GNU Compiler Collection Internals

Total Page:16

File Type:pdf, Size:1020Kb

GNU Compiler Collection Internals GNU Compiler Collection Internals For gcc version 4.2.3 Richard M. Stallman and the GCC Developer Community Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being “GNU General Public License” and “Funding Free Software”, the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled “GNU Free Documentation License”. (a) The FSF’s Front-Cover Text is: A GNU Manual (b) The FSF’s Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ...................................... 1 1 Contributing to GCC Development ................... 3 2 GCC and Portability ............................. 5 3 Interfacing to GCC Output ........................ 7 4 The GCC low-level runtime library ................... 9 5 Language Front Ends in GCC ...................... 21 6 Source Tree Structure and Build System ............... 23 7 Option specification files.......................... 51 8 Passes and Files of the Compiler .................... 55 9 Trees: The intermediate representation used by the C and C++ front ends ................................... 69 10 Analysis and Optimization of GIMPLE Trees .......... 107 11 Analysis and Representation of Loops ................ 131 12 RTL Representation ............................ 141 13 Control Flow Graph ............................ 189 14 Machine Descriptions ........................... 199 15 Target Description Macros and Functions ............. 293 16 Host Configuration ............................ 437 17 Makefile Fragments ............................ 441 18 collect2 ................................... 445 19 Standard Header File Directories ................... 447 20 Memory Management and Type Information ........... 449 Funding Free Software ............................. 455 The GNU Project and GNU/Linux..................... 457 GNU GENERAL PUBLIC LICENSE ................... 459 GNU Free Documentation License ..................... 465 Contributors to GCC .............................. 473 Option Index.................................... 489 Concept Index ................................... 491 ii GNU Compiler Collection (GCC) Internals iii Table of Contents Introduction .................................. 1 1 Contributing to GCC Development ......... 3 2 GCC and Portability ....................... 5 3 Interfacing to GCC Output................. 7 4 The GCC low-level runtime library ......... 9 4.1 Routines for integer arithmetic ............................... 9 4.1.1 Arithmetic functions .................................... 9 4.1.2 Comparison functions .................................. 10 4.1.3 Trapping arithmetic functions .......................... 11 4.1.4 Bit operations ......................................... 11 4.2 Routines for floating point emulation ........................ 12 4.2.1 Arithmetic functions ................................... 12 4.2.2 Conversion functions ................................... 13 4.2.3 Comparison functions .................................. 14 4.2.4 Other floating-point functions .......................... 16 4.3 Routines for decimal floating point emulation................. 16 4.3.1 Arithmetic functions ................................... 16 4.3.2 Conversion functions ................................... 17 4.3.3 Comparison functions .................................. 18 4.4 Language-independent routines for exception handling ........ 19 4.5 Miscellaneous runtime library routines ....................... 20 4.5.1 Cache control functions ................................ 20 5 Language Front Ends in GCC ............. 21 6 Source Tree Structure and Build System ... 23 6.1 Configure Terms and History ................................ 23 6.2 Top Level Source Directory ................................. 23 6.3 The ‘gcc’ Subdirectory ..................................... 24 6.3.1 Subdirectories of ‘gcc’ ................................. 25 6.3.2 Configuration in the ‘gcc’ Directory ..................... 25 6.3.2.1 Scripts Used by ‘configure’ ....................... 26 6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’ Files ................................................. 26 6.3.2.3 Files Created by configure........................ 26 6.3.3 Build System in the ‘gcc’ Directory ..................... 27 6.3.4 Makefile Targets ....................................... 27 iv GNU Compiler Collection (GCC) Internals 6.3.5 Library Source Files and Headers under the ‘gcc’ Directory ........................................................ 30 6.3.6 Headers Installed by GCC .............................. 30 6.3.7 Building Documentation ............................... 30 6.3.7.1 Texinfo Manuals .................................. 31 6.3.7.2 Man Page Generation ............................. 31 6.3.7.3 Miscellaneous Documentation ...................... 32 6.3.8 Anatomy of a Language Front End ...................... 33 6.3.8.1 The Front End ‘language’ Directory ............... 34 6.3.8.2 The Front End ‘config-lang.in’ File .............. 36 6.3.9 Anatomy of a Target Back End ......................... 37 6.4 Testsuites.................................................. 38 6.4.1 Idioms Used in Testsuite Code .......................... 38 6.4.2 Directives used within DejaGnu tests .................... 39 6.4.3 Ada Language Testsuites ............................... 43 6.4.4 C Language Testsuites ................................. 44 6.4.5 The Java library testsuites. ............................. 45 6.4.6 Support for testing gcov ............................... 46 6.4.7 Support for testing profile-directed optimizations ......... 47 6.4.8 Support for testing binary compatibility ................. 47 7 Option specification files .................. 51 7.1 Option file format .......................................... 51 7.2 Option properties .......................................... 51 8 Passes and Files of the Compiler........... 55 8.1 Parsing pass ............................................... 55 8.2 Gimplification pass ......................................... 56 8.3 Pass manager .............................................. 56 8.4 Tree-SSA passes............................................ 