The Use of Tui Chub As Food by Indians of the Western Great Basin

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Tui Chub As Food by Indians of the Western Great Basin UC Merced Journal of California and Great Basin Anthropology Title The Use of Tui Chub as Food by Indians of the Western Great Basin Permalink https://escholarship.org/uc/item/4r06g8j5 Journal Journal of California and Great Basin Anthropology, 12(1) ISSN 0191-3557 Authors Raymond, Anan W Sobel, Elizabeth Publication Date 1990-07-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of California and Great Basin Anthropology Vol. 12, No. 1, pp. 2-18 (1990). The Use of Tui Chub as Food by Indians of the Western Great Basin ANAN W. RAYMOND, U.S. Fish and Wildlife Service, 911 NE 11th Ave., Portland, OR 97232. ELIZABETH SOBEL, US. Bureau of Land Management, P.O. Box 1602, Klamath Falls, OR 97601. o',N the following pages we explore the Lahontan Basin. G. b. pectinifer is restricted harvesting and processing of tui chub by to the open water of large lakes while G. b. aboriginal people in the western Great Basin. obesa also swims streams and marshes. Existing archaeological, ethnographic, and Morphologically the two subspecies can be biological data identity the most common distinguished by the number of gill rakers and method of tui chub acquisition, processing, pharyngeal teeth (La Rivers 1962:410-421; and consumption. The data guide 12 exper­ Gialat and Vucinich 1983). iments where we document the effort required Tui chub reproduce rapidly. A Pyramid to harvest and initially process tui chub for Lake chub will produce as many as 68,900 food. We calculate the number of food eggs a year, with an average of 23,300 calories returned per hour of fishing and (Kimsey 1954; Sigler and Sigler 1987:169). processing effort. The experiments help rank Chub spawn over sandy bottoms or beds of tui chub relative to other food resources in vegetation in shallow water. All eggs do not the Great Basin (cf. Simms 1984). However, ripen at the same time, so multiple spawning we make no assertions about optimal foraging probably is common (Moyle 1976:169). The behavior of Great Basin aboriginal people. fish larvae hatch and begin feeding in less Rather, we simply demonstrate that tui chub than nine days. Rapid reproduction contribut­ are an abundant, easily harvested resource ed to a population explosion of tui chub in that provides high calories and protein with Carson Sink when it flooded from 1983 to relatively little effort. And the Indians of the 1987. An estimated 15 million tui chub swam western Great Basin took advantage of this. the 200,000-acre lake in 1987 (Stillwater National Wildlife Management Area 1988). BIOLOGY The Sink was dry in 1982 and 1988. The tui chub (Gila hicolor) is a minnow Increasing springtime water temperature (Fig. 1) that inhabits the Great Basin (60 ° -65 ° F.) triggers spawning, schooling, and drainages of California, Oregon, and Nevada. movement to shallow waters. Depending on In the Lahontan Basin the fish has adapted to the body of water, spawning occurs as early as many environments: from the cold, clear late April or as late as early August. The waters of Lake Tahoe to the alkaline waters springtime reappearance of tui chub in lakes of Pyramid Lake. The fish swims the is sudden and spectacular. At Pyramid Lake: Truckee, Carson, Walker, Quinn, and Hum­ On May 20 the weather suddenly settled and boldt rivers as well as the ponds and sloughs became warm. About 2 o'clock the follow­ of Stillwater Marsh (Fig. 2). The adaptability ing morning there was heard a vigorous lapping of the water, which in the quiet air appeared of tui chub has produced several subspecies. entirely without cause until it was found to G. b. obesa and G. b. pecdnifer are the two accompany the leaping of vast numbers of most commonly recognized morphs in the fishes. Far out and up and down the shores the THE USE OF TUI CHUB AS FOOD ~ %.lC«£1K£^K'fSK;l e^SyKaK''^- Fig. 1. Tui chub, Gila bicolor. 