis and geometry on configuration spaces. J. Funct. Anal. 154 444–500. MR1612725 BIRMAN,M.SH.andSOLOMJAK, M. Z. (1987). Spectral Theory of Selfadjoint Operators in Hilbert Space. Reidel, Dordrecht. MR1192782 CARLEN,E.A.andPARDOUX, É. (1990). Differential calculus and integration by parts on Pois- son space. In Stochastics, Algebra and Analysis in Classical and Quantum Dynamics (Marseille, 1988). Math. Appl. 59 63–73. Kluwer Academic, Dordrecht. MR1052702 CHEN, L. H. Y. (1975). Poisson approximation for dependent trials. Ann. Probab. 3 534–545. MR0428387 DALEY,D.J.andVERE-JONES, D. (2003). An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods, 2nd ed. Springer, New York. MR1950431 DALEY,D.J.andVERE-JONES, D. (2008). An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, 2nd ed. Springer, New York. MR2371524 DECREUSEFOND,L.,JOULIN,A.andSAV Y, N. (2010). Upper bounds on Rubinstein distances on configuration spaces and applications. Commun. Stoch. Anal. 4 377–399. MR2677197 ELLIOTT,R.J.andTSOI, A. H. (1993). Integration by parts for Poisson processes. J. Multivariate Anal. 44 179–190. MR1219202 EVANS,L.C.andGARIEPY, R. F. (1992). Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL. MR1158660 FANG,S.andMALLIAVIN, P. (1993). Stochastic analysis on the path space of a Riemannian mani- fold. I. Markovian stochastic calculus. J. Funct. Anal. 118 249–274. MR1245604 HÖRMANDER, L. (2003). The Analysis of Linear Partial Differential Operators I: Distribution The- ory and Fourier Analysis, 2nd ed. Springer, Berlin.

MSC2010 subject classifications. Primary 60G55; secondary 60H07. Key words and phrases. Stein formula, , superefficient estimator, intensity es- timation, spatial point process. JAMES,W.andSTEIN, C. (1961). Estimation with quadratic loss. In Proc.4th Berkeley Sympos. Math. Statist. and Prob., Vol. I 361–379. Univ. California Press, Berkeley, CA. MR0133191 MØLLER,J.andWAAGEPETERSEN, R. P. (2004). Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability 100. Chapman & Hall/CRC, Boca Raton, FL. MR2004226 MURR, R. (2012). Reciprocal classes of Markov processes. An approach with duality formulae. Ph.D. thesis. PRAT,J.-J.andPRIVAULT, N. (1999). Explicit stochastic analysis of Brownian motion and point measures on Riemannian manifolds. J. Funct. Anal. 167 201–242. MR1710625 PRIVAULT, N. (1994). Chaotic and variational calculus in discrete and continuous time for the Pois- son process. Stoch. Stoch. Rep. 51 83–109. MR1380764 PRIVAULT, N. (2009). Stochastic Analysis in Discrete and Continuous Settings with Normal Martin- gales. Lecture Notes in Math. 1982. Springer, Berlin. MR2531026 PRIVAULT,N.andRÉVEILLAC, A. (2006). Superefficient drift estimation on the Wiener space. C. R. Math. Acad. Sci. Paris 343 607–612. MR2269873 PRIVAULT,N.andRÉVEILLAC, A. (2008). Stein estimation for the drift of Gaussian processes using the Malliavin calculus. Ann. Statist. 36 2531–2550. MR2458197 PRIVAULT,N.andRÉVEILLAC, A. (2009). Stein estimation of Poisson process intensities. Stat. Inference Stoch. Process. 12 37–53. MR2486115 PRIVAULT,N.andTORRISI, G. L. (2011). Density estimation of functionals of spatial point pro- cesses with application to wireless networks. SIAM J. Math. Anal. 43 1311–1344. MR2821586 RÖCKNER,M.andSCHIED, A. (1999). Rademacher’s theorem on configuration spaces and appli- cations. J. Funct. Anal. 169 325–356. MR1730565 RUBINSTEIN,R.Y.andSHAPIRO, A. (1993). Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. Wiley, Chichester. MR1241645 STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distri- bution. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probabil- ity, 1954–1955, Vol. I 197–206. Univ. California Press, Berkeley and Los Angeles. MR0084922 STEIN, C. M. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135–1151. MR0630098 STOYAN,D.,KENDALL,W.S.andMECKE, J. (1987). Stochastic Geometry and Its Applications. Wiley, Chichester. MR0895588 TRIEBEL, H. (1983). Theory of Functions Spaces. Birkhauser, Basel. ZUILY, C. (2002). Eléments de distributions et d’équations aux dérivées partielles. Dunod, Paris. The Annals of Applied Probability 2016, Vol. 26, No. 3, 1535–1580 DOI: 10.1214/15-AAP1125 © Institute of Mathematical Statistics, 2016

A PROBABILISTIC APPROACH TO MEAN FIELD GAMES WITH MAJOR AND MINOR PLAYERS

BY RENÉ CARMONA AND XIUNENG ZHU Princeton University

We propose a new approach to mean field games with major and minor players. Our formulation involves a two player game where the optimiza- tion of the representative minor player is standard while the major player faces an optimization over conditional McKean–Vlasov stochastic differen- tial equations. The definition of this limiting game is justified by proving that its solution provides approximate Nash equilibriums for large finite player games. This proof depends upon the generalization of standard results on the propagation of chaos to conditional dynamics. Because it is of independent interest, we prove this generalization in full detail. Using a conditional form of the Pontryagin stochastic maximum principle (proven in the Appendix), we reduce the solution of the mean field game to a forward–backward system of stochastic differential equations of the conditional McKean–Vlasov type, which we solve in the linear quadratic setting. We use this class of models to show that Nash equilibriums in our formulation can be different from those originally found in the literature.

REFERENCES

[1] ALDOUS, D. J. (1985). Exchangeability and related topics. In École D’été de Probabil- ités de Saint-Flour, XIII—1983. Lecture Notes in Math. 1117 1–198. Springer, Berlin. MR0883646 [2] BAGHERY,F.andØKSENDAL, B. (2007). A maximum principle for stochastic control with partial information. Stoch. Anal. Appl. 25 705–717. MR2321904 [3] BENSOUSSAN,A.,CHAU,M.H.M.andYAM, S. C. P. (2014). Mean field games with a dom- inating player. Available at arXiv:1404.4148. [4] CARDALIAGUET, P. (2010). Notes on mean field games. Technical report. [5] CARMONA,R.andDELARUE, F. (2013). Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 2705–2734. MR3072222 [6] CARMONA,R.andDELARUE, F. (2013). Mean field forward–backward stochastic differential equations. Electron. Commun. Probab. 18 no. 68, 15. MR3091726 [7] CARMONA,R.andDELARUE, F. (2015). Forward–backward stochastic differential equations and controlled McKean–Vlasov dynamics. Ann. Probab. 43 2647–2700. MR3395471 [8] CARMONA,R.,DELARUE,F.andLACKER, D. (2014). Probabilistic analysis of mean field games with a common noise. Technical report, Princeton Univ. [9] CARMONA,R.,FOUQUE,J.-P.andSUN, L.-H. (2015). Mean field games and systemic risk. Commun. Math. Sci. 13 911–933. MR3325083

MSC2010 subject classifications. Primary 93E20; secondary 60H10, 60K35. Key words and phrases. Mean Field Games, stochastic control, McKean–Vlasov diffusion, stochastic Pontryagin principle, mean-field interaction, mean-field forward–backward stochastic dif- ferential equation. [10] CARMONA,R.andLACKER, D. (2015). A probabilistic weak formulation of mean field games and applications. Ann. Appl. Probab. 25 1189–1231. MR3325272 [11] ÇINLAR, E. (2011). Probability and Stochastics. Graduate Texts in Mathematics 261. Springer, New York. MR2767184 [12] CRISAN,D.,KURTZ,T.andLEE, Y. (2012). Conditional distributions, exchangeable particle systems, and stochastic partial differential equations. Technical report. [13] DELARUE, F. (2002). On the existence and uniqueness of solutions to FBSDEs in a non- degenerate case. Stochastic Process. Appl. 99 209–286. MR1901154 [14] HUANG, M. (2010). Large-population LQG games involving a major player: The Nash equil- vanece principle. SIAM J. Control Optim. 48 3318–3353. [15] HUANG,M.,MALHAMÉ,R.P.andCAINES, P. E. (2006). Large population stochastic dy- namic games: Closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 221–251. MR2346927 [16] JOURDAIN,B.,MÉLÉARD,S.andWOYCZYNSKI, W. A. (2008). Nonlinear SDEs driven by Lévy processes and related PDEs. ALEA Lat. Am. J. Probab. Math. Stat. 4 1–29. MR2383731 [17] LASRY,J.-M.andLIONS, P.-L. (2006). Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 619–625. MR2269875 [18] LASRY,J.-M.andLIONS, P.-L. (2006). Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 679–684. MR2271747 [19] LASRY,J.-M.andLIONS, P.-L. (2007). Mean field games. Jpn. J. Math. 2 229–260. MR2295621 [20] MA,J.,WU,Z.,ZHANG,D.andZHANG, J. (2011). On well-posedness of forward–backward SDEs—A unified approach. Technical report. [21] MA,J.andYONG, J. (1999). Forward–Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Math. 1702. Springer, Berlin. MR1704232 [22] NGUYEN,S.andHUANG, M. (2012). Mean field LQG games with mass behavior responsive to a major player. In In 51th IEEE Conference on Decision and Control.Maui,HI. [23] NGUYEN,S.L.andHUANG, M. (2012). Linear-quadratic-Gaussian mixed games with continuum-parametrized minor players. SIAM J. Control Optim. 50 2907–2937. MR3022092 [24] NOURIAN,M.andCAINES, P. E. (2013). ε-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim. 51 3302–3331. MR3092738 [25] RACHEV,S.T.andRÜSCHENDORF, L. (1998). Mass Transportation Problems. Vol. II: Appli- cations. Springer, New York. MR1619171 [26] SZNITMAN, A. S. (1989). Topics in propagation of chaos. In Ecole de Probabilités de Saint Flour, XIX-1989 (D. L. Burkholder et al., eds.). Lecture Notes in Math. 1464 165–251. MR1108185 [27] VILLANI, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wis- senschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin. MR2459454 [28] YOR, M. (1977). Sur les théorie du filtrage et de la prédiction. In Séminaire de Probabil- ités. XI (Univ. Strasbourg, Strasbourg, 1975/1976). Lecture Notes in Math. 581 257–297. Springer, Berlin. MR0471060 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1581–1619 DOI: 10.1214/15-AAP1126 © Institute of Mathematical Statistics, 2016

ESTIMATION FOR STOCHASTIC DAMPING HAMILTONIAN SYSTEMS UNDER PARTIAL OBSERVATION. III. DIFFUSION TERM

∗ BY PATRICK CATTIAUX ,JOSÉ R. LEÓN†,1,2 AND CLÉMENTINE PRIEUR‡,1 Université de Toulouse∗, Universidad Central de Venezuela† and Université Grenoble Alpes‡

This paper is the third part of our study started with Cattiaux, León and Prieur [Stochastic Process. Appl. 124 (2014) 1236–1260; ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014) 359–384]. For some ergodic Hamiltonian sys- tems, we obtained a central limit theorem for a nonparametric estimator of the invariant density [Stochastic Process. Appl. 124 (2014) 1236–1260] and of the drift term [ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014) 359–384], under partial observation (only the positions are observed). Here, we obtain similarly a central limit theorem for a nonparametric estimator of the diffu- sion term.

