The Hill Reaction of Photosynthesis in Isolated Chloroplasts a Quantitative Approach

Total Page:16

File Type:pdf, Size:1020Kb

The Hill Reaction of Photosynthesis in Isolated Chloroplasts a Quantitative Approach :How~T-.TDo-It- I:. The Hil Reaction of Photosynthesis in Isolated Chioroplasts A Quantitative Approach Rob L. Dean Downloaded from http://online.ucpress.edu/abt/article-pdf/58/5/303/47660/4450156.pdf by guest on 02 October 2021 The assay to determine the rate of + 2H20 - 4H 4e + 02 Stock Solutions photoreduction of 2,6-dichloropheno- lindophenol (DCPIP) described here Variants of this assay are widely 1. Chloroplast isolation buffer has been used in a new course entitled used in student laboratories but in the (modified from Hopkins 1990): "Scientific Methods in Biology." The published and unpublished laboratory 50 mM tricine, 400 mM sorbitol, purpose of this laboratory course is to manuals that I have encountered, the 10 mM NaCl, 2.5 mM MgCl2- acquaint students with experimental considerable potential for the quanti- 6H20, 1.25 mM MnCl2, 0.3 mM design and teach them how to evalu- tative analysis of the data that it pro- Na2EDTA. Adjust pH to 7.8 with ate and communicate their results. vides is not fully exploited. By refer- NaOH. One goal is to enhance the scientific ence to a standard curve of absorbance 2. Chloroplast reaction buffer (5X literacy of our students by integrating at 600 nm against DCPIP concentra- concentrated, modified from basic chemistry and arithmetic, used tion, one can determine the change in Hopkins 1990): routinely in research laboratories, into molarity and hence the number of 250 mM tricine, 500 mM sorbitol, their practical experience. moles of DCPIP reduced in a given 100 mM KCl, 25 mM MgCl2. The principles on which the assay is time. Since 1 mole of DCPIP contains 6H20, pH adjusted to 8.0 with based were worked out by Robin Hill 6.0247 x 1023 (Avogadro's number) NaOH routinely but pH 6.0-8.0 in the 1930s. Hill used artificial elec- molecules of DCPIP, the number of will work. tron acceptors, including DCPIP, to molecules of DCPIP that have been 3. 90% aqueous acetone. trap electrons passed to the electron reduced can be determined. Conse- 4. 0.2 mM 2,6-dichlorophenolindo- transport chain from photosystem II quently, from the stoichiometry of phenol (DCPIP) (BDH Chemicals when isolated chloroplasts are ex- Equations 1 and 2, the number of Ltd.). posed to light. As the blue, oxidized electrons transferred to reduce the 5. 2 mercaptoethanol (BDH Labora- form of DCPIP becomes reduced it DCPIP, the amount of water oxidized tory Supplies). becomes colorless, so the progress of to produce these electrons, and the the reaction can be monitored by the amount of oxygen evolved in the pro- change in absorbance at 600 nm of the cess can be easily estimated. Such es- Procedure DCPIP solution (Equation 1). timates, based on reactions that occur Quantities given are those I use for within the chloroplasts, refocus the one lab period with nine groups of DCPIP2H+ +2e students' attention on the biological four students. (blue) process under investigation. Chloroplast Isolation DCPIP - H2 Weigh 25 g of barley coleoptiles or (colorless) spinach leaves from which the petioles Equipment and major veins have been removed. The electrons involved in the reduc- Rinse leaves in ice water and pat dry. tion of DCPIP ultimately come from Spectrophotometers and suitable Cut the leaves into smaller fragments the oxidation of water by the oxygen- cuvettes or tubes with scissors and place them in a evolving complex of photosystem II Lamps with 100-watt frosted bulbs blender cup that has been stored in the (Equation 2). Domestic blender freezer. Add 100 ml of cold chloroplast 10-ml volumetric pipets isolation buffer to which 60 p1 of Variable volume micropipets (10- 2-mercaptoethanol has been freshly 100 j1) with tips added. Blend leaves in buffer with x Rob L is Cell 3 Dean, Ph.D., the Biology Parafilm Course Coordinatorin the Zoology De- 5 second bursts at full speed. Filter partment, Biology & Geology Building, Li-Cor-L1-189 quantum/radiometer/ the blended mixture (called a brei) Universityof Western Ontario, London, photometer with a quantum sen- through four layers of cheesecloth into ON N6A5B7, Canada. sor a 250-ml beaker on ice. Transfer 10 ml Clinical centrifuge aliquots of the filtrate into six 15-ml PHOTOSYNTHESIS303 centrifuge tubes. [I prefer graduated Pyrex tubes because they facilitatethis Table 1. Contents of the reaction tubes for the sample experiment. and a later volume adjustment]. Cen- x 10-4 5 x Chloroplast trifuge the filtrate for five minutes at 2 M Reaction Distilled 1300 x g (this is setting #7 on a Tube DCPIP(ml) Buffer(ml) H20 (ml) Prep(,ul) standard