10.0 cm. and 9.0 cm. in length. surface of the water fairly boiled. Spring had mean a bountiful chub supply as it did in come, and with it, in the dim light of early Carson Sink in the mid-1980s. Tui chub form morning, myriads of fishes from the depths of the lake. Daylight revealed them [tui chub] large schools, some (in Pyramid and Walker everywhere, along the shore, among the Lake) over 100 yards across. Although cold boulders, and in the algae, hovering in temperatures and large waves will drive some enormous schools over the bars and moving chub to deeper water, younger, smaller chub about in the clear water of the sheltered bays [Snyder 1917:66-67]. prefer to school in shallow water close to shore. Thus large schools can be found easily Growth is rapid during the first summer from late spring to mid-autumn. Lacking of life, the chubs reaching 22-42 mm. in direct observation, the Indians could have length. By the end of their second summer located them by monitoring the behavior of the chubs are typically 37-98 mm. long. In fish-eating birds. We have watched American subsequent summers they add 20-50 mm. de­ white pelicans herd schools of tui chub across pending on the body of water. Old age is shoals and into bays where they scoop up and reached at seven years. The length of a devour the minnows (see also Knopf and mature adult is 20-25 cm. with 30-40 cm. Kennedy 1980). Tui chub schools in shallow lengths found in large lakes (Moyle 1976:167). water are easy prey for people, armed with The nature and behavior of tui chubs mass-harvesting equipment such as giU or dip make them easy to capture. The filling of a nets, and working from shore or in light-duty formerly dry playa for even a few years could (tule) boats. 4 JOURNAL OF CALIFORNIA AND GREAT BASIN ANTHROPOLOGY Winnemucca Lake (dry Humboldt Sink ,„/ Stillwater ^ji/, — Marsh •--..I// .11, -=- X Hidden Cave Lake Tahoe N Fig. 2. Major habitats and archaeological sites with tui chub. THE USE OF TUI CHUB AS FOOD Modern fishery biologists describe tui see also Curtis 1926:75; Stewart 1941:370- chub as "sweet and palatable" (Snyder 371). Gill nets and dip nets select fish differ­ 1917:62), although bony. The postcranial ently. Gill nets entrap fish within a narrow skeletal structure pervades much of the meat. size range. Tui chub too smaU to be caught Tui chub do not yield bone-free fiUets like the by their gills swim through a gill net. Large familiar trout (K. Johnson, personal com­ chub simply back out of the net before getting munication 1990). caught. On the other hand, a dip net will harvest fish in a variety of sizes. All fish with THE ETHNOGRAPHIC RECORD a diameter larger than the net mesh will be The Northern Paiute fished for tui chub scooped into a dip net. in many ways, including baited set and trot Shallow areas of lakes, ponds, and sloughs lines, basket traps, and weirs. However, dip which accommodate spawning or schooling tui nets and gUl nets (Table 1) were the primary chub are best exploited with fish nets. Suc­ tools (Fowler and Bath 1981; Fowler 1989:30- cessful use of a dip net requires strength, skill, 34). Northern Paiute gill nets were about 20- and active participation by the person fishing. 25 m. long and a meter deep. Tule floats, A gill net, in contrast, is a passive fishing tool. willow sticks, and stone weights suspended the Once an appropriate place has been identi­ nets, unattended, in shallow water. A fine- fied, almost anybody can deploy, monitor, and gauge twine rendered the net relatively harvest a gill net. However, ethnographic invisible under water. Mesh size ranged from reports of fishing cliques and joint net owner­ 1 to 4 cm. square. ship indicate that the technology and sociology "In their tule boats" the Toedokado of behind gill-net fishing is not a casual affair Stillwater Marsh "fished with their nets . (Speth 1969:234). Likewise, the manufacture, for the very tiny fish [tui chub], like the maintenance, and repair of a gill net com­ sardines; there were so many of them" (Stone mand considerable time and a skilled hand. 1987-1988:42-44). But gUl nets are easy to use. The person Willard Park reported (Fowler 1989:33) fishing simply sets the net and retrieves the that among the Walker River Paiute: fish or net several hours later. The same [Gill] nets were used more than anything else location can be harvested for weeks (Speth to catch fish in the [Walker] lake. The nets are 1969:234). During the height of spring activity 25 yards long, 4-5 feet high. A net was owned a gill net will become saturated with tui chub by one man. Sticks were put in the bottom of the lake in shallow water near shore. The net in a few hours. At other times, the net must was placed on these stakes. It was left all set for 24 hours to intercept the daily night. The fish were taken out of the nets each schedule of the chub. But the person fishing morning and evening. must harvest the net on a regular basis. Dip nets approximate rectangles in shape, Leaving an unharvested net in the water for usually 3-4 m. by 3-6 m. The net is attached days wUl not increase the catch. Some chub to two long poles. The fisherman stands eventually wiggle free of the gill net.