57 8.5 RTL passes ................................................ 63 9 Trees: The intermediate representation used by the C and C++ front ends ............... 69 9.1 Deficiencies ................................................ 69 9.2 Overview .................................................. 69 9.2.1 Trees ................................................. 70 9.2.2 Identifiers ............................................. 70 9.2.3 Containers ............................................ 71 9.3 Types ..................................................... 71 9.4 Scopes..................................................... 76 9.4.1 Namespaces ........................................... 76 9.4.2 Classes................................................ 77 9.5 Declarations ............................................... 79 9.5.1 Working with declarations .............................. 79 9.5.2 Internal structure ...................................... 81 9.5.2.1 Current structure hierarchy ........................ 82 v 9.5.2.2 Adding new DECL node types ..................... 83 9.6 Functions .................................................. 84 9.6.1 Function Basics........................................ 85 9.6.2 Function Bodies ....................................... 88 9.6.2.1 Statements ....................................... 88 9.7 Attributes in trees.......................................... 92 9.8 Expressions ................................................ 92 10 Analysis and Optimization of GIMPLE Trees ....................................... 107 10.1 GENERIC............................................... 107 10.2 GIMPLE ................................................ 107 10.2.1 Interfaces ........................................... 108 10.2.2 Temporaries......................................... 108 10.2.3 Expressions ......................................... 109 10.2.3.1 Compound Expressions .......................... 109 10.2.3.2 Compound Lvalues .............................. 109 10.2.3.3 Conditional Expressions ......................... 109 10.2.3.4 Logical Operators ............................... 110 10.2.4 Statements .......................................... 110 10.2.4.1 Blocks ......................................... 110 10.2.4.2 Statement Sequences ............................ 111 10.2.4.3 Empty Statements .............................. 111 10.2.4.4 Loops .......................................... 111 10.2.4.5 Selection Statements ............................ 111 10.2.4.6 Jumps ......................................... 111 10.2.4.7 Cleanups ....................................... 111 10.2.4.8 Exception Handling ............................. 112 10.2.5 GIMPLE Example ................................... 112 10.2.6 Rough GIMPLE Grammar ........................... 114 10.3 Annotations ............................................. 116 10.4 Statement Operands.....................................
Recommended publications
  • Type-Safe Composition of Object Modules*
    International Conference on Computer Systems and Education I ISc Bangalore Typ esafe Comp osition of Ob ject Mo dules Guruduth Banavar Gary Lindstrom Douglas Orr Department of Computer Science University of Utah Salt LakeCity Utah USA Abstract Intro duction It is widely agreed that strong typing in We describ e a facility that enables routine creases the reliability and eciency of soft typ echecking during the linkage of exter ware However compilers for statically typ ed nal declarations and denitions of separately languages suchasC and C in tradi compiled programs in ANSI C The primary tional nonintegrated programming environ advantage of our serverstyle typ echecked ments guarantee complete typ esafety only linkage facility is the ability to program the within a compilation unit but not across comp osition of ob ject mo dules via a suite of suchunits Longstanding and widely avail strongly typ ed mo dule combination op era able linkers comp ose separately compiled tors Such programmability enables one to units bymatching symb ols purely byname easily incorp orate programmerdened data equivalence with no regard to their typ es format conversion stubs at linktime In ad Such common denominator linkers accom dition our linkage facility is able to automat mo date ob ject mo dules from various source ically generate safe co ercion stubs for com languages by simply ignoring the static se patible encapsulated data mantics of the language Moreover com monly used ob ject le formats are not de signed to incorp orate source language typ e
    [Show full text]
  • J1939 Data Mapping Explained
    J1939 Data Mapping Explained Part No. BW2031 Revision: 1.05 May 18, 2018 Pyramid Solutions, Inc. 30200 Telegraph Road, Suite 440 Bingham Farms, MI 48025 www.pyramidsolutions.com | P: 248.549.1200 | F: 248.549.1400 © Pyramid Solutions 1 PUB-BW4031-001 Table of Contents Overview ......................................................................................................................... 2 J1939 Message Terminology ............................................................................................ 2 J1939 PGN Message Definitions ....................................................................................... 3 PGN and Parameter Documentation Examples ........................................................................ 3 J1939 Specification Example ........................................................................................................ 3 Parameter Table Example ............................................................................................................ 5 Determining the BridgeWay Data Table Layout ................................................................ 6 Data Table Layout for Modbus RTU and Modbus TCP (Big Endian) ........................................... 6 Data Table Layout for EtherNet/IP (Little Endian) .................................................................... 7 Configuring the BridgeWay I/O Mapping ......................................................................... 8 Configuration Attributes ........................................................................................................