clinical centrifuge containing 1 Exp (5 cm) 1.0 1.0 3.0 swinging buckets with a 15-cm radius 2 Exp (10 cm) 1.0 1.0 3.0 from the axis of rotation). Discard the 3 Exp (15 cm) 1.0 1.0 3.0 supernatants and add chloroplast iso- 4 Exp (20 cm) 1.0 1.0 3.0 A volume lation buffer containing 0.6 pl/ml of 5 Exp (25 cm) 1.0 1.0 3.0 containing 25mg 2-mercaptoethanolto each pellet up to 6 Exp (30 cm) 1.0 1.0 3.0 of chlorophyll the 0.4 ml mark. Resuspend the pellets 7 Exp (40 cm) 1.0 1.0 3.0 (to be calculated) with a paintbrush and pool them in a 8 Exp (50 cm) 1.0 1.0 3.0 single tube. This is the chloroplast 9 Control (dark) 1.0 1.0 3.0 preparation. It is far from pure as it 10 Blank - 1.0 4.0 contains nuclei and other cellularcom- ponents, but since the chloroplastsare the only photoactive constituents, fur- tion mixture, that volume is given by: (in this case, 31 ,u) to the blank tube ther purificationdoes not improve the 25 (#10). Mix thoroughly and use the assay. 259= 13.2 pJ of chloroplastsuspension. blank to set the spectrophotometerto Downloaded from http://online.ucpress.edu/abt/article-pdf/58/5/303/47660/4450156.pdf by guest on 02 October 2021 an absorbanceof 0. Estimationof the Total A Sample Experiment The remainderof the experiment is ChlorophyllConcentration in the performed in a darkened room. The Chloroplast Suspension This experiment was designed to chloroplast preparation has shown measure the effect of photon fluence good stabilityover the three-hourlab- To make valid comparisonsbetween rate on the rate of photoreduction of oratoryperiod. However, to avoid bi- results obtained using differentchloro- DCPIPby isolated chloroplasts. Chlo- asing the data if there is any loss of plast preparations, it is necessary to roplasts were isolated and chlorophyll activitywith time, the students should standardize the amount of chloro- concentrationwas determined as de- run the reactions at random or, most plasts added. In photosynthesis re- scribed before. The chloroplasts were conservatively, from the furthest dis- search, this is accomplished by isolated from six-day-old barley co- tance from the lamp to the closest. estimating the total chlorophyll con- leoptiles grown under continuous Workingquickly, add 31 p1 of chloro- centration in the chloroplast prepara- light one foot from a 100-wattbulb. plast preparationto Tube #1, cap the tion and adding a volume of chloro- Tape a piece of masking tape to the tube with parafilm, and invert three plast preparation containing a bench and rule it at 5 cm increments times to mix the contents. Read the standard amount of chlorophyll to from 0 to 50 cm. Place a lamp with a absorbance at 600 nm (= A600 at 0 each reactionmixture. The following is 100-watt frosted bulb over the 0 cm minutes), place the tube in the 100-ml based on the method of Arnon (1949). ruling. Reaction tubes are placed in a beaker astride the 5 cm mark on the It is not the most accurate method to 100-ml beaker containing water at tape and turn on the lamp. As the estimate chlorophyll concentration, room temperatureto shield the reac- lamp is turned on, note the time. After but it is rapid and reproducible. tion tube from the heat emitted by the 55 seconds have elapsed, quickly dry Add 50 ,l of the chloroplastsuspen- lamp. The reactiontubes in the 100-ml the tube and take the one minute A600 sion to 5.0 ml of 90% acetone. Cover beakers can be placed astride any of reading. Immediately return the tube the tube with parafilmand shake thor- the ruled lines to change the photon to the 100-mlbeaker. Repeat this pro- oughly to mix the contents. Centrifuge fluence rate for each reaction. The cedure at 55 seconds into the 2nd, 3rd at 1300 x g for three minutes to pellet photon fluence rate at each distance and 4th minutes. precipitatedprotein and other particu- from the lamp can be recordeddirectly Repeat the above procedure for the late matter.Read the absorbanceof the in ,moles of photons per meter remainingtubes at their respectivedis- supematant at 652 nm (=A652)using squared per second using a quantum tances from the lamp. Do not add the 5.0 ml 90% acetone and 50 p1 of chlo- sensor attached to a Li-Cor-L1-189 chloroplast preparation to any tube roplast isolation buffer as your blank. quantum/radiometer/photometer[Li- until you are ready to start A600 read- The chlorophyll concentration in the Cor, Inc., Lincoln, Nebraska]. ings. The control is treated identically chloroplastpreparation is derivedfrom: Prepare spectrophotometer tubes except that it is wrapped in aluminum according to Table 1. The following foil between A600readings. 100 table is preparedfor each reactionmix- A652x 3 = x mg chlorophylllml ture (Tubes 1-9, Table 1). * chloroplast suspension Rate Calculations e.g.