Recommended publications
  • Indiana Species April 2007
    Fishes of Indiana April 2007 The Wildlife Diversity Section (WDS) is responsible for the conservation and management of over 750 species of nongame and endangered wildlife. The list of Indiana's species was compiled by WDS biologists based on accepted taxonomic standards. The list will be periodically reviewed and updated. References used for scientific names are included at the bottom of this list. ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* CLASS CEPHALASPIDOMORPHI Petromyzontiformes Petromyzontidae Ichthyomyzon bdellium Ohio lamprey lampreys Ichthyomyzon castaneus chestnut lamprey Ichthyomyzon fossor northern brook lamprey SE Ichthyomyzon unicuspis silver lamprey Lampetra aepyptera least brook lamprey Lampetra appendix American brook lamprey Petromyzon marinus sea lamprey X CLASS ACTINOPTERYGII Acipenseriformes Acipenseridae Acipenser fulvescens lake sturgeon SE sturgeons Scaphirhynchus platorynchus shovelnose sturgeon Polyodontidae Polyodon spathula paddlefish paddlefishes Lepisosteiformes Lepisosteidae Lepisosteus oculatus spotted gar gars Lepisosteus osseus longnose gar Lepisosteus platostomus shortnose gar Amiiformes Amiidae Amia calva bowfin bowfins Hiodonotiformes Hiodontidae Hiodon alosoides goldeye mooneyes Hiodon tergisus mooneye Anguilliformes Anguillidae Anguilla rostrata American eel freshwater eels Clupeiformes Clupeidae Alosa chrysochloris skipjack herring herrings Alosa pseudoharengus alewife X Dorosoma cepedianum gizzard shad Dorosoma petenense threadfin shad Cypriniformes Cyprinidae Campostoma anomalum central stoneroller
    [Show full text]
  • Iowa's Curious Record for Lake Chub
    5 American Currents Vol. 41, No. 4 IOWA’S CURIOUS RECORD FOR LAKE CHUB (COUESIUS PLUMBEUS) John Olson Iowa Department of Natural Resources, Des Moines The Lake Chub Couesius( plumbeus) is a relatively large, slender-bodied minnow (Family: Cyprinidae) commonly reaching lengths of 4–5 inches and reaching a reported maximum of nearly 9 inches (Figure 1). There is usually a slender barbel near the tip of the maxillary. The Lake Chub is dark olive dorsally and is dusky white ventrally with a dark lateral band extending from the base of the caudal fin to the snout. Although superficially resembling the Creek Chub (Semotilus atromaculatus), the Lake Chub lacks the Figure 1. Lake Chub (Couesius plumbeus). (Photo by Konrad Creek Chub’s dark spot at the base of the caudal fin and the Schmidt) dark spot at the anterior base of the dorsal fin. The North- ern Pearl Dace (Margariscus nachtriebi) also bears a re- record is based on a collection made in 1954 just west of semblance to the Lake Chub but has a shorter, more blunt Dubuque in northeastern Iowa. snout, has a somewhat less laterally compressed body, and According to published accounts, the Lake Chub is a lacks the red streak along the lower side of the body of habitat generalist, at least within its northern-trending and the large male Pearl Dace (Page and Burr 2011). The Lake Chub has the most northerly and widespread distribution of any North American cyprinid and it ranges from Alas- ka east to Nova Scotia and south to the Great Lakes of the northern United States with scattered relict populations known from the upper Missouri River basin drainage of Wyoming, Colorado, South Dakota, and Nebraska (Figure 2).
