Journal of Glaciology, Vol. 52, No. 178, 2006 451 Glacier mass balances (1993–2001), Taylor Valley, McMurdo Dry Valleys, Antarctica Andrew G. FOUNTAIN,1 Thomas H. NYLEN,1 Karen L. MacCLUNE,2* Gayle L. DANA3 1Departments of Geology and Geography, Portland State University, PO Box 751, Portland, Oregon 97207-0751, USA E-mail:
[email protected] 2Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309-0450, USA 3Desert Research Institute, University of Nevada, Reno, Nevada 89512-1095, USA ABSTRACT. Mass balances were measured on four glaciers in Taylor Valley, Antarctica, from 1993 to 2001. We used a piecewise linear regression, which provided an objective assessment of error, to estimate the mass balance with elevation. Missing measurements were estimated from linear regressions between points and showed a significant improvement over other methods. Unlike temperate glaciers the accumulation zone of these polar glaciers accumulates mass in summer and winter and the ablation zone loses mass in both seasons. A strong spatial trend of smaller mass-balance values with distance inland (r2 = 0.80) reflects a climatic gradient to warmer air temperatures, faster wind speeds and less precipitation. Annual and seasonal mass-balance values range only several tens of millimeters in magnitude and no temporal trend is evident. The glaciers of Taylor Valley, and probably the entire McMurdo Dry Valleys, are in equilibrium with the current climate, and contrast with glacier trends elsewhere on the Antarctic Peninsula and in temperate latitudes. INTRODUCTION report the results of our mass-balance program. Because of The global distribution of glacier mass-balance programs is the low values of mass exchange, we altered the typical concentrated in the temperate regions (Dyurgerov and approach to mass-balance measurements to include an Meier, 2000), with comparatively few observations from improved estimate of measurement error and the resulting the polar regions.