Recommended publications
  • Path of Electrons in Photosynthesis
    Proc. Natl. Acad. Sci. USA Vol. 73, No. 12, pp. 4502-4505, December 1976 Botany Path of electrons in photosynthesis (energy levels of chlorophyll/delayed light/semiconductors/carotene diode/system I and II) WILLIAM ARNOLD Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 Contributed by William Arnold, September 20, 1976 ABSTRACT Electrons, from the oxidation of water, inside The redox level for the oxidation of water to 02 is at +0.815 the grana disks (thylakoids) are transferred across the membrane V. It is generally found that to make the reaction go, an over- to the outside, to the Calvin cycle or the Hill oxidant. The span voltage of about 0.5 V is needed. in redox level may be 2.3 V. Part of the system II chlorophyll is on the inside of the membrane and part on the outside. An The chlorophyll apparatus must be able to lift an electron electron trap is embedded in the membrane. Alternately, an from +1.3 to -1.0 V, a total span of about 2.3 V. excited chlorophyll on the inside gives an electron to the trap, Enhancement. Emerson discovered that with monochro- and an excited chlorophyll on the outside gives a hole to the trap. as one goes through the spectrum the 02 production Two quanta move an electron from inside to outside. The matic light, charging of this condenser drives the redox levels on the inside goes to zero at a shorter wavelength than the absorption of positive and those on the outside negative. The final voltages chlorophyll does (3).
    [Show full text]
  • Chlorophyll, Ribulose-1 , 5-Diphosphate Carboxylase, and Hill Reaction Activity in Developing Leaves of Populus Deltoides
    Plant Physiol. (1971) 48, 143-145 Chlorophyll, Ribulose-1 , 5-diphosphate Carboxylase, and Hill Reaction Activity in Developing Leaves of Populus deltoides Received for publication November 24, 1970 DONALD I. DICKMANN1 Institute ofForest Genetics, North Central Forest Experiment Station, United States Department ofAgriculture Forest Service, Rhinelander, Wisconsin 54501 ABSTRACT CO_ Exchange Measurements. Rates of net photosynthesis The synthesis of chlorophyll and ribulose diphosphate car- of individual leaves in the expanding zone of three plants boxylase as well as the development of Hill reaction activity were determined by monitoring CO, concentrations in an open were followed in expanding Populus deltoides leaves and re- gas circuit with an infrared gas analyzer (5). For each leaf, net lated to photosynthetic patterns. Total chlorophyll, which was CO2 flux in light of saturating intensity (5.2 X 10' ergs/cme not correlated with photosynthetic rate in expanding leaves, de- sec) was recorded for 10 min after a constant rate of CO, ex- creased slightly with age in very young leaves, due to a decrease change had been attained. in chlorophyll b, but then increased linearly. The ratio of Chlorophyll and RuDP Carboxylase Determinations. Indi- chlorophyll a to b, which rose sharply in young leaves, was vidual leaves in the expanding leaf zone (LPA 0-7) of four highly correlated with the onset of net photosynthesis. Hill different plants were excised, immediately weighed, and their reaction activity was very low in young leaves and did not in- lengths measured. The midrib was then removed and one-half crease significantly until leaves were about half expanded. of each leaf placed in a Duall tissue grinder containing 3 ml of Ribulose diphosphate carboxylase activity increased in a 80% (v/v) acetone.