REFERENCES

[1] BAKRY,D.,CATTIAUX,P.andGUILLIN, A. (2008). Rate of convergence for ergodic con- tinuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 727–759. MR2381160 [2] BARNDORFF-NIELSEN,O.E.,GRAVERSEN,S.E.,JACOD,J.,PODOLSKIJ,M.andSHEP- HARD, N. (2006). A central limit theorem for realised power and bipower variations of continuous semimartingales. In From Stochastic Calculus to (Yu. Kabanov, R. Liptser and J. Stoyanov, eds.) 33–68. Springer, Berlin. MR2233534 [3] BIBBY,B.M.andSØRENSEN, M. (1995). Martingale estimation functions for discretely ob- served diffusion processes. Bernoulli 1 17–39. MR1354454 [4] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York. MR1700749 [5] BORNEMANN,F.A.,NETTESHEIM,P.andSCHÜTE, C. (1996). Quantum-classical molecular dynamics as an approximation to full quantum dynamics. J. Chem. Phys. 105 1074–1083. [6] CATTIAUX,P.,CHAFAÏ,D.andGUILLIN, A. (2012). Central limit theorems for additive func- tionals of ergodic Markov diffusions processes. ALEA Lat. Am. J. Probab. Math. Stat. 9 337–382. MR3069369 [7] CATTIAUX,P.,LEÓN,J.andPRIEUR, C. (2014). Estimation for stochastic damping Hamil- tonian systems under partial observation: II. Drift term. ALEA Lat. Am. J. Probab. Math. Stat. 11 359–384. MR3245075 [8] CATTIAUX,P.,LEÓN,J.R.andPRIEUR, C. (2014). Estimation for stochastic damping Hamil- tonian systems under partial observation—I. Invariant density. Stochastic Process. Appl. 124 1236–1260. MR3148012

MSC2010 subject classifications. Primary 62M05; secondary 60H10, 60F05, 35H10. Key words and phrases. Hypoelliptic diffusion, variance estimation, fluctuation-dissipation mod- els. [9] COMTE,F.,GENON-CATALOT,V.andROZENHOLC, Y. (2009). Nonparametric adaptive esti- mation for integrated diffusions. Stochastic Process. Appl. 119 811–834. MR2499859 [10] DACUNHA-CASTELLE,D.andDUFLO, M. (1983). Probabilités et Statistiques. Tome 2. Mas- son, Paris. MR0732786 [11] DACUNHA-CASTELLE,D.andFLORENS-ZMIROU, D. (1986). Estimation of the coefficients of a diffusion from discrete observations. Stochastics 19 263–284. MR0872464 [12] DOHNAL, G. (1987). On estimating the diffusion coefficient. J. Appl. Probab. 24 105–114. MR0876173 [13] DOUC,R.,FORT,G.andGUILLIN, A. (2009). Subgeometric rates of convergence of f - ergodic strong Markov processes. Stochastic Process. Appl. 119 897–923. MR2499863 [14] DOUKHAN, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics 85. Springer, New York. MR1312160 [15] FLORENS-ZMIROU, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes. Statistics 20 547–557. MR1047222 [16] GARDINER, C. W. (1985). Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, 2nd ed. Springer Series in Synergetics 13. Springer, Berlin. MR0858704 [17] GENON-CATALOT,V.andJACOD, J. (1993). On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 29 119– 151. MR1204521 [18] GLOTER, A. (2006). Parameter estimation for a discretely observed integrated diffusion pro- cess. Scand. J. Statist. 33 83–104. MR2255111 [19] HORENKO,I.andSCHÜTTE, C. (2008). Likelihood-based estimation of multidimensional Langevin models and its application to biomolecular dynamics. Multiscale Model. Simul. 7 731–773. MR2443010 [20] JACOD, J. (2008). Asymptotic properties of realized power variations and related functionals of semimartingales. Stochastic Process. Appl. 118 517–559. MR2394762 [21] JACOD,J.andPROTTER, P. (1998). Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26 267–307. MR1617049 [22] KUPFERMAN,R.andSTUART, A. M. (2004). Fitting SDE models to nonlinear Kac–Zwanzig heat bath models. Phys. D 199 279–316. MR2106316 [23] LELIÈVRE,T.,ROUSSET,M.andSTOLTZ, G. (2010). Free Energy Computations: A Mathe- matical Perspective. Imperial College Press, London. MR2681239 [24] MALLIAVIN,P.andMANCINO, M. E. (2009). A Fourier transform method for nonparametric estimation of multivariate volatility. Ann. Statist. 37 1983–2010. MR2533477 [25] MATTINGLY,J.C.andSTUART, A. M. (2002). Geometric ergodicity of some hypo-elliptic diffusions for particle motions. Markov Process. Related Fields 8 199–214. MR1924935 [26] PODOLSKIJ,M.andVETTER, M. (2010). Understanding limit theorems for semimartingales: A short survey. Stat. Neerl. 64 329–351. MR2683464 [27] POKERN,Y.,STUART,A.M.andWIBERG, P. (2009). Parameter estimation for partially observed hypoelliptic diffusions. J. R. Stat. Soc. Ser. BStat. Methodol. 71 49–73. MR2655523 [28] SAMSON,A.andTHIEULLEN, M. (2012). A contrast estimator for completely or partially observed hypoelliptic diffusion. Stochastic Process. Appl. 122 2521–2552. MR2926166 [29] SZEPESSY, A. (2011). Langevin molecular dynamics derived from Ehrenfest dynamics. Math. Models Methods Appl. Sci. 21 2289–2334. MR2860677 [30] WU, L. (2001). Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems. Stochastic Process. Appl. 91 205–238. MR1807683 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1620–1635 DOI: 10.1214/15-AAP1127 © Institute of Mathematical Statistics, 2016

FROM TRANSIENCE TO RECURRENCE WITH POISSON TREE FROGS

∗ BY CHRISTOPHER HOFFMAN ,1,TOBIAS JOHNSON†,2 ∗ AND MATTHEW JUNGE University of Washington∗ and University of Southern California†

Consider the following interacting particle system on the d-ary tree, known as the frog model: Initially, one particle is awake at the root and i.i.d. Poisson many particles are sleeping at every other vertex. Particles that are awake perform simple random walks, awakening any sleeping particles they encounter. We prove that there is a phase transition between transience and recurrence as the initial density of particles increases, and we give the order of the transition up to a logarithmic factor.

REFERENCES

[1] AÏDÉKON,E.,HU,Y.andZINDY, O. (2013). The precise tail behavior of the total progeny of a killed branching random walk. Ann. Probab. 41 3786–3878. MR3161464 [2] ALDOUS, D. J. (1991). Random walk covering of some special trees. J. Math. Anal. Appl. 157 271–283. MR1109456 [3] ALVES,O.S.M.,MACHADO,F.P.andPOPOV,S.YU. (2002). The shape theorem for the frog model. Ann. Appl. Probab. 12 533–546. MR1910638 [4] ALVES,O.S.M.,MACHADO,F.P.andPOPOV,S.YU. (2002). Phase transition for the frog model. Electron. J. Probab. 7 no. 16, 21. MR1943889 [5] ALVES,O.S.M.,MACHADO,F.P.,POPOV,S.YU.andRAVISHANKAR, K. (2001). The shape theorem for the frog model with random initial configuration. Markov Process. Related Fields 7 525–539. MR1893139 [6] BIGGINS, J. D. (1977). Martingale convergence in the branching random walk. J. Appl. Probab. 14 25–37. MR0433619 [7] COMETS,F.,QUASTEL,J.andRAMÍREZ, A. F. (2009). Fluctuations of the front in a one di- mensional model of X + Y → 2X. Trans. Amer. Math. Soc. 361 6165–6189. MR2529928 [8] CRANSTON,M.,MOUNTFORD,T.,MOURRAT,J.-C.andVALESIN, D. (2014). The contact process on finite homogeneous trees revisited. ALEA Lat. Am. J. Probab. Math. Stat. 11 385–408. MR3249416 [9] DICKMAN,R.,ROLLA,L.T.andSIDORAVICIUS, V. (2010). Activated random walkers: Facts, conjectures and challenges. J. Stat. Phys. 138 126–142. MR2594894 [10] DÖBLER,C.andPFEIFROTH, L. (2014). Recurrence for the frog model with drift on Zd . Electron. Commun. Probab. 19 no. 79, 13. MR3283610 [11] DURRETT,R.andLIU, X. F. (1988). The contact process on a finite set. Ann. Probab. 16 1158–1173. MR0942760 [12] DURRETT,R.andSCHONMANN, R. H. (1988). The contact process on a finite set. II. Ann. Probab. 16 1570–1583. MR0958203

MSC2010 subject classifications. 60K35, 60J80, 60J10. Key words and phrases. Frog model, transience, recurrence, phase transition. [13] DURRETT,R.,SCHONMANN,R.H.andTANAKA, N. I. (1989). The contact process on a finite set. III. The critical case. Ann. Probab. 17 1303–1321. MR1048928 [14] GANTERT,N.andSCHMIDT, P. (2009). Recurrence for the frog model with drift on Z. Markov Process. Related Fields 15 51–58. MR2509423 [15] GHOSH,A.P.,NOREN,S.andROITERSHTEIN, A. (2015). On the range of the transient frog model on Z. Available at arXiv:1502.02738. [16] HOFFMAN,C.,JOHNSON,T.andJUNGE, M. (2015). Recurrence and transience for the frog model on trees. Available at arXiv:1404.6238. [17] PEMANTLE, R. (1988). Phase transition in reinforced random walk and RWRE on trees. Ann. Probab. 16 1229–1241. MR0942765 [18] PEMANTLE, R. (1992). The contact process on trees. Ann. Probab. 20 2089–2116. MR1188054 [19] PEMANTLE,R.andSTACEY, A. M. (2001). The branching random walk and contact process on Galton–Watson and nonhomogeneous trees. Ann. Probab. 29 1563–1590. MR1880232 [20] POPOV,S.YU. (2001). Frogs in random environment. J. Stat. Phys. 102 191–201. MR1819703 [21] POPOV,S.YU. (2003). Frogs and some other interacting random walks models. In Discrete Random Walks (Paris, 2003). Discrete Math. Theor. Comput. Sci. Proc., AC 277–288 (electronic). Assoc. Discrete Math. Theor. Comput. Sci., Nancy. MR2042394 [22] RAMÍREZ,A.F.andSIDORAVICIUS, V. (2004). Asymptotic behavior of a stochastic combus- tion growth process. J. Eur. Math. Soc.(JEMS) 6 293–334. MR2060478 [23] ROLLA,L.T.andSIDORAVICIUS, V. (2012). Absorbing-state phase transition for driven- dissipative stochastic dynamics on Z. Invent. Math. 188 127–150. MR2897694 [24] SHAKED,M.andSHANTHIKUMAR, J. G. (2007). Stochastic Orders. Springer, New York. MR2265633 [25] SIDORAVICIUS,V.andTEIXEIRA, A. (2014). Absorbing-state transition for Stochastic Sand- piles and Activated Random Walks. Available at arXiv:1412.7098. [26] TELCS,A.andWORMALD, N. C. (1999). Branching and tree indexed random walks on frac- tals. J. Appl. Probab. 36 999–1011. MR1742145 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1636–1658 DOI: 10.1214/15-AAP1128 © Institute of Mathematical Statistics, 2016