    [Show full text]
  • Advanced Software Engineering with C++ Templates Lecture 4: Separate Compilation and Templates III
    Advanced Software Engineering with C++ Templates Lecture 4: Separate Compilation and Templates III Thomas Gschwind <thgatzurichdotibmdotcom> Agenda . Separate Compilation • Introduction (C++ versus Java) • Variables • Routines (Functions & Operators) • Types (Structures, Classes) • Makefiles . Templates III • Design and Implementation (C++ versus Java versus C#) • “Dynamic” Static Algorithm Selection • Binders Th. Gschwind. Fortgeschrittene Programmierung in C++. 2 Separate Compilation . Why? • Having only one source file is unrealistic • Break the code up into its logical structure • Reduction of compile time - Only changed parts need to be recompiled . How? • Use multiple source files • Need to know what information about functions and variables “used” from other files Th. Gschwind. Fortgeschrittene Programmierung in C++. 3 Separate Compilation in Java . Each Java file is compiled into a class file . If a Java class invokes a method of another class, the compiler consults that other class file to • Determine whether the class provides the requested method • Determine whether a class file implements a given interface • etc. • Hence, the .class file contains the entire interface . That’s why in Java, the compiler needs the class path . Finally, all class files are loaded by the Java Virtual Machine (and “linked”) . Java source code can be relatively well reconstructed from .class file (see Java Decompiler: jd, jad) Th. Gschwind. Fortgeschrittene Programmierung in C++. 4 Some Java Trivia . Let us write Hello World in Java . In order to simplify the reconfiguration (e.g., translation) • Put all the constants into one Java file • Put the complex application code into another public class Const { public static final String msg="Hello World!"; } public class Cool { public static void main(String[] args) { System.out.println(Const.msg); } } Th.
    [Show full text]
  • Faster Ffts in Medium Precision
    Faster FFTs in medium precision Joris van der Hoevena, Grégoire Lecerfb Laboratoire d’informatique, UMR 7161 CNRS Campus de l’École polytechnique 1, rue Honoré d’Estienne d’Orves Bâtiment Alan Turing, CS35003 91120 Palaiseau a. Email: [email protected] b. Email: [email protected] November 10, 2014 In this paper, we present new algorithms for the computation of fast Fourier transforms over complex numbers for “medium” precisions, typically in the range from 100 until 400 bits. On the one hand, such precisions are usually not supported by hardware. On the other hand, asymptotically fast algorithms for multiple precision arithmetic do not pay off yet. The main idea behind our algorithms is to develop efficient vectorial multiple precision fixed point arithmetic, capable of exploiting SIMD instructions in modern processors. Keywords: floating point arithmetic, quadruple precision, complexity bound, FFT, SIMD A.C.M. subject classification: G.1.0 Computer-arithmetic A.M.S. subject classification: 65Y04, 65T50, 68W30 1. Introduction Multiple precision arithmetic [4] is crucial in areas such as computer algebra and cryptography, and increasingly useful in mathematical physics and numerical analysis [2]. Early multiple preci- sion libraries appeared in the seventies [3], and nowadays GMP [11] and MPFR [8] are typically very efficient for large precisions of more than, say, 1000 bits. However, for precisions which are only a few times larger than the machine precision, these libraries suffer from a large overhead. For instance, the MPFR library for arbitrary precision and IEEE-style standardized floating point arithmetic is typically about a factor 100 slower than double precision machine arithmetic.