    [Show full text]
  • Omineca Burbot Creel, Habitat and Population Assessment Project
    Omineca Burbot Creel, Habitat and Population Assessment Project; Results of Surveys of Sport-Ice Fisheries and Assessments of Burbot (Lota lota) Populations in Saxton, Nukko, Eaglet, Cluculz and Norman lakes Grant Agreement #TROP7047 BC Ministry of Environment, Mountain Pine Beetle Response Prepared by the: Lheidli T'enneh First Nation 1041 Whenun Road Prince George, B.C. V2K 5X8 Submitted to: Brady Nelless, Mountain Pine Beetle Biologist BC Ministry of Environment 4051 18th Avenue Prince George, BC V2N 1B3 December 2007 Omineca Burbot Creel, Habitat and Population Assessment Project; 2007 BC Ministry of Environment, Mountain Pine Beetle Response Table of Contents List of Figures .....................................................................................................ii List of Tables.......................................................................................................ii List of Appendices.............................................................................................iii Acknowledgements ...........................................................................................iv Executive Summary............................................................................................1 Introduction.........................................................................................................2 Study Area & Lakes...........................................................................................2 Purpose.............................................................................................................3
    [Show full text]
  • Care and Spawning of the Endangered Mohave Tui Chub in Captivity Thomas P
    9 American Currents Vol. 35, No. 2 Care and Spawning of the Endangered Mohave Tui Chub in Captivity Thomas P. Archdeacon and Scott A. Bonar (TA, SB) School of Natural Resources, University of Arizona, 104 Biological Science East, Tucson, AZ 85721 (TA, current address) New Mexico Fishery Resources Office, 3800 Commons Blvd, Albuquerque, NM 87109, [email protected] aptive spawning of endangered species can be an lect and study these fishes in captivity. Here, we examine the important part in the recovery of a species. Mohave tui chub in captivity (Fig. 1), and examine some Working in a controlled setting allows accurate methods that resulted in natural spawning in captivity. C observations of early life-history traits, and cap- Mohave tui chub are the only native fish in the Mojave tive-produced offspring can reduce collection of wild fish for River basin, and are probably not closely related to other Gila experimental studies and translocations (Buyanak and Mohr, chubs, often placed in their own genus, Siphateles. There are 1981; Rakes et al., 1999). Many endangered fishes, including no less than 13 described subspecies of tui chub in the United endangered cyprinids such as Colorado pikeminnow, bony- States, ranging from Oregon, to the southernmost population tail, humpback chub, and roundtail chub, have been spawned in the Mojave basin. Populations of Mohave tui chub declined in the laboratory (Hamman, 1982a, 1982b). Species in the in the Mojave River after the 1930s, when competition genus Gila seem to be particularly easy to spawn in captivity, occurred with arroyo chubs G. orcutti (Hubbs and Miller, three additional species have been spawned in captivity at the 1943), which were believed to have been introduced into the University of Arizona, including Gila chub (Gila intermedia), headwaters by anglers.
    [Show full text]
  • Fish Lake Valley Tui Chub Listing Petition
    BEFORE THE SECRETARY OF INTERIOR PETITION TO LIST THE FISH LAKE VALLEY TUI CHUB (SIPHATELES BICOLOR SSP. 4) AS A THREATENED OR ENDANGERED SPECIES UNDER THE ENDANGERED SPECIES ACT Tui Chub, Siphateles bicolor (Avise, 2016, p. 49) March 9, 2021 CENTER FOR BIOLOGICAL DIVERSITY 1 March 9, 2021 NOTICE OF PETITION David Bernhardt, Secretary U.S. Department of the Interior 1849 C Street NW Washington, D.C. 20240 [email protected] Martha Williams Principal Deputy Director U.S. Fish and Wildlife Service 1849 C Street NW Washington, D.C. 20240 [email protected] Amy Lueders, Regional Director U.S. Fish and Wildlife Service P.O. Box 1306 Albuquerque, NM 87103-1306 [email protected] Marc Jackson, Field Supervisor U.S. Fish