BERNOULLI AND TAIL-DEPENDENCE COMPATIBILITY

∗ BY PAUL EMBRECHTS ,1,MARIUS HOFERT†,2 AND RUODU WANG†,2,3 ETH Zurich∗ and University of Waterloo†

The tail-dependence compatibility problem is introduced. It raises the question whether a given d × d-matrix of entries in the unit interval is the matrix of pairwise tail-dependence coefficients of a d-dimensional random vector. The problem is studied together with Bernoulli-compatible matrices, that is, matrices which are expectations of outer products of random vectors with Bernoulli margins. We show that a square matrix with diagonal entries being 1 is a tail-dependence matrix if and only if it is a Bernoulli-compatible matrix multiplied by a constant. We introduce new copula models to construct tail-dependence matrices, including commonly used matrices in statistics.

REFERENCES

[1] BERMAN,A.andSHAKED-MONDERER, N. (2003). Completely Positive Matrices. World Sci- entific, River Edge, NJ. MR1986666 [2] BLUHM,C.andOVERBECK, L. (2007). Structured Credit Portfolio Analysis, Baskets & CDOs. Chapman & Hall/CRC, Boca Raton, FL. MR2260812 [3] BLUHM,C.,OVERBECK,L.andWAGNER, C. (2002). An Introduction to Credit Risk Model- ing. Chapman & Hall, London. [4] CHAGANTY,N.R.andJOE, H. (2006). Range of correlation matrices for dependent Bernoulli random variables. Biometrika 93 197–206. MR2277750 [5] DHAENE,J.andDENUIT, M. (1999). The safest dependence structure among risks. Insurance Math. Econom. 25 11–21. MR1718527 [6] EMBRECHTS,P.,MCNEIL,A.J.andSTRAUMANN, D. (2002). Correlation and dependence in risk management: Properties and pitfalls. In Risk Management: Value at Risk and Beyond (Cambridge, 1998) 176–223. Cambridge Univ. Press, Cambridge. MR1892190 [7] FIEBIG,U.,STROKORB,K.andSCHLATHER, M. (2014). The realization problem for tail correlation functions. Available at http://arxiv.org/abs/1405.6876. [8] JOE, H. (1997). Multivariate Models and Dependence Concepts. Monographs on Statistics and Applied Probability 73. Chapman & Hall, London. MR1462613 [9] JOE, H. (2015). Dependence Modeling with Copulas. Monographs on Statistics and Applied Probability 134. CRC Press, Boca Raton, FL. MR3328438 [10] KORTSCHAK,D.andALBRECHER, H. (2009). Asymptotic results for the sum of dependent non-identically distributed random variables. Methodol. Comput. Appl. Probab. 11 279– 306. MR2511246 [11] LIEBSCHER, E. (2008). Construction of asymmetric multivariate copulas. J. Multivariate Anal. 99 2234–2250. MR2463386 [12] MCNEIL,A.J.,FREY,R.andEMBRECHTS, P. (2005). Quantitative Risk Management: Con- cepts, Techniques and Tools. Princeton Univ. Press, Princeton, NJ. MR2175089

MSC2010 subject classifications. 60E05, 62H99, 62H20, 62E15, 62H86. Key words and phrases. Tail dependence, Bernoulli random vectors, compatibility, matrices, cop- ulas, insurance application. [13] NIKOLOULOPOULOS,A.K.,JOE,H.andLI, H. (2009). Extreme value properties of multi- variate t copulas. Extremes 12 129–148. MR2515644 [14] RÜSCHENDORF, L. (1981). Characterization of dependence concepts in normal distributions. Ann. Inst. Statist. Math. 33 347–359. MR0637748 [15] STROKORB,K.,BALLANI,F.andSCHLATHER, M. (2015). Tail correlation functions of max- stable processes: Construction principles, recovery and diversity of some mixing max- stable processes with identical TCF. Extremes 18 241–271. MR3351816 [16] YANG,J.,QI,Y.andWANG, R. (2009). A class of multivariate copulas with bivariate Fréchet marginal copulas. Insurance Math. Econom. 45 139–147. MR2549874 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1659–1697 DOI: 10.1214/15-AAP1129 © Institute of Mathematical Statistics, 2016

BEYOND UNIVERSALITY IN RANDOM MATRIX THEORY1

∗ ∗ BY ALAN EDELMAN ,A.GUIONNET AND S. PÉCHɆ Massachusetts Institute of Technology∗ and University of Paris Diderot (Paris 7)†

In order to have a better understanding of finite random matrices with non-Gaussian entries, we study the 1/N expansion of local eigenvalue statis- tics in both the bulk and at the hard edge of the spectrum of random matrices. This gives valuable information about the smallest singular value not seen in universality laws. In particular, we show the dependence on the fourth mo- ment (or the kurtosis) of the entries. This work makes use of the so-called complex Gaussian divisible ensembles for both Wigner and sample covari- ance matrices.

REFERENCES

[1] BAI, Z. D. (1993). Convergence rate of expected spectral distributions of large random matri- ces. Part I. Wigner matrices. Ann. Probab. 21 625–648. MR1217559 [2] BAI, Z. D. (1993). Convergence rate of expected spectral distributions of large random matri- ces. Part II. Sample covariance matrices. Ann. Probab. 21 649–672. MR1217560 [3] BAI,Z.andSILVERSTEIN, J. W. (2010). Spectral Analysis of Large Dimensional Random Matrices, 2nd ed. Springer, New York. MR2567175 [4] BAI,Z.,WANG,X.andZHOU, W. (2009). CLT for linear spectral statistics of Wigner matri- ces. Electron. J. Probab. 14 2391–2417. MR2556016 [5] BAI,Z.,WANG,X.andZHOU, W. (2010). Functional CLT for sample covariance matrices. Bernoulli 16 1086–1113. MR2759170 [6] BAI,Z.D.andYIN, Y. Q. (1993). Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix. Ann. Probab. 21 1275–1294. MR1235416 [7] BEN AROUS,G.andPÉCHÉ, S. (2005). Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math. 58 1316–1357. MR2162782 [8] BEZANSON,J.,KARPINSKI,S.,SHAH,V.B.andEDELMAN, A. (2012). Julia: A fast dynamic language for technical computing. Preprint. Available at arXiv:1209.5145. [9] BORNEMANN, F. (2010). On the numerical evaluation of distributions in random matrix theory: Areview.Markov Process. Related Fields 16 803–866. MR2895091 [10] BORNEMANN, F. (2015). A note on the expansion of the smallest eigenvalue distribution of the lue at the hard edge. Available at arXiv:1504.00235. [11] BRÉZIN,E.andHIKAMI, S. (1996). Correlations of nearby levels induced by a random poten- tial. Nuclear Phys. B 479 697–706. MR1418841 [12] DUMITRIU, I. (2003). Eigenvalue statistics for β-ensembles. Ph.D. thesis, Massachusetts In- stitute of Technology, Cambridge, MA. [13] EDELMAN, A. (1988). Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9 543–560. MR0964668

MSC2010 subject classifications. 15A52. Key words and phrases. Random matrix, singular value, universality, Wigner matrix, bulk, hard edge. [14] EDELMAN, A. S. (1989). Eigenvalues and condition numbers of random matrices. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA. [15] ERDOS˝ ,L.,YAU,H.-T.andYIN, J. (2012). Bulk universality for generalized Wigner matrices. Probab. Theory Related Fields 154 341–407. MR2981427 [16] ERDOS˝ ,L.,YAU,H.-T.andYIN, J. (2012). Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229 1435–1515. MR2871147 [17] FORRESTER, P. J. (1993). The spectrum edge of random matrix ensembles. Nuclear Phys. B 402 709–728. MR1236195 [18] FORRESTER, P. J. (2010). Log-Gases and Random Matrices. London Mathematical Society Monographs Series 34. Princeton Univ. Press, Princeton, NJ. MR2641363 [19] FORRESTER,P.J.andHUGHES, T. D. (1994). Complex Wishart matrices and conductance in mesoscopic systems: Exact results. J. Math. Phys. 35 6736–6747. MR1303076 [20] GÖTZE,F.,TIKHOMIROV,A.N.andTIMUSHEV, D. A. (2007). Rate of convergence to the semi-circle law for the deformed Gaussian unitary ensemble. Cent. Eur. J. Math. 5 305– 334 (electronic). MR2300275 [21] GUHR,T.andWETTIG, T. (1996). An Itzykson-Zuber-like integral and diffusion for complex ordinary and supermatrices. J. Math. Phys. 37 6395–6413. MR1419177 [22] GUIONNET,A.andZEITOUNI, O. (2000). Concentration of spectral measure for large matri- ces. Electron. Commun. Probab. 5 119–136. [23] JACKSON,A.D.,¸SENER,M.K.andVERBAARSCHOT, J. J. M. (1996). Finite volume parti- tion functions and Itzykson–Zuber integrals. Phys. Lett. B 387 355–360. MR1413913 [24] JOHANSSON, K. (2001). Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys. 215 683–705. MR1810949 [25] KHORUNZHY,A.,KHORUZHENKO,B.andPASTUR, L. (1995). On the 1/N corrections to the Green functions of random matrices with independent entries. J. Phys. A 28 L31–L35. MR1325832 [26] LA CROIX, M. Private communication. [27] MARCENKOˇ ,V.A.andPASTUR, L. A. (1967). Distribution of eigenvalues in certain sets of random matrices. Mat. Sb.(N.S.) 72 507–536. MR0208649 [28] MEHTA, M. L. (2004). Random Matrices,3rded.Pure and Applied Mathematics (Amsterdam) 142. Elsevier/Academic Press, Amsterdam. MR2129906 [29] NAJIM,J.andYAO, J. (2013). Gaussian fluctuations for linear spectral statistics of large ran- dom covariance matrices. Preprint. Available at arXiv:1309.3728. [30] RICHARDS,D.ST.P.andGUPTA, R. D. (1982). Evaluation of cumulative probabilities for Wishart and multivariate beta matrices and their latent roots. Dept. Statistics, Univ. North Carolina, Chapel Hill, NC. [31] SCHEHR, G. (2014). On the smallest eigenvalue at the hard edge of the Laguerre en- semble of complex random matrices: Corrections. Talk at FOCM’14, December 16, 2014, joint work with Anthony Perret. Available at http://lptms.u-psud.fr/gregory- schehr/files/2014/12/Talk_FOCM.pdf. [32] TAO,T.andVU, V. (2011). Random matrices: Localization of the eigenvalues and the necessity of four moments. Acta Math. Vietnam. 36 431–449. MR2908537 [33] TRACY,C.A.andWIDOM, H. (1994). Fredholm determinants, differential equations and matrix models. Comm. Math. Phys. 163 33–72. MR1277933 [34] TRACY,C.A.andWIDOM, H. (1994). Level spacing distributions and the Bessel kernel. Comm. Math. Phys. 161 289–309. MR1266485 [35] TRACY,C.A.andWIDOM, H. (1998). Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92 809–835. MR1657844 [36] ZHENG, S. (2012). Central limit theorems for linear spectral statistics of large dimensional F -matrices. Ann. Inst. Henri Poincaré Probab. Stat. 48 444–476. MR2954263 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1698–1726 DOI: 10.1214/15-AAP1130 © Institute of Mathematical Statistics, 2016