    [Show full text]
  • PHOTOSYNTHESIS: the HILL REACTION Light 6 CO2 + 12 H2O
    PHOTOSYNTHESIS: The HILL REACTION Readings: Review pp. 165-176 in your text (POHS, 5th ed.). Introduction The term photosynthesis is used to describe a remarkable and complex series of membrane-associated reactions which result in atmospheric CO2 being fixed or reduced to glucose and other organic compounds. The reactions that comprise photosynthesis can be summarized as: light 6 CO2 + 12 H2OC6H12O6 + 6 O2 + 6 H2O chlorophyll Photosynthesis occurs only in green plants, algae, and a few genera of bacteria. Molecular oxygen is a by-product of photosynthesis; thus, all organisms that require oxygen for life (including Homo sapiens) are ultimately dependent on photosynthesis. The energy that drives photosynthetic reactions is light, captured by photosynthetic pigments such as chlorophyll. This energy excites electrons taken from H2O. Excited electrons are passed through a series of membrane-bound carriers and acceptors, and ultimately reduce NADP+ to produce NADPH + H+ which is then used to reduce CO2. In this exercise, you will measure the rate of photosynthesis by monitoring the flow of electrons as shown schematically below: 45 DCPIP (2,6-dichlorophenol indophenol) is a dye able to accept electrons from a variety of donors. When DCPIP is oxidized, it is blue. Reduced DCPIP is colorless. The reduction of DCPIP by electrons derived from H2O coupled with the production of O2 is known as the Hill Reaction. By following the rate of conversion of DCPIP from a blue (oxidized) state to a colorless (reduced) state, you will be able to monitor electron flow in the presence of light in spinach chloroplasts. You will also use the herbicide, Atrazine, to disrupt photosynthesis by blocking electron movement from the primary acceptor in PSII to pQ.
    [Show full text]
  • The Hill Reaction: in Vitro and in Vivo Studies
    Chapter 7 The Hill Reaction: In Vitro and In Vivo Studies Edward A. Funkhouser1 and Donna E. Balint2 1Department of Biochemistry and Biophysics Texas A&M University College Station, Texas 77843-2128 2Department of Horticulture Texas A&M University College Station, Texas 77843-2133 Edward is a professor of biochemistry and biophysics and of plant physiology. He currently serves as associate head for undergraduate education. He received his B.S. in horticulture from Delaware Valley College in 1967 and his M.S. and Ph.D. from Rutgers University in plant physiology in 1969 and 1972, respectively. His research interests deal with the molecular responses of perennial plants to water-deficit stress. He received the Association of Former Students Distinguished Achievement Award for Teaching which is the University's highest award. He also received the Diversity Award from the Department of Multicultural Services, Texas A&M University. Donna is a graduate student in plant physiology. She has supervised the laboratories which accompany the introductory course in plant physiology. She received her B.S. from the University of Connecticut in 1984 and M.Sc. from Texas A&M in 1993. Her research interests involve studies of salinity stress in plants. She received the Association of Former Students Graduate Teaching Award which recognized her excellence in teaching. Reprinted from: Funkhouser, E. A. and D. E. Balint. 1994. The Hill reaction: In vitro and in vivo studies. Pages 109- 118, in Tested studies for laboratory teaching, Volume 15 (C. A. Goldman, Editor). Proceedings of the 15th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 390 pages.