and Wildlife Service Reno Fish and Wildlife Office 1340 Financial Blvd., Suite 234 Reno, Nevada 89502 [email protected] Dear Secretary Bernhardt, Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. § 1533(b); section 553(e) of the Administrative Procedure Act (APA), 5 U.S.C. § 553(e); and 50 C.F.R. § 424.14(a), the Center for Biological Diversity, Krista Kemppinen, and Patrick Donnelly hereby petition the Secretary of the Interior, through the U.S. Fish and Wildlife Service (“FWS” or “Service”), to protect the Fish Lake Valley tui chub (Siphateles bicolor ssp. 4) as a threatened or endangered species. The Fish Lake Valley tui chub is a recognized, but undescribed, subspecies of tui chub. Should the service not accept the tui chub as valid subspecies we request that it be considered as a distinct population as it is both discrete and significant.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • Mountain Lakes Guide: Absaroka, Beartooth & Crazies
    2021 MOUNTAIN LAKES GUIDE Silver Lake ABSAROKA - BEARTOOTH & CRAZY MOUNTAINS Fellow Angler: This booklet is intended to pass on information collected over many years about the fishery of the Absaroka-Beartooth high country lakes. Since Pat Marcuson began surveying these lakes in 1967, many individuals have hefted a heavy pack and worked the high country for Fish, Wildlife and Parks. They have brought back the raw data and personal observations necessary to formulate management schemes for the 300+ lakes in this area containing fish. While the information presented here is not intended as a guide for hiking/camping or fishing techniques, it should help wilderness users to better plan their trips according to individual preferences and abilities. Fish species present in the Absaroka-Beartooth lakes include Yellowstone cutthroat trout, brook trout, rainbow trout, golden trout, arctic grayling, and variations of cutthroat/rainbow/golden trout hybrids. These lake fisheries generally fall into two categories: self-sustaining and stocked. Self-sustaining lakes have enough spawning habitat to allow fish to restock themselves year after year. These often contain so many fish that while fishing can be fast, the average fish size will be small. The average size and number of fish present change very little from year to year in most of these lakes. Lakes without spawning potential must be planted regularly to sustain a fishery. Standard stocking in the Beartooths is 50-100 Yellowstone cutthroat trout fingerlings per acre every eight years. Special situations may call for different species, numbers, or frequency of plants. For instance, lakes with heavy fishing pressure tend to be stocked more often and at higher densities.
    [Show full text]
  • Summary Report No
    Canadian Manuscript Report of Fisheries and Aquatic Sciences 2614 2002 Life History Characteristics Of Freshwater Fishes Occurring in the Northwest Territories and Nunavut, With Major Emphasis on Riverine Habitat Requirements by C.L. Evans1, J.D. Reist1 and C.K. Minns2 1. Department of Fisheries and Oceans, Arctic Fish Ecology and Assessment Research, Central and Arctic Division, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 Canada 2. Department of Fisheries and Oceans, Great Lakes Laboratory of Fisheries and Aquatic Sciences, Bayfield Institute, 867 Lakeshore Road, P.O. Box 5050, Burlington, Ontario, L7R 4A6 Canada. Her Majesty the Queen in Right of Canada, 2002 Cat. No. Fs 97-4/2614E ISSN 0706-6473 Correct citation of this publication: Evans, C.E., J.D. Reist and C.K. Minns. 2002. Life history characteristics of freshwater fishes occurring in the Northwest Territories and Nunavut, with major emphasis on riverine habitat requirements. Can. MS Rep. Fish. Aquat. Sci. 2614: xiii + 169 p. ii TABLE OF CONTENTS LIST OF FIGURES .......................................................................................................... v LIST OF TABLES............................................................................................................ v ABSTRACT ...................................................................................................................viii RÉSUMÉ ........................................................................................................................viii INTRODUCTION............................................................................................................