SUPER-REPLICATION WITH NONLINEAR TRANSACTION COSTS AND VOLATILITY UNCERTAINTY

∗ ∗ BY PETER BANK ,1,YAN DOLINSKY†,1,2 AND SELIM GÖKAY ,1 Technische Universität Berlin∗ and Hebrew University†

We study super-replication of contingent claims in an illiquid market with model uncertainty. Illiquidity is captured by nonlinear transaction costs in discrete time and model uncertainty arises as our only assumption on stock price returns is that they are in a range specified by fixed volatility bounds. We provide a dual characterization of super-replication prices as a supremum of penalized expectations for the contingent claim’s payoff. We also describe the scaling limit of this dual representation when the number of trading periods increases to infinity. Hence, this paper complements the results in [Finance Stoch. 17 (2013) 447–475] and [Ann. Appl. Probab. 5 (1995) 198–221] for the case of model uncertainty.

REFERENCES

[1] ALDOUS, D. (1981). Weak convergence of stochastic processes for processes viewed in the strasbourg manner. Unpublished Manuscript, Statist. Laboratory Univ. Cambridge. [2] BANK,P.andBAUM, D. (2004). Hedging and portfolio optimization in financial markets with a large trader. Math. Finance 14 1–18. MR2030833 [3] BOUCHARD,B.andNUTZ, M. (2014). Consistent price systems under model uncertainty. Preprint. [4] BOUCHARD,B.andNUTZ, M. (2015). Arbitrage and duality in nondominated discrete-time models. Ann. Appl. Probab. 25 823–859. MR3313756 [5] ÇETIN,U.,JARROW,R.A.andPROTTER, P. (2004). Liquidity risk and arbitrage pricing theory. Finance Stoch. 8 311–341. MR2213255 [6] CHENTSOV, N. N. (1957). Weak convergence of stochastic processes whose trajectories have no discontinuities of the second kind and the “heuristic” approach to the Kolmogorov– Smirnov tests. Theory Probab. Appl. 1 140–144. [7] DELBAEN,F.andSCHACHERMAYER, W. (1994). A general version of the fundamental theo- rem of asset pricing. Math. Ann. 300 463–520. MR1304434 [8] DENIS,L.andMARTINI, C. (2006). A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann. Appl. Probab. 16 827–852. MR2244434 [9] DEPARIS,S.andMARTINI, C. (2004). Superheading strategies and balayage in discrete time. In Seminar on Stochastic Analysis, Random Fields and Applications IV. Progress in Prob- ability 58 205–219. Birkhäuser, Basel. MR2096290 [10] DOLINSKY, Y. (2014). Hedging of game options under model uncertainty in discrete time. Electron. Commun. Probab. 19 no. 19, 11. MR3183572 [11] DOLINSKY,Y.andSONER, H. M. (2013). Duality and convergence for binomial markets with friction. Finance Stoch. 17 447–475. MR3066984

MSC2010 subject classifications. 91G10, 91G40. Key words and phrases. Super-replication, hedging with friction, volatility uncertainty, limit the- orems. [12] DOLINSKY,Y.andSONER, H. M. (2014). Robust hedging with proportional transaction costs. Finance Stoch. 18 327–347. MR3177409 [13] DUFFIE,D.andPROTTER, P. (1992). From discrete to continuous time finance: Weak conver- gence of the financial gain process. Math. Finance 2 1–15. [14] FÖLLMER,H.andSCHIED, A. (2002). Convex measures of risk and trading constraints. Fi- nance Stoch. 6 429–447. MR1932379 [15] FÖLLMER,H.andSCHIED, A. (2004). Stochastic Finance: An Introduction in Discrete Time, extended ed. De Gruyter Studies in Mathematics 27.deGruyter,Berlin.MR2169807 [16] FRITTELLI,M.andROSAZZA GIANIN, E. (2002). Putting order in risk measures. J. Bank. Financ. 26 1473–1486. [17] GÖKAY,S.andSONER, H. M. (2012). Liquidity in a binomial market. Math. Finance 22 250–276. MR2897385 [18] HOBSON, D. G. (1998). Volatility misspecification, option pricing and superreplication via coupling. Ann. Appl. Probab. 8 193–205. MR1620358 [19] KUSUOKA, S. (1995). Limit theorem on option replication cost with transaction costs. Ann. Appl. Probab. 5 198–221. MR1325049 [20] LEVENTAL,S.andSKOROHOD, A. V. (1997). On the possibility of hedging options in the presence of transaction costs. Ann. Appl. Probab. 7 410–443. MR1442320 [21] LYONS, T. J. (1995). Uncertain volatility and the risk-free synthesis of derivatives. Appl. Math. Finance 2 117–133. [22] NUTZ,M.andSONER, H. M. (2012). Superhedging and dynamic risk measures under volatil- ity uncertainty. SIAM J. Control Optim. 50 2065–2089. MR2974730 [23] PENG, S. (2008). Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process. Appl. 118 2223–2253. MR2474349 [24] SONER,H.M.,SHREVE,S.E.andCVITANIC´ , J. (1995). There is no nontrivial hedg- ing portfolio for option pricing with transaction costs. Ann. Appl. Probab. 5 327–355. MR1336872 [25] SONER,H.M.,TOUZI,N.andZHANG, J. (2011). Martingale representation theorem for the G-expectation. Stochastic Process. Appl. 121 265–287. MR2746175 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1727–1742 DOI: 10.1214/15-AAP1131 © Institute of Mathematical Statistics, 2016

THE SNAPPING OUT BROWNIAN MOTION

BY ANTOINE LEJAY1 Inria Nancy Grand-Est

We give a probabilistic representation of a one-dimensional diffusion equation where the solution is discontinuous at 0 with a jump proportional to its flux. This kind of interface condition is usually seen as a semi-permeable barrier. For this, we use a process called here the snapping out Brownian mo- tion, whose properties are studied. As this construction is motivated by appli- cations, for example, in brain imaging or in chemistry, a simulation scheme is also provided.

REFERENCES

[1] ANDREWS, S. S. (2009). Accurate particle-based simulation of adsorption, desorption and partial transmission. Phys. Biol. 6 046015. [2] BALDI, P. (1995). Exact asymptotics for the probability of exit from a domain and applications to simulation. Ann. Probab. 23 1644–1670. MR1379162 [3] BASS,R.F.,BURDZY,K.andCHEN, Z.-Q. (2008). On the Robin problem in fractal domains. Proc. Lond. Math. Soc.(3)96 273–311. MR2396121 [4] BASS,R.F.andCHEN, Z.-Q. (2003). Brownian motion with singular drift. Ann. Probab. 31 791–817. MR1964949 [5] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York. MR1700749 [6] BOBROWSKI, A. (2012). From diffusions on graphs to Markov chains via asymptotic state lumping. Ann. Henri Poincaré 13 1501–1510. MR2966471 [7] DEVROYE, L. (1986). Nonuniform Random Variate Generation. Springer, New York. MR0836973 [8] ERBAN,R.andCHAPMAN, S. J. (2007). Reactive boundary conditons for stochastic simula- tion of reaction–diffusion processes. Phys. Biol. 4 16–28. [9] ÉTORÉ, P. (2006). On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients. Electron. J. Probab. 11 249–275 (electronic). MR2217816 [10] FELLER, W. (1954). Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 1–31. MR0063607 [11] FIEREMANS,E.,NOVIKOV,D.S.,JENSEN,J.H.andHELPERN, J. A. (2010). Monte Carlo study of a two-compartment exchange model of diffusion. NMR Biomed. 23 711–724. [12] FREIDLIN,M.I.andWENTZELL, A. D. (1993). Diffusion processes on graphs and the aver- aging principle. Ann. Probab. 21 2215–2245. MR1245308 [13] FREIDLIN,M.I.andWENTZELL, A. D. (1994). Random perturbations of Hamiltonian sys- tems. Mem. Amer. Math. Soc. 109 viii+82. MR1201269 [14] GALLAVOTTI,G.andMCKEAN, H. P. (1972). Boundary conditions for the heat equation in a several-dimensional region. Nagoya Math. J. 47 1–14. MR0317658