    [Show full text]
  • THE Ph DEPENDENCE of the PHOTOSYNTHETIC ELECTRON TRANSPORT in GLUTARALDEHYDE-TREATED THYLAKOIDS
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 138, number 1 FEBS LETTERS February 1982 THE pH DEPENDENCE OF THE PHOTOSYNTHETIC ELECTRON TRANSPORT IN GLUTARALDEHYDE-TREATED THYLAKOIDS George C. PAPAGEORGIOU and Joan ISAAKIDOUt Nuclear Research Center Demokritos, Department of Biology, Aghia Paraskevi, Athens, Greece Received 10 October 1981; revision received 11 December 1981 1. Introduction 2. Materials and methods Conditions which make thylakoid membranes per- Type C chloroplasts (stacked thylakoids) were meable to ions also shift the pH’optimum of oxygenic prepared as in [7]. The final pellet was resuspended in Hill reactions from the alkaline region to about neu- lOOmMNaCl,lOmMNaCl, 10mMMgC1,,and50mM trality. According to [ 1,2], the breakdown of the per- tricine-NaOH (pH 7.2) at 1 mg &l/ml. Aqueous meability barrier exposes the Hz0 splitting complex, purified glutaraldehyde (Sigma grade I, 25% (v/v), which is accessible only from the interior, directly to &s&o = 0.25) was used. The reagent concentra- the external ionic conditions. Thus, the pH dependence tion, determined according to [8] was found to be of the Hill reaction rate reflects the pH dependence 3.250 M. The reagent was diluted and was mixed with of the Hz0 splitting activity. chloroplasts at a ratio of 65 I.tmol glutaraldehyde/mg A chemical treatment which changes profoundly chl (molar ratio, glutaraldehyde/chl = 58). The fixation the physicochemical properties of thylakoids, yet reaction was carried out at 0°C. After 5 min, the sus- allows substantial fractions of Hill activity to survive, pension was diluted 5-fold with buffer, the chloroplasts is fixation with glutaraldehyde (review [3,4]).
    [Show full text]
  • Forty Years of Microbial Photosynthesis Research: Where It Came from and What It Led to ∗
    R. Clinton Fuller Photosynthesis Research 62: 1–29, 1999. 3 © 1999 Kluwer Academic Publishers. Printed in the Netherlands. Personal perspective Forty years of microbial photosynthesis research: Where it came from and what it led to ∗ R. Clinton Fuller Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA Received 14 May 1999; accepted in revised form 15 August 1999 Key words: chloroplast, chlorosome, chromatophore, granules, inositol, Neurospora, path of carbon, pho- tosynthesis, polythdroxyalkanoate (PHA), prokaryote cellular inclusions, protozoan biochemistry, ribulose 1,5-bis-phosphate, Tetrahymena Abstract What follows is a very personal account of my professional life and the early years that preceded it. I have described the social and economic conditions in America and how the nineteen twenties and thirties nurtured our scientific future. The description of the early part of post-World War II research covers my experience in the areas of nutritional biochemistry, biochemical genetics and proceeds to photosynthesis. The latter era lasted around 35 years. For me the most memorable research accomplishments in which I was a participant during this period was the first demonstration of the primary carboxylation enzyme in an in vitro system in algal and higher plants as well to show that it was structurally associated with the chloroplast.Our group while at Oak Ridge and the University of Massachusetts assembled data that described the complete macromolecular assembly of the photosynthetic
    [Show full text]
  • BIO 121 LAB INSTRUCTIONS Lab 6- Photosynthesis All Organisms Need Energy to Function. Heterotrophic Organisms Obtain Their Energ
    BIO 121 LAB INSTRUCTIONS Lab 6- Photosynthesis All organisms need energy to function. Heterotrophic organisms obtain their energy by oxidizing reduced organic compounds and recovering the energy stored in the C-H bonds. However, those C-H bonds were originally created using energy from sunlight, by a process called photosynthesis. Photosynthesis is therefore the most important biochemical process on earth: virtually all living organisms depend directly or indirectly on photosynthesis for energy, and all aerobic organisms also depend on photosynthesis for oxygen. The overall reaction for photosynthesis is quite simple: 2 2 6 12 6 2 2 6 CO + 12 H O + light energy <=> C H O + 6 O + 6 H O however, the reactions by which this is accomplished are diabolically complex. Photosynthesis can be separated into two sets of reactions: the light reactions, which capture light and use its energy to make ATP and NADPH, and the light-independent reactions, which use the ATP and NADPH formed by the light reactions to convert CO2 into carbohydrates. Both sets of reactions occur in the chloroplasts of higher plants; however, the light reactions occur in the thylakoids, while the light-independent reactions occur in the stroma. Photosynthesis is described in greater detail in chapter 8 of your text. Instructions for BIO 121 Lab 6: photosynthesis Page 2 II. The light reactions These can be subdivided into four stages: capturing light, electron transport, water-splitting, and chemiosmotic ATP synthesis. Light is captured by pigments which absorb photons of specific wavelengths. When this occurs, the energy of the photon is added to the energy of an electron within the pigment, which moves to an orbital more distant from the nucleus.