    [Show full text]
  • Frequently Asked Questions Proposed Rule to Remove Borax Lake Chub from the Federal List of Threatened and Endangered Species
    Frequently Asked Questions Proposed Rule to Remove Borax Lake Chub from the Federal List of Threatened and Endangered Species What action is being taken by the U.S. Fish and Wildlife Service? The Service is proposing to remove Borax Lake chub (Siphateles boraxobius) from the list of threatened and endangered species (delist) under the Endangered Species Act. What type of fish are these? The Borax Lake chub is a small minnow in the Family Cyprinidae, found only in Borax Lake of Harney County, Oregon. It is an opportunistic omnivore, eating both plants and animals. The diets of juveniles and adults are similar and include aquatic and terrestrial insects, algae, mollusks and mollusk eggs, aquatic worms, fish scales, spiders, and seeds. Males, and some females, reach reproductive maturity within one year. Spawning primarily occurs in the spring but can occur year-around. The reproductive behavior and length of incubation is unknown. Where is this fish found? The only place in the world where Borax Lake chub lives is Borax Lake. Borax Lake lies in the Alvord Basin, part of the larger Great Basin, which was dominated by a much larger Alvord Lake approximately 10,000 years ago. As Alvord Lake receded, native fishes became restricted to remaining springs, lakes, and creeks. Individuals from Alvord Lake’s ancestral chub became isolated in the geothermal springs of Borax Lake and over time the isolation and unique environmental conditions resulted in adaptations that differentiated the fish into the species now recognized as Borax Lake chub. Borax Lake is a 10.2 acre geothermally heated alkaline spring-fed lake in southeastern Oregon.
    [Show full text]
  • 2013 Fish and Fish Habitat Survey Results Slater River Project EL494 Tulita District, Sahtu Region, Northwest Territories
    Prepared for HUSKY OIL OPERATIONS LIMITED 707 – 8th Avenue SW Box 6525, Station D Calgary, Alberta T2P 3G7 2013 Fish and Fish Habitat Survey Results Slater River Project EL494 Tulita District, Sahtu Region, Northwest Territories Submitted to: Sahtu Land and Water Board File 25500832 ǀ February 2014 Northern EnviroSearch (Tulita) Ltd. A partnership between MWH Canada, Inc. & Tulita Water Services Ltd. 600 -6 Avenue S.W., Suite 1010 Calgary, Alberta T2P OS5 TEL 403 543 5353 I FAX 403 233 2513 HUSKY OIL OPERATIONS LIMITED | 2013 HYDROLOGICAL & SURFACE WATER EVALUATION SLATER RIVER PROJECT, TULITA DISTRICT, SAHTU REGION, NORTHWEST TERRITORIES Table of Contents List of Figures ................................................................................................................ 3 List of Tables .................................................................................................................. 3 1 Introduction ............................................................................................................ 1 1.1 Project Description ..............................................................................................................1 1.2 Objectives ...........................................................................................................................1 1.3 Approach ............................................................................................................................1 1.4 Study Area ..........................................................................................................................1
    [Show full text]
  • Federal Register/Vol. 86, No. 150/Monday, August 9, 2021
    43470 Federal Register / Vol. 86, No. 150 / Monday, August 9, 2021 / Proposed Rules How can I get copies of the proposed digital television service, including Federal Communications Commission. action and other related information? propagation characteristics that allow Thomas Horan, EPA has established a docket for this undesired signals and noise to be Chief of Staff, Media Bureau. receivable at relatively far distances and action under Docket ID No. EPA–HQ– Proposed Rule OAR–2021–0208. EPA has also nearby electrical devices to cause developed a website for this proposal, interference. According to the For the reasons discussed in the which is available at https:// Petitioner, it has received numerous preamble, the Federal Communications www.epa.gov/regulations-emissions- complaints of poor or no reception from Commission proposes to amend 47 CFR vehicles-and-engines/proposed-rule- viewers, and explains the importance of part 73 as follows: revise-existing-national-ghg-emissions. a strong over-the-air signal in the Portland area during emergencies, PART 73—RADIO BROADCAST Please refer to the notice of proposed SERVICES rulemaking for detailed information on when, it states, cable and satellite accessing information related to the service may go out of operation. Finally, ■ 1. The authority citation for part 73 proposal. the Petitioner demonstrated that the continues to read as follows: channel 21 noise limited contour would Dated: July 29, 2021. fully encompass the existing channel 12 Authority: 47 U.S.C. 154, 155, 301, 303, William Charmley, contour, and an analysis using the 307, 309, 310, 334, 336, 339. Director, Assessment and Standards Division, Commission’s TVStudy software ■ 2.
    [Show full text]