MSC2010 subject classifications. Primary 60J60; secondary 60G20, 60J35, 60J55. Key words and phrases. Interface condition, elastic Brownian motion, semi-permeable barrier, thin layer, piecing out a Markov process. [15] GREBENKOV, D. S. (2006). Partially reflected Brownian motion: A stochastic approach to transport phenomena. In Focus on (L. R. Velle, ed.) 135–169. Nova Sci. Publ., New York. MR2553673 [16] GRIEGO,R.J.andMONCAYO, A. (1970). Random evolutions and piecing out of Markov processes. Bol. Soc. Mat. Mexicana (2) 15 22–29. MR0365723 [17] IKEDA,N.,NAGASAWA,M.andWATANABE, S. (1966). A construction of Markov processes by piecing out. Proc. Japan Acad. 42 370–375. MR0202197 [18] ITÔ,K.andMCKEAN,H.P.JR. (1996). Diffusion Processes and Their Sample Paths. Springer, Berlin. [19] KARLIN,S.andTAYLOR, H. M. (1981). A Second Course in Stochastic Processes. Academic Press, New York. MR0611513 [20] KATO, T. (1995). Perturbation Theory for Linear Operators. Springer, Berlin. MR1335452 [21] KOPYTKO,B.I.andPORTENKO, M. I. (2009). The problem of pasting together two diffusion processes and classical potentials. Theory Stoch. Process. 15 126–139. MR2598532 [22] LEJAY, A. (2006). On the constructions of the skew Brownian motion. Probab. Surv. 3 413– 466. MR2280299 [23] LEJAY, A. (2015). Estimation of the mean residence time in cells surrounded by semi- permeable membranes by a Monte Carlo method. Research report No. Inria, RR-8709. [24] LEJAY,A.andMARTINEZ, M. (2006). A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Ann. Appl. Probab. 16 107–139. MR2209338 [25] LEJAY,A.andPICHOT, G. (2012). Simulating diffusion processes in discontinuous me- dia: A numerical scheme with constant time steps. J. Comput. Phys. 231 7299–7314. MR2969713 [26] LÉPINGLE, D. (1993). Un schéma d’Euler pour équations différentielles stochastiques réfléchies. C. R. Acad. Sci. Paris Sér. IMath. 316 601–605. MR1212213 [27] LÉPINGLE, D. (1995). Euler scheme for reflected stochastic differential equations. Math. Com- put. Simulation 38 119–126. MR1341164 [28] LE GALL, J.-F. (1984). One-dimensional stochastic differential equations involving the local times of the unknown process. In Stochastic Analysis and Applications (Swansea, 1983). Lecture Notes in Math. 1095 51–82. Springer, Berlin. MR0777514 [29] MEYER, P. A. (1975). Renaissance, recollements, mélanges, ralentissement de processus de Markov. Ann. Inst. Fourier (Grenoble) 25 465–497. MR0415784 [30] MICHAEL,J.R.,SHUCANY,W.R.andHAAS, R. W. (1976). Generating random variates using transformations with multiple roots. Amer. Statist. 30 88–90. [31] PAPANICOLAOU, V. G. (1990). The probabilistic solution of the third boundary value problem for second order elliptic equations. Probab. Theory Related Fields 87 27–77. MR1076956 [32] PORTENKO, N. I. (2000). A probabilistic representation for the solution to one problem of mathematical physics. Ukrainian Math. J. 52 1457–1469. [33] SÁNCHEZ-PALENCIA, E. (1980). Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127. Springer, Berlin. [34] SIEGRIST, K. (1981). Random evolution processes with feedback. Trans. Amer. Math. Soc. 265 375–392. MR0610955 [35] SINGER,A.,SCHUSS,Z.,OSIPOV,A.andHOLCMAN, D. (2007/08). Partially reflected dif- fusion. SIAM J. Appl. Math. 68 844–868. MR2375298 [36] STROOCK, D. W. (1988). Diffusion semigroups corresponding to uniformly elliptic divergence form operators. In Séminaire de Probabilités, XXII. Lecture Notes in Math. 1321 316–347. Springer, Berlin. MR0960535 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1743–1773 DOI: 10.1214/15-AAP1132 © Institute of Mathematical Statistics, 2016

BACKWARD STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY A MARKED POINT PROCESS: AN ELEMENTARY APPROACH WITH AN APPLICATION TO OPTIMAL CONTROL

∗ ∗ BY FULVIA CONFORTOLA ,1,MARCO FUHRMAN ,1 AND JEAN JACOD† Politecnico di Milano∗ and Université Pierre et Marie Curie† We address a class of backward stochastic differential equations on a bounded interval, where the driving noise is a marked, or multivariate, point process. Assuming that the jump times are totally inaccessible and a technical condition holds (see Assumption (A) below), we prove existence and unique- ness results under Lipschitz conditions on the coefficients. Some counter- examples show that our assumptions are indeed needed. We use a novel ap- proach that allows reduction to a (finite or infinite) system of deterministic differential equations, thus avoiding the use of martingale representation the- orems and allowing potential use of standard numerical methods. Finally, we apply the main results to solve an optimal control problem for a marked point process, formulated in a classical way.

REFERENCES

[1] AUBIN,J.-P.andFRANKOWSKA, H. (1990). Set-Valued Analysis. Systems & Control: Foun- dations & Applications 2. Birkhäuser, Boston, MA. MR1048347 [2] BARLES,G.,BUCKDAHN,R.andPARDOUX, E. (1997). Backward stochastic differen- tial equations and integral-partial differential equations. Stoch. Stoch. Rep. 60 57–83. MR1436432 [3] BECHERER, D. (2006). Bounded solutions to backward SDE’s with jumps for utility optimiza- tion and indifference hedging. Ann. Appl. Probab. 16 2027–2054. MR2288712 [4] BUCKDAHN,R.andPARDOUX, E. (1994). BSDE’s with jumps and associated integral- stochastic differential equations. Preprint. [5] CARBONE,R.,FERRARIO,B.andSANTACROCE, M. (2007). Backward stochastic differential equations driven by càdlàg martingales. Teor. Veroyatn. Primen. 52 375–385. MR2742510 [6] COHEN,S.N.andELLIOTT, R. J. (2008). Solutions of backward stochastic differential equa- tions on Markov chains. Commun. Stoch. Anal. 2 251–262. MR2446692 [7] COHEN,S.N.andELLIOTT, R. J. (2010). Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions. Ann. Appl. Probab. 20 267–311. MR2582649 [8] COHEN,S.N.andSZPRUCH, L. (2012). On Markovian solutions to Markov chain BSDEs. Numer. Algebra Control Optim. 2 257–269. MR2929450 [9] CONFORTOLA,F.andFUHRMAN, M. (2013). Backward stochastic differential equations and optimal control of marked point processes. SIAM J. Control Optim. 51 3592–3623. MR3105784

MSC2010 subject classifications. Primary 60H10; secondary 93E20. Key words and phrases. Backward stochastic differential equations, marked point processes, stochastic optimal control. [10] CRÉPEY,S.andMATOUSSI, A. (2008). Reflected and doubly reflected BSDEs with jumps: A priori estimates and comparison. Ann. Appl. Probab. 18 2041–2069. MR2462558 [11] EL KAROUI,N.andHUANG, S.-J. (1997). A general result of existence and uniqueness of backward stochastic differential equations. In Backward Stochastic Differential Equations (Paris, 1995–1996) (N. El Karoui and L. Mazliak, eds.). Pitman Res. Notes Math. Ser. 364 27–36. Longman, Harlow. MR1752673 [12] EL KAROUI,N.,PENG,S.andQUENEZ, M. C. (1997). Backward stochastic differential equa- tions in finance. Math. Finance 7 1–71. MR1434407 [13] JACOD, J. (1974/75). Multivariate point processes: Predictable projection, Radon–Nikodým derivatives, representation of martingales. Z. Wahrsch. Verw. Gebiete 31 235–253. MR0380978 [14] JACOD,J.andMÉMIN, J. (1981). Weak and strong solutions of stochastic differential equa- tions: Existence and stability. In Stochastic Integrals (Proc. Sympos., Univ. Durham, Durham, 1980) (R. Williams, ed.). Lecture Notes in Math. 851 169–212. Springer, Berlin. MR0620991 [15] JEANBLANC,M.andRÉVEILLAC, A. (2014). A note on BSDEs with singular driver coeffi- cients. In Arbitrage, Credit and Informational Risks. Peking University Series in Mathe- matics 5. World Scientific, Hackensack, NJ. [16] KHARROUBI,I.andLIM, T. (2012). Progressive enlargement of Filtrations and Backward SDEs with jumps. Preprint. [17] PARDOUX,É.andPENG, S. G. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55–61. MR1037747 [18] SHEN,L.andELLIOTT, R. J. (2011). Backward stochastic differential equations for a single . Stoch. Anal. Appl. 29 654–673. MR2812521 [19] TANG,S.J.andLI, X. J. (1994). Necessary conditions for optimal control of stochastic sys- tems with random jumps. SIAM J. Control Optim. 32 1447–1475. MR1288257 [20] XIA, J. (2000). Backward stochastic differential equation with random measures. Acta Math. Appl. Sin. Engl. Ser. 16 225–234. MR1779016 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1774–1806 DOI: 10.1214/15-AAP1133 © Institute of Mathematical Statistics, 2016

ENTROPIC RICCI CURVATURE BOUNDS FOR DISCRETE INTERACTING SYSTEMS1

BY MAX FATHI AND JAN MAAS Université Paris 6 and Institute of Science and Technology Austria

We develop a new and systematic method for proving entropic Ricci curvature lower bounds for Markov chains on discrete sets. Using different methods, such bounds have recently been obtained in several examples (e.g., 1-dimensional birth and death chains, product chains, Bernoulli–Laplace models, and random transposition models). However, a general method to obtain discrete Ricci bounds had been lacking. Our method covers all of the examples above. In addition, we obtain new Ricci curvature bounds for zero- range processes on the complete graph. The method is inspired by recent work of Caputo, Dai Pra and Posta on discrete functional inequalities.

REFERENCES

[1] BAKRY,D.andÉMERY, M. (1985). Diffusions hypercontractives. In Séminaire de Probabil- ités, XIX, 1983/84. Lecture Notes in Math. 1123 177–206. Springer, Berlin. MR0889476 [2] BOBKOV,S.G.andTETALI, P. (2006). Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab. 19 289–336. MR2283379 [3] BONCIOCAT, A.-I. and STURM, K.-T. (2009). Mass transportation and rough curvature bounds for discrete spaces. J. Funct. Anal. 256 2944–2966. MR2502429 [4] BOUDOU,A.-S.,CAPUTO,P.,DAI PRA,P.andPOSTA, G. (2006). Spectral gap estimates for interacting particle systems via a Bochner-type identity. J. Funct. Anal. 232 222–258. MR2200172 [5] CAPUTO,P.,DAI PRA,P.andPOSTA, G. (2009). Convex entropy decay via the Bochner–Bakry–Emery approach. Ann. Inst. Henri Poincaré Probab. Stat. 45 734–753. MR2548501 [6] CAPUTO,P.andPOSTA, G. (2007). Entropy dissipation estimates in a zero-range dynamics. Probab. Theory Related Fields 139 65–87. MR2322692 [7] CHOW,S.-N.,HUANG,W.,LI,Y.andZHOU, H. (2012). Fokker–Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203 969– 1008. MR2928139 [8] DAI PRA,P.andPOSTA, G. (2013). Entropy decay for interacting systems via the Bochner– Bakry–Émery approach. Electron. J. Probab. 18 52. MR3065862 [9] ERBAR,M.andMAAS, J. (2012). Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206 997–1038. MR2989449 [10] ERBAR,M.andMAAS, J. (2014). Gradient flow structures for discrete porous medium equa- tions. Discrete Contin. Dyn. Syst. 34 1355–1374. MR3117845 [11] ERBAR,M.,MAAS,J.andTETALI, P. (2015). Discrete Ricci curvature bounds for Bernoulli– Laplace and random transposition models. Annales Fac. Sci. Toulouse (6) 24 781–800. MR3434256