    [Show full text]
  • Photosynthesis and the Hill Reaction
    Edexcel A Biology A-Level Core Practical 11 Investigate photosynthesis using isolated chloroplasts (the Hill reaction). www.pmt.education Dehydrogenase is an enzyme found in plant chloroplasts that is crucial to the light ​ ​ ​ ​ dependent stage of photosynthesis. In the light dependent stage, electrons are ​ ​ ​ accepted by NADP. This reaction was discovered in 1938 by Robin Hill and thus is ​ ​ often called the Hill reaction. Dehydrogenase catalyses this reaction. When a redox ​ ​ ​ indicator dye is present, such as DCPIP (which turns from blue to colourless when it ​ ​ ​ ​ ​ is reduced), electrons are accepted by this instead. Equipment ● Leaf sample ● Scissors ● Mortar and pestle (cold) ● Nylon mesh ● Filter funnel ● Centrifuge ● Centrifuge tubes ● Ice-water-salt bath ● Glass rod ● Measuring cylinder ● Beaker ● Pipettes ● Bench lamp ● Buffer ● Isolation medium ● DCPIP solution Method 1. Remove stalks from leaf samples. Cut into small sections. Grind sample using a ​ pestle and mortar and place into a chilled isolation solution. ​ ​ 2. Place several layers of muslin cloth into funnel and wet with isolation medium to filter sample into a beaker. 3. Suspend the beaker in an ice water bath to keep sample chilled. ​ ​ 4. Transfer to centrifuge tubes and centrifuge at high speed for 10 minutes. This ​ ​ will separate chloroplasts into the pellet. ​ ​ ​ ​ 5. Remove supernatant and add pellet to fresh isolation medium. ​ ​ 6. Store isolation solution on ice. 7. Set the colorimeter to the red filter. Zero using a cuvette containing chloroplast ​ ​ ​ ​ ​ extract and distilled water. ​ ​ www.pmt.education 8. Place test tube in rack 30cm from light source and add DCPIP. Immediately take ​ ​ ​ ​ a sample and add to cuvette.
    [Show full text]
  • The Light Reactions of Photosynthesis
    Proc. Nat. Acad. Sci. USA Vol. 68, No. 11, pp. 2883-2892, November 1971 The Light Reactions of Photosynthesis DANIEL I. ARNON Department of Cell Physiology, University of California, Berkeley, Berkeley, Calif. 94720 ABSTRACT Historically, the role of light in photo- (4) and Willsttfiter (5); its last great contemporary protago- svnthesis has been ascribed either to a photolysis of carbon nist was Otto Warburg (6). After de Saussure (7) showed that dioxide or to a photolysis of water and a resultant rear- rangement of constituent atoms into molecules of oxy- water is a reactant in photosynthesis, the C02 cleavage hy- gen and glucose (or formaldehyde). The discovery of photo- pothesis readily accounted for the deceptively simple overall phosphorylation demonstrated that photosynthesis in- photosynthesis equation (Eq. i): the C: 2H: 0 proportions cludes a light-induced phosphorus metabolism that in the carbohydrate product fitted the idea that the carbon precedes, and is independent from, a photolysis of water recombines with the or CO2. ATP formation could best be accounted for not from the photodecomposition of C02 by a photolytic disruption of the covalent bonds in C02 elements of water. or water but by the operation of a light-induced electron h 0 2 flow that results in a release offree energy which is trapped C02 + H20 + 02 (i) in the pyrophosphate bonds of ATP. (CH20) Photophosphorylation is now divided into (a) a non- A different hypothesis,, one that profoundly influenced re- cyclic type, in which the formation of ATP is coupled with in was forward van Niel a light-induced electron transport from water to ferredoxin search photosynthesis, put by (8).