    [Show full text]
  • P2356R0 Date 2021-04-09 Reply-To Matus Chochlik [email protected] Audience SG7 Overview Details
    Overview Details Implementing Factory builder on top of P2320 Document Number P2356R0 Date 2021-04-09 Reply-to Matus Chochlik [email protected] Audience SG7 Overview Details The goal (Semi-)automate the implementation of the Factory design pattern Overview Details What is meant by \Factory" here? • Class that constructs instances of a \Product" type. • From some external representation: • XML, • JSON, • YAML, • a GUI, • a scripting language, • a relational database, • ... Overview Details Factory builder • Framework combining the following parts • Meta-data • obtained from reflection. • Traits • units of code that handle various stages of construction, • specific to a particular external representation, • provided by user. Overview Details Factory builder • Used meta-data • type name strings, • list of meta-objects reflecting constructors, • list of meta-objects reflecting constructor parameters, • parameter type, • parameter name, • ... Overview Details Factory builder • Units handling the stages of construction • selecting the \best" constructor, • invoking the selected constructor, • conversion of parameter values from the external representation, • may recursively use factories for composite parameter types. Overview Details Used reflection features • ^T • [: :]1 • meta::name_of • meta::type_of • meta::members_of • meta::is_constructor • meta::is_default_constructor • meta::is_move_constructor • meta::is_copy_constructor • meta::parameters_of • size(Range) • range iterators 1to get back the reflected type Overview Details Reflection review • The good2 • How extensive and powerful the API is • The bad • Didn't find much3 • The ugly • Some of the syntax4 2great actually! 3some details follow 4but then this is a matter of personal preference Overview Details What is missing • The ability to easily unpack meta-objects from a range into a template, without un-reflecting them. • I used the following workaround + make_index_sequence: template <typename Iterator > consteval auto advance(Iterator it, size_t n) { while (n-- > 0) { ++ it; } return it; } • Details follow.
    [Show full text]
  • Abstract Data Types
    Chapter 2 Abstract Data Types The second idea at the core of computer science, along with algorithms, is data. In a modern computer, data consists fundamentally of binary bits, but meaningful data is organized into primitive data types such as integer, real, and boolean and into more complex data structures such as arrays and binary trees. These data types and data structures always come along with associated operations that can be done on the data. For example, the 32-bit int data type is defined both by the fact that a value of type int consists of 32 binary bits but also by the fact that two int values can be added, subtracted, multiplied, compared, and so on. An array is defined both by the fact that it is a sequence of data items of the same basic type, but also by the fact that it is possible to directly access each of the positions in the list based on its numerical index. So the idea of a data type includes a specification of the possible values of that type together with the operations that can be performed on those values. An algorithm is an abstract idea, and a program is an implementation of an algorithm. Similarly, it is useful to be able to work with the abstract idea behind a data type or data structure, without getting bogged down in the implementation details. The abstraction in this case is called an \abstract data type." An abstract data type specifies the values of the type, but not how those values are represented as collections of bits, and it specifies operations on those values in terms of their inputs, outputs, and effects rather than as particular algorithms or program code.
    [Show full text]
  • 5. Data Types
    IEEE FOR THE FUNCTIONAL VERIFICATION LANGUAGE e Std 1647-2011 5. Data types The e language has a number of predefined data types, including the integer and Boolean scalar types common to most programming languages. In addition, new scalar data types (enumerated types) that are appropriate for programming, modeling hardware, and interfacing with hardware simulators can be created. The e language also provides a powerful mechanism for defining OO hierarchical data structures (structs) and ordered collections of elements of the same type (lists). The following subclauses provide a basic explanation of e data types. 5.1 e data types Most e expressions have an explicit data type, as follows: — Scalar types — Scalar subtypes — Enumerated scalar types — Casting of enumerated types in comparisons — Struct types — Struct subtypes — Referencing fields in when constructs — List types — The set type — The string type — The real type — The external_pointer type — The “untyped” pseudo type Certain expressions, such as HDL objects, have no explicit data type. See 5.2 for information on how these expressions are handled. 5.1.1 Scalar types Scalar types in e are one of the following: numeric, Boolean, or enumerated. Table 17 shows the predefined numeric and Boolean types. Both signed and unsigned integers can be of any size and, thus, of any range. See 5.1.2 for information on how to specify the size and range of a scalar field or variable explicitly. See also Clause 4. 5.1.2 Scalar subtypes A scalar subtype can be named and created by using a scalar modifier to specify the range or bit width of a scalar type.
    [Show full text]
  • Lecture 2: Variables and Primitive Data Types
    Lecture 2: Variables and Primitive Data Types MIT-AITI Kenya 2005 1 In this lecture, you will learn… • What a variable is – Types of variables – Naming of variables – Variable assignment • What a primitive data type is • Other data types (ex. String) MIT-Africa Internet Technology Initiative 2 ©2005 What is a Variable? • In basic algebra, variables are symbols that can represent values in formulas. • For example the variable x in the formula f(x)=