MSC2010 subject classifications. 60J10, 60K35. Key words and phrases. Discrete Ricci curvature, transport metrics, functional inequalities, birth- death processes, zero-range processes, Bernoulli–Laplace model, random transposition model. [12] GAO,F.andQUASTEL, J. (2003). Exponential decay of entropy in the random transposition and Bernoulli–Laplace models. Ann. Appl. Probab. 13 1591–1600. MR2023890 [13] GIGLI,N.andMAAS, J. (2013). Gromov–Hausdorff convergence of discrete transportation metrics. SIAM J. Math. Anal. 45 879–899. MR3045651 [14] GOEL, S. (2004). Modified logarithmic Sobolev inequalities for some models of random walk. Stochastic Process. Appl. 114 51–79. MR2094147 [15] JORDAN,R.,KINDERLEHRER,D.andOTTO, F. (1998). The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 1–17. MR1617171 [16] LIN,Y.andYAU, S.-T. (2010). Ricci curvature and eigenvalue estimate on locally finite graphs. Math. Res. Lett. 17 343–356. MR2644381 [17] LOTT,J.andVILLANI, C. (2009). Ricci curvature for metric-measure spaces via optimal trans- port. Ann. of Math.(2)169 903–991. MR2480619 [18] MAAS, J. (2011). Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 2250–2292. MR2824578 [19] MIELKE, A. (2011). A gradient structure for reaction–diffusion systems and for energy-drift- diffusion systems. Nonlinearity 24 1329–1346. MR2776123 [20] MIELKE, A. (2013). Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differential Equations 48 1–31. MR3090532 [21] MORRIS, B. (2006). Spectral gap for the zero range process with constant rate. Ann. Probab. 34 1645–1664. MR2271475 [22] OLLIVIER, Y. (2009). Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256 810–864. MR2484937 [23] OLLIVIER, Y. (2013). A visual introduction to Riemannian curvatures and some discrete gen- eralizations. In Analysis and Geometry of Metric Measure Spaces. CRM Proc. Lecture Notes 56 197–220. Amer. Math. Soc., Providence, RI. MR3060504 [24] STURM, K.-T. (2006). On the geometry of metric measure spaces. I. Acta Math. 196 65–131. MR2237206 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1807–1836 DOI: 10.1214/15-AAP1134 © Institute of Mathematical Statistics, 2016

HACK’S LAW IN A DRAINAGE NETWORK MODEL: A BROWNIAN WEB APPROACH

BY RAHUL ROY,KUMARJIT SAHA AND ANISH SARKAR Indian Statistical Institute Hack [Studies of longitudinal stream profiles in Virginia and Maryland (1957). Report], while studying the drainage system in the Shenandoah valley and the adjacent mountains of Virginia, observed a power law relation l ∼ a0.6 between the length l of a stream from its source to a divide and the area a of the basin that collects the precipitation contributing to the stream as tributaries. We study the tributary structure of Howard’s drainage network model of headward growth and branching studied by Gangopadhyay, Roy and Sarkar [Ann. Appl. Probab. 14 (2004) 1242–1266]. We show that the exponent of Hack’s law is 2/3 for Howard’s model. Our study is based on a scaling of the process whereby the limit of the watershed area of a stream is area of a process. To obtain this, we define a dual of the model and show that under diffusive scaling, both the original network and its dual converge jointly to the standard Brownian web and its dual.

REFERENCES

[1] ARRATIA, R. (1981). Coalescing Brownian motions and the on Z. Unpublished partial manuscript. [2] ARRATIA, R. A. (1979). Coalescing Brownian motions on the line. ProQuest LLC, Ann Arbor, MI. Ph.D. Thesis, Univ. of Wisconsin—Madison. MR2630231 [3] BOLTHAUSEN, E. (1976). On a functional central limit theorem for random walks conditioned to stay positive. Ann. Probab. 4 480–485. MR0415702 [4] BROWN, B. M. (1971). Martingale central limit theorems. Ann. Math. Stat. 42 59–66. MR0290428 [5] COLETTI,C.F.,FONTES,L.R.G.andDIAS, E. S. (2009). Scaling limit for a drainage network model. J. Appl. Probab. 46 1184–1197. MR2582714 [6] DURRETT,R.T.andIGLEHART, D. L. (1977). Functionals of and Brown- ian excursion. Ann. Probab. 5 130–135. MR0436354 [7] DURRETT,R.T.,IGLEHART,D.L.andMILLER, D. R. (1977). Weak convergence to Brow- nian meander and Brownian excursion. Ann. Probab. 5 117–129. MR0436353 [8] FERRARI,P.A.,FONTES,L.R.G.andWU, X.-Y. (2005). Two-dimensional Poisson trees converge to the Brownian web. Ann. Inst. Henri Poincaré Probab. Stat. 41 851–858. MR2165253 [9] FONTES,L.R.G.,ISOPI,M.,NEWMAN,C.M.andRAVISHANKAR, K. (2004). The Brow- nian web: Characterization and convergence. Ann. Probab. 32 2857–2883. MR2094432 [10] GANGOPADHYAY,S.,ROY,R.andSARKAR, A. (2004). Random oriented trees: A model of drainage networks. Ann. Appl. Probab. 14 1242–1266. MR2071422

MSC2010 subject classifications. 60D05. Key words and phrases. Brownian excursion, Brownian meander, Brownian web, Hack’s law. [11] GIACOMETTI,A.,MARTITAN,A.,RIGON,R.,RINALDO,A.andRODRIGUEZ-ITURBE,I. (1996). On Hack’s law. Water Resour. Res. 32 3367–3374. [12] GRAY, D. M. (1961). Interrelationships of watershed characteristics. J. Geophys. Res. 66 1215– 1233. [13] HACK, J. T. (1957). Studies of longitudinal stream profiles in Virginia and Maryland. Report, U.S. Geol. Surv. Prof. Pap. 294-B. [14] HORTON, R. T. (1945). Erosional development of streams and their drainage basins: Hydro- physical approach to quantitative morphology. Geol. Soc. Am. Bull. 56 275–370. [15] HURST, H. (1927). The Lake Plateau Basin of the Nile. Government Press, Cairo. [16] KAIGH, W. D. (1976). An invariance principle for random walk conditioned by a late return to zero. Ann. Probab. 4 115–121. MR0415706 [17] LANGBEIN, W. B. (1947). Topographic characteristics of drainage basins. Report, U.S. Geol. Surv. Prof. Pap. 968-C. [18] LEOPOLD,L.B.andLANGBEIN, W. B. (1962). The concept of entropy in landscape evolu- tion. Report, U.S. Geol. Surv. Prof. Pap. 500-A. [19] LEVIN,D.A.,PERES,Y.andWILMER, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. MR2466937 [20] LOUCHARD,G.andJANSON, S. (2007). Tail estimates for the Brownian excursion area and other Brownian areas. Electron. J. Probab. 12 1600–1632. MR2365879 [21] MANDELBROT, B. B. (1982). The Fractal Geometry of Nature.W.H.Freeman,NewYork. MR0665254 [22] MULLER, J. E. (1973). Re-evaluation of the relationship of master streams and drainage basins: Reply. Geol. Soc. Am. Bull. 84 3127–3130. [23] NEWMAN,C.M.,RAVISHANKAR,K.andSUN, R. (2005). Convergence of coalescing non- simple random walks to the Brownian web. Electron. J. Probab. 10 21–60. MR2120239 [24] REIMER, D. (2000). Proof of the van den Berg–Kesten conjecture. Combin. Probab. Comput. 9 27–32. MR1751301 [25] RESNICK, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modelling. Springer, New York. [26] RODRIGUEZ-ITURBE,I.andRINALDO, A. (1997). Fractal River Basins: Chance and Self- Organization. Cambridge Univ. Press, New York. [27] ROY,R.,SAHA,K.andSARKAR, A. (2015). Hack’s law in a drainage network model: A Brownian web approach. Preprint. Available at arXiv:1501.01382. [28] SOUCALIUC,F.,TÓTH,B.andWERNER, W. (2000). Reflection and coalescence between independent one-dimensional Brownian paths. Ann. Inst. Henri Poincaré Probab. Stat. 36 509–545. MR1785393 [29] SUN,R.andSWART, J. M. (2008). The Brownian net. Ann. Probab. 36 1153–1208. MR2408586 [30] TÓTH,B.andWERNER, W. (1998). The true self-repelling motion. Probab. Theory Related Fields 111 375–452. MR1640799 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1837–1887 DOI: 10.1214/15-AAP1135 © Institute of Mathematical Statistics, 2016

GAUSSIAN FLUCTUATIONS FOR LINEAR SPECTRAL STATISTICS OF LARGE RANDOM COVARIANCE MATRICES

BY JAMAL NAJIM1 AND JIANFENG YAO2 Université Paris Est and CNRS and Télécom Paristech / Consider a N × n matrix  = √1 R1 2X ,whereR is a nonnega- n n n n n tive definite Hermitian matrix and Xn is a random matrix with i.i.d. real or complex standardized entries. The fluctuations of the linear statistics of the eigenvalues

  N ∗ = ∗ Trace f nn f(λi), (λi) eigenvalues of nn, i=1

are shown to be Gaussian, in the regime where both dimensions of matrix n go to infinity at the same pace and in the case where f is of class C3,thatis, has three continuous derivatives. The main improvements with respect to Bai and Silverstein’s CLT [Ann. Probab. 32 (2004) 553–605] are twofold: First, we consider general entries with finite fourth moment, but whose fourth cu- mulant is nonnull, that is, whose fourth moment may differ from the moment of a (real or complex) Gaussian . As a consequence, extra terms proportional to       |V|2 = E n 22 = E n 4 −|V|2 − X11 and κ X11 2 appear in the limiting variance and in the limiting bias, which not only depend on the spectrum of matrix Rn but also on its eigenvectors. Second, we relax the analyticity assumption over f by representing the linear statistics with the help of Helffer–Sjöstrand’s formula. The CLT is expressed in terms of vanishing Lévy–Prohorov distance be- tween the linear statistics’ distribution and a Gaussian probability distribu- tion, the mean and the variance of which depend upon N and n and may not converge.