    [Show full text]
  • ATP Production in Chloroplasts (As Measured by the Hill Reaction)
    ATP Production in Chloroplasts (as measured by the Hill Reaction) Background Information: Photosynthesis is a cellular process that occurs within the chloroplasts of plants, some algae, and some bacteria. Photosynthesis consists of a series of chemical reactions in which the electrons from water and the energy from sunlight are used to convert CO2 into organic molecules, such as glucose. In the light reactions, excited electrons (from the photosynthetic pigment chlorophyll) are moved among a series of electron carriers that are embedded in the thylakoid membrane of the chloroplasts. The final step in the light reactions is formation of NADPH. The energy obtained by this electron transport drives the synthesis of ATP in the stroma. In the dark reactions, the ATP and NADPH are used to convert CO2 to carbohydrate. The dark reactions begin in the stroma but continue in the cytosol. The Hill reaction is the portion of the light reactions in which electrons from water are transferred to an electron acceptor, reducing the acceptor. This reaction was first observed by Robert Hill in 1937 and it was he who demonstrated that isolated chloroplasts can produce O2 in the absence of CO2. This established that the source of the electrons used in the light reactions was indeed water. In chloroplasts, the final electron acceptor is NADP+, which is reduced to form NADPH. In the laboratory, the Hill reaction can be studied by using an artificial electron acceptor. The dye 2,6-dichlorophenolindophenol (DCIP) is a useful acceptor because it changes color as it reduced, from blue (oxidized form) to colorless (reduced form).
    [Show full text]
  • An Appreciation of Robert Hill and His Reaction
    Photosynthesis Research 73: 51–54, 2002. 51 © 2002 Kluwer Academic Publishers. Printed in the Netherlands. Atribute ‘And whose bright presence’ – an appreciation of Robert Hill and his reaction David Alan Walker University of Sheffield, 6, Biddlestone Village, Northumberland NE65 7DT, UK (e-mail:d.a.walker@sheffield.ac.uk) Received 15 August 2001; accepted in revised form 14 September 2001 Key words: chloroplasts, electron transport oxygen evolution, Robert Hill, methaemoglobin, oxidants Abstract The Hill reaction, its elucidation, and significance is briefly described. Hill oxidants, the role of the methemoglobin reducing factor and its relation to ferredoxin, and the part played by chloroplast envelopes are discussed. Reputedly the best multiple pun ever (flavored, as it was, with literary allusion) came, on an occasion in the last century, when Lord Maughn gave a gold coin to a boy who had helped him with his luggage. The boy was called Hill. This prompted an erudite bystander to declare ‘Hail smiling morn that tips the hills with gold.’ There is a later line in this same verse which reads ‘and whose bright presence darkness drives away.’ As in every sort of science, our understanding of photosynthesis has grown by the combined contri- butions, large and small, from researchers in every land. It is fair to say, however, that Robert (Robin) Hill’s ‘bright presence’ drove away a deal of darkness in the field of photosynthetic electron transport. His experiments (Hill 1965; Bendall 1994) in photosyn- thesis, which were to influence our thinking for 60 years or more (see e.g. Rich 1992), started, in pre- war Cambridge (Hill 1937, 1939) with what inevitably came to be known as ‘the Hill reaction.’ Figure 1.
    [Show full text]
  • Photosynthesis
    Suggested problems from the end of chapter 21: 1,2.3,5,6,8,10,12,14,16,17,19,20. For #2 assume that Eoxidation = +0.816V for oxidation of water into O2 and remember that ΔE= Ereduction + Eoxidation Photosynthesis Earth can be considered an open thermodynamic system, where both heat and matter can be exchanged with the surroundings. Given that earth can exchange energy with its surroundings, it is not surprising that light generated by the sun can enter earth. Some plants and cyanobacteria are able to utilize sunlight for the following overall reaction, in which carbohydrates are synthesized: light CO2 + H2O ⎯ ⎯→ (CH 2O) + O2 This also is called CO2 “fixing” because the carbon is transferred to carbohydrates, which can be used as€ energy sources by the original organism, as well as other systems, living and non-living. The industry that consumes oil, coal, and gas also relies on the above reaction, albeit indirectly, as these carbon sources are thought to have originated from CO2 fixing by ancient organisms. Photosynthesis is estimated to fix ~1011 tons of carbon per year, representing 1018 kJ. 1 Joseph Priestley, 1771; Jan Ingen-Housz, 1779 •The notion that air is changed by combustion and photosynthesis has been appreciated for some time: “On the 17th of August, 1771, I put a sprig of mint into a quantity of air, in which a wax candle had burned out, and found that, on the 27th of the same month, another candle had burned perfectly well in it.” Why did Priestly do this experiment? •Jan Ingen-Housz demonstrated that sunlight-exposed green parts of plants contain “air purifying” powers that correct air that has been “injured” by respiration.
    [Show full text]