REFERENCES

[1] ALBEVERIO,S.,PASTUR,L.andSHCHERBINA, M. (2001). On the 1/n expansion for some unitary invariant ensembles of random matrices. Comm. Math. Phys. 224 271–305. MR1869000 [2] ANDERSON,G.W.andZEITOUNI, O. (2006). A CLT for a band matrix model. Probab. Theory Related Fields 134 283–338. MR2222385 [3] ARHAROV, L. V. (1971). Limit theorems for the characteristic roots of a sample covariance matrix. Dokl. Akad. Nauk SSSR 199 994–997. MR0309171

MSC2010 subject classifications. Primary 15A52; secondary 15A18, 60F15. Key words and phrases. Large random matrix, linear statistics of the eigenvalues, central limit theorem. [4] BAI,Z.,CHEN,Y.andLIANG, Y.-C., eds. (2009). Random Matrix Theory and Its Applica- tions: Multivariate Statistics and Wireless Communications. Lecture Notes Series. Insti- tute for Mathematical Sciences. National University of Singapore 18. World Scientific, Hackensack, NJ. MR2603191 [5] BAI,Z.andSILVERSTEIN, J. W. (2010). Spectral Analysis of Large Dimensional Random Matrices, 2nd ed. Springer, New York. MR2567175 [6] BAI,Z.,WANG,X.andZHOU, W. (2010). Functional CLT for sample covariance matrices. Bernoulli 16 1086–1113. MR2759170 [7] BAI,Z.D.andSILVERSTEIN, J. W. (2004). CLT for linear spectral statistics of large- dimensional sample covariance matrices. Ann. Probab. 32 553–605. MR2040792 [8] BAO,Z.,PAN,G.andZHOU, W. (2013). Central limit theorem for partial linear eigenvalue statistics of Wigner matrices. J. Stat. Phys. 150 88–129. MR3018879 [9] BAO,Z.,PAN,G.andZHOU, W. (2013). On the MIMO channel capacity for the general channels. Preprint. [10] BENAYCH-GEORGES,F.,GUIONNET,A.andMALE, C. (2014). Central limit theorems for linear statistics of heavy tailed random matrices. Comm. Math. Phys. 329 641–686. MR3210147 [11] BILLINGSLEY, P. (1995). Probability and Measure,3rded.Wiley,NewYork.MR1324786 [12] BORDENAVE, C. (2013). Personal communication. [13] BORDENAVE, C. (2013). A short course on random matrices (preliminary draft). Available at http://www.math.univ-toulouse.fr/~bordenave/coursRMT.pdf. [14] CABANAL-DUVILLARD, T. (2001). Fluctuations de la loi empirique de grandes matrices aléa- toires. Ann. Inst. Henri Poincaré Probab. Stat. 37 373–402. MR1831988 [15] CAPITAINE,M.andDONATI-MARTIN, C. (2007). Strong asymptotic freeness for Wigner and Wishart matrices. Indiana Univ. Math. J. 56 767–803. MR2317545 [16] CHATTERJEE, S. (2009). Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Related Fields 143 1–40. MR2449121 [17] COUILLET,R.andDEBBAH, M. (2011). Random Matrix Methods for Wireless Communica- tions. Cambridge Univ. Press, Cambridge. MR2884783 [18] DOZIER,R.B.andSILVERSTEIN, J. W. (2007). On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices. J. Multivariate Anal. 98 678– 694. MR2322123 [19] DUDLEY, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Math- ematics 74. Cambridge Univ. Press, Cambridge. MR1932358 [20] DYN’KIN, E. M. (1972). An operator calculus based on the Cauchy–Green formula. Zap. Nauˇcn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.(LOMI) 30 33–39. MR0328640 [21] GIRKO, V. L. (2001). Theory of Stochastic Canonical Equations. Vol. I. Mathematics and Its Applications 535. Kluwer Academic, Dordrecht. MR1887675 [22] GIRKO, V. L. (2001). Theory of Stochastic Canonical Equations. Vol. II. Mathematics and Its Applications 535. Kluwer Academic, Dordrecht. MR1887676 [23] GUÉDON,O.,LYTOVA,A.,PAJOR,A.andPASTUR, L. (2014). The central limit theorem for linear eigenvalue statistics of the sum of independent random matrices of rank one. In Spectral Theory and Differential Equations. Amer. Math. Soc. Transl. Ser.2233 145–164. Amer. Math. Soc., Providence, RI. MR3307778 [24] GUIONNET, A. (2002). Large deviations upper bounds and central limit theorems for non- commutative functionals of Gaussian large random matrices. Ann. Inst. Henri Poincaré Probab. Stat. 38 341–384. MR1899457 [25] HAAGERUP,U.andTHORBJØRNSEN, S. (2005). A new application of random matrices: ∗ Ext(Cred(F2)) is not a group. Ann. of Math.(2)162 711–775. MR2183281 [26] HAAGERUP,U.andTHORBJØRNSEN, S. (2012). Asymptotic expansions for the Gaussian unitary ensemble. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 1250003, 41. MR2922846 [27] HACHEM,W.,KHAROUF,M.,NAJIM,J.andSILVERSTEIN, J. W. (2012). A CLT for information-theoretic statistics of non-centered Gram random matrices. Random Matrices Theory Appl. 1 1150010, 50. MR2934716 [28] HACHEM,W.,LOUBATON,P.andNAJIM, J. (2007). Deterministic equivalents for certain functionals of large random matrices. Ann. Appl. Probab. 17 875–930. MR2326235 [29] HACHEM,W.,LOUBATON,P.andNAJIM, J. (2008). A CLT for information-theoretic statistics of gram random matrices with a given variance profile. Ann. Appl. Probab. 18 2071–2130. MR2473651 [30] HACHEM,W.,LOUBATON,P.,NAJIM,J.andVALLET, P. (2013). On bilinear forms based on the resolvent of large random matrices. Ann. Inst. Henri Poincaré Probab. Stat. 49 36–63. MR3060147 [31] HELFFER, B. (2013). Spectral Theory and Its Applications. Cambridge Studies in Advanced Mathematics 139. Cambridge Univ. Press, Cambridge. MR3027462 [32] HELFFER,B.andSJÖSTRAND, J. (1989). Équation de Schrödinger avec champ magnétique et équation de Harper. In Schrödinger Operators (Sønderborg, 1988). Lecture Notes in Physics 345 118–197. Springer, Berlin. MR1037319 [33] JOHANSSON, K. (1998). On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91 151–204. MR1487983 [34] JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal compo- nents analysis. Ann. Statist. 29 295–327. MR1863961 [35] JONSSON, D. (1982). Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12 1–38. MR0650926 [36] KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York. MR1876169 [37] KAMMOUN,A.,KHAROUF,M.,HACHEM,W.andNAJIM, J. (2009). A central limit theorem for the SINR at the LMMSE estimator output for large-dimensional signals. IEEE Trans. Inform. Theory 55 5048–5063. MR2596959 [38] KHORUNZHY,A.M.,KHORUZHENKO,B.A.andPASTUR, L. A. (1996). Asymptotic prop- erties of large random matrices with independent entries. J. Math. Phys. 37 5033–5060. MR1411619 [39] LALOUX,L.,CIZEAU,P.,BOUCHAUD,J.-P.andPOTTERS, M. (1999). Noise dressing of financial correlation matrices. Phys. Rev. Lett. 83 1467. [40] LYTOVA,A.andPASTUR, L. (2009). Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37 1778–1840. MR2561434 [41] MARCENKOˇ ,V.A.andPASTUR, L. A. (1967). Distribution of eigenvalues in certain sets of random matrices. Mat. Sb.(N.S.) 72 507–536. MR0208649 [42] MÜNNIX,M.C.,SCHÄFER,R.andGUHR, T. (2014). A random matrix approach to credit risk. PLoS ONE 9 e98030. [43] O’ROURKE,S.,RENFREW,D.andSOSHNIKOV, A. (2013). On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries. J. Theo- ret. Probab. 26 750–780. MR3090549 [44] PAN, G. (2014). Comparison between two types of large sample covariance matrices. Ann. Inst. Henri Poincaré Probab. Stat. 50 655–677. MR3189088 [45] PAN,G.M.andZHOU, W. (2008). Central limit theorem for signal-to-interference ratio of reduced rank linear receiver. Ann. Appl. Probab. 18 1232–1270. MR2418244 [46] PASTUR,L.andSHCHERBINA, M. (2011). Eigenvalue Distribution of Large Random Ma- trices. Mathematical Surveys and Monographs 171. Amer. Math. Soc., Providence, RI. MR2808038 [47] PIZZO,A.,RENFREW,D.andSOSHNIKOV, A. (2012). Fluctuations of matrix entries of regular functions of Wigner matrices. J. Stat. Phys. 146 550–591. MR2880032 [48] SCHULTZ, H. (2005). Non-commutative polynomials of independent Gaussian random ma- trices. The real and symplectic cases. Probab. Theory Related Fields 131 261–309. MR2117954 [49] SHCHERBINA, M. (2011). Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. Zh. Mat. Fiz. Anal. Geom. 7 176–192, 197, 199. MR2829615 [50] SILVERSTEIN, J. W. (1995). Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices. J. Multivariate Anal. 55 331–339. MR1370408 [51] SILVERSTEIN,J.W.andCHOI, S.-I. (1995). Analysis of the limiting spectral distribution of large-dimensional random matrices. J. Multivariate Anal. 54 295–309. MR1345541 [52] SINAI,YA.andSOSHNIKOV, A. (1998). Central limit theorem for traces of large random sym- metric matrices with independent matrix elements. Bol. Soc. Brasil. Mat.(N.S.) 29 1–24. MR1620151 [53] SOSHNIKOV, A. (2000). The central limit theorem for local linear statistics in classical compact groups and related combinatorial identities. Ann. Probab. 28 1353–1370. MR1797877 [54] TILLMANN, H.-G. (1953). Randverteilungen analytischer Funktionen und Distributionen. Math. Z. 59 61–83. MR0057345 [55] VALLET,P.,LOUBATON,P.andMESTRE, X. (2012). Improved subspace estimation for mul- tivariate observations of high dimension: The deterministic signals case. IEEE Trans. In- form. Theory 58 1043–1068. MR2918009 [56] WISHART, J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A 32–52. [57] YAO, J. (2013). Estimation et fluctuations de fonctionnelles de grandes matrices aléatoires. Ph.D. thesis, Télécom ParisTech. The Annals of Applied Probability 2016, Vol. 26, No. 3, 1888–1941 DOI: 10.1214/15-AAP1136 © Institute of Mathematical Statistics, 2016

DUALITY THEORY FOR PORTFOLIO OPTIMISATION UNDER TRANSACTION COSTS

BY CHRISTOPH CZICHOWSKY1 AND WALTER SCHACHERMAYER2 London School of Economics and Political Science and Universität Wien

We consider the problem of portfolio optimisation with general càdlàg price processes in the presence of proportional transaction costs. In this con- text, we develop a general duality theory. In particular, we prove the existence of a dual optimiser as well as a shadow price process in an appropriate gen- eralised sense. This shadow price is defined by means of a “sandwiched” process consisting of a predictable and an optional strong supermartingale, and pertains to all strategies that remain solvent under transaction costs. We provide examples showing that, in the general setting we study, the shadow price processes have to be of such a generalised form.

REFERENCES

[1] BAYRAKTAR,E.andYU, X. (2013). On the market viability under proportional transaction costs. Preprint. [2] BENEDETTI,G.,CAMPI,L.,KALLSEN,J.andMUHLE-KARBE, J. (2013). On the existence of shadow prices. Finance Stoch. 17 801–818. MR3105934 [3] BOUCHARD, B. (2002). Utility maximization on the real line under proportional transaction costs. Finance Stoch. 6 495–516. MR1932382 [4] BOUCHARD,B.andMAZLIAK, L. (2003). A multidimensional bipolar theorem in L0(Rd ; ,F,P). Stochastic Process. Appl. 107 213–231. MR1999789 [5] CAMPI,L.andOWEN, M. P. (2011). Multivariate utility maximization with proportional trans- action costs. Finance Stoch. 15 461–499. MR2833096 [6] CAMPI,L.andSCHACHERMAYER, W. (2006). A super-replication theorem in Kabanov’s model of transaction costs. Finance Stoch. 10 579–596. MR2276320 [7] CHOI,J.H.,SÎRBU,M.andŽITKOVIC´ , G. (2013). Shadow prices and well-posedness in the problem of optimal investment and consumption with transaction costs. SIAM J. Control Optim. 51 4414–4449. MR3141745 [8] CHUNG,K.L.andGLOVER, J. (1979). Left continuous moderate Markov processes. Z. Wahrsch. Verw. Gebiete 49 237–248. MR0547825 [9] CONSTANTINIDES, G. (1986). Capital market equilibrium with transaction costs. J. Polit. Econ. 94 842–862. [10] CVITANIC´ ,J.andKARATZAS, I. (1996). Hedging and portfolio optimization under transaction costs: A martingale approach. Math. Finance 6 133–165. MR1384221 [11] CVITANIC´ ,J.andWANG, H. (2001). On optimal terminal wealth under transaction costs. J. Math. Econom. 35 223–231. MR1822345

MSC2010 subject classifications. 91G10, 93E20, 60G48. Key words and phrases. Utility maximisation, proportional transaction costs, convex duality, shadow prices, supermartingale deflators, optional strong supermartingales, predictable strong su- permartingales, logarithmic utility. [12] CZICHOWSKY,C.,MUHLE-KARBE,J.andSCHACHERMAYER, W. (2014). Transaction costs, shadow prices, and duality in discrete time. SIAM J. Financial Math. 5 258–277. MR3194656 [13] CZICHOWSKY,C.andSCHACHERMAYER, W. (2015). Portfolio optimisation beyond semi- martingales: Shadow prices and fraction Brownian motion. Preprint. [14] CZICHOWSKY,C.andSCHACHERMAYER, W. (2016). Strong supermartingales and limits of nonnegative martingales. Ann. Probab. 44 171–205. MR3456335 [15] CZICHOWSKY,C.,SCHACHERMAYER,W.andYANG, J. (2016). Shadow prices for continu- ous price processes. Math. Finance. To appear. DOI:10.1111/mafi.12103. [16] DAV I S ,M.H.A.andNORMAN, A. R. (1990). Portfolio selection with transaction costs. Math. Oper. Res. 15 676–713. MR1080472 [17] DEELSTRA,G.,PHAM,H.andTOUZI, N. (2001). Dual formulation of the utility maximiza- tion problem under transaction costs. Ann. Appl. Probab. 11 1353–1383. MR1878301 [18] DELLACHERIE,C.andMEYER, P.-A. (1978). Probabilities and Potential. North-Holland Mathematics Studies 29. North-Holland, Amsterdam. MR0521810 [19] DELLACHERIE,C.andMEYER, P.-A. (1982). Probabilities and Potential B. Theory of Mar- tingales. North-Holland, Amsterdam. MR0745449 [20] DUMAS,B.andLUCIANO, E. (1991). An exact solution to a dynamic portfolio choice problem under transactions costs. J. Finance 46 577–595. [21] GERHOLD,S.,GUASONI,P.,MUHLE-KARBE,J.andSCHACHERMAYER, W. (2014). Trans- action costs, trading volume, and the liquidity premium. Finance Stoch. 18 1–37. MR3146486 [22] GERHOLD,S.,MUHLE-KARBE,J.andSCHACHERMAYER, W. (2012). Asymptotics and du- ality for the Davis and Norman problem. Stochastics 84 625–641. MR2995515 [23] GERHOLD,S.,MUHLE-KARBE,J.andSCHACHERMAYER, W. (2013). The dual optimizer for the growth-optimal portfolio under transaction costs. Finance Stoch. 17 325–354. MR3038594 [24] GUASONI, P. (2002). Optimal investment with transaction costs and without semimartingales. Ann. Appl. Probab. 12 1227–1246. MR1936591 [25] GUASONI, P. (2002). Risk minimization under transaction costs. Finance Stoch. 6 91–113. MR1885585 [26] GUASONI, P. (2006). No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Finance 16 569–582. MR2239592 [27] GUASONI,P.andMUHLE-KARBE, J. (2015). Long horizons, high risk aversion, and endoge- nous spreads. Math. Finance 25 724–753. [28] GUASONI,P.,RÁSONYI,M.andSCHACHERMAYER, W. (2008). Consistent price systems and face-lifting pricing under transaction costs. Ann. Appl. Probab. 18 491–520. MR2398764 [29] HE,H.andPEARSON, N. D. (1991). Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite-dimensional case. J. Econom. Theory 54 259–304. MR1122311 [30] HERCZEGH,A.andPROKAJ, V. (2015). Shadow price in the power utility case. Ann. Appl. Probab. 25 2671–2707. MR3375886 [31] JOUINI,E.andKALLAL, H. (1995). Martingales and arbitrage in securities markets with trans- action costs. J. Econom. Theory 66 178–197. MR1338025 [32] KABANOV, Y. M. (1999). Hedging and liquidation nuder transaction costs in currency markets. Finance Stoch. 3 237–248. [33] KALLSEN,J.andMUHLE-KARBE, J. (2010). On using shadow prices in portfolio optimization with transaction costs. Ann. Appl. Probab. 20 1341–1358. MR2676941 [34] KALLSEN,J.andMUHLE-KARBE, J. (2011). Existence of shadow prices in finite probability spaces. Math. Methods Oper. Res. 73 251–262. MR2776563 [35] KARATZAS,I.andKARDARAS, C. (2007). The numéraire portfolio in finan- cial models. Finance Stoch. 11 447–493. MR2335830 [36] KARATZAS,I.,LEHOCZKY,J.P.,SHREVE,S.E.andXU, G.-L. (1991). Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29 702–730. MR1089152 [37] KARDARAS, C. (2012). Market viability via absence of arbitrage of the first kind. Finance Stoch. 16 651–667. MR2972237 [38] KRAMKOV,D.andSCHACHERMAYER, W. (1999). The asymptotic elasticity of utility func- tions and optimal investment in incomplete markets. Ann. Appl. Probab. 9 904–950. MR1722287 [39] LOEWENSTEIN, M. (2000). On optimal portfolio trading strategies for an investor facing trans- actions costs in a continuous trading market. J. Math. Econom. 33 209–228. MR1740791 [40] MAGILL,M.J.P.andCONSTANTINIDES, G. M. (1976). Portfolio selection with transactions costs. J. Econom. Theory 13 245–263. MR0469196 [41] MERTENS, J.-F. (1972). Théorie des processus stochastiques généraux applications aux sur- martingales. Z. Wahrsch. Verw. Gebiete 22 45–68. MR0346895 [42] PLISKA, S. R. (1986). A stochastic calculus model of continuous trading: Optimal portfolios. Math. Oper. Res. 11 370–382. MR0844013 [43] SCHACHERMAYER, W. (2004). Portfolio Optimization in Incomplete Financial Markets. Scuola Normale Superiore, Classe di Scienze, Pisa. MR2144570 [44] SCHACHERMAYER, W. (2014). Admissible trading strategies under transaction costs. In Sémi- naire de Probabilités XLVI. Lecture Notes in Math. 2123 317–331. Springer, Cham. MR3330822 [45] SCHACHERMAYER, W. (2014). The super-replication theorem under proportional transaction costs revisited. Math. Financ. Econ. 8 383–398. MR3275428 [46] SHREVE,S.E.andSONER, H. M. (1994). Optimal investment and consumption with trans- action costs. Ann. Appl. Probab. 4 609–692. MR1284980 [47] TAKSAR,M.,KLASS,M.J.andASSAF, D. (1988). A diffusion model for optimal portfolio selection in the presence of brokerage fees. Math. Oper. Res. 13 277–294. MR0942619 [48] ŽITKOVIC´ , G. (2002). A filtered version of the bipolar theorem of Brannath and Schacher- mayer. J. Theoret. Probab. 15 41–61. MR1883202 The Annals of Applied Probability 2016, Vol. 26, No. 3, 1942–1946 DOI: 10.1214/15-AAP1121 © Institute of Mathematical Statistics, 2016

A NOTE ON THE EXPANSION OF THE SMALLEST EIGENVALUE DISTRIBUTION OF THE LUE AT THE HARD EDGE1

BY FOLKMAR BORNEMANN Technische Universität München In a recent paper, Edelman, Guionnet and Péché conjectured a particular − n 1 correction term of the smallest eigenvalue distribution of the Laguerre unitary ensemble (LUE) of order n in the hard-edge scaling limit: specifi- cally, the derivative of the limit distribution, that is, the density, shows up in that correction term. We give a short proof by modifying the hard-edge − scaling to achieve an optimal O(n 2) rate of convergence of the smallest eigenvalue distribution. The appearance of the derivative follows then by a Taylor expansion of the less optimal, standard hard-edge scaling. We relate − the n 1 correction term further to the logarithmic derivative of the Bessel kernel Fredholm determinant in the work of Tracy and Widom.

REFERENCES

[1] ABRAMOWITZ,M.andSTEGUN, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Washington, DC. MR0167642 [2] ANDERSON,G.W.,GUIONNET,A.andZEITOUNI, O. (2010). An Introduction to Random Matrices. Cambridge Univ. Press, Cambridge. MR2760897 [3] CHOUP, L. N. (2006). Edgeworth expansion of the largest eigenvalue distribution function of GUE and LUE. Int. Math. Res. Not. Art. ID 61049, 32. MR2233711 [4] EDELMAN,A.,GUIONNET,A.andPÉCHÉ, S. (2014). Beyond universality in random matrix theory. Preprint. Available at arXiv:1405.7590. [5] FORRESTER, P. J. (1993). The spectrum edge of random matrix ensembles. Nuclear Phys. B 402 709–728. MR1236195 [6] FORRESTER, P. J. (2010). Log-Gases and Random Matrices. Princeton Univ. Press, Princeton, NJ. MR2641363 [7] JOHNSTONE,I.M.andMA, Z. (2012). Fast approach to the Tracy–Widom law at the edge of GOE and GUE. Ann. Appl. Probab. 22 1962–1988. MR3025686 [8] MOECKLIN, E. (1934). Asymptotische Entwicklungen der Laguerreschen Polynome. Com- ment. Math. Helv. 7 24–46. MR1509498 [9] SCHEHR, G. (2014). On the smallest eigenvalue at the hard edge of the Laguerre ensemble of complex random matrices: 1/N corrections, talk at FOCM’14, December 16, 2014, Mon- tevideo, joint work with Anthony Perret, available at the http://lptms.u-psud.fr/gregory- schehr/files/2014/12/Talk_FOCM.pdf. [10] SZEGO˝ , G. (1975). Orthogonal Polynomials, 4th ed. Amer. Math. Soc., Providence, RI. MR0372517 [11] TRACY,C.A.andWIDOM, H. (1994). Level spacing distributions and the Bessel kernel. Comm. Math. Phys. 161 289–309. MR1266485

MSC2010 subject classifications. Primary 60F05; secondary 15B52. Key words and phrases. Rate of convergence, random matrix, smallest eigenvalue, LUE. [12] TRICOMI, F. (1947). Sulle funzioni ipergeometriche confluenti. Ann. Mat. Pura Appl.(4)26 141–175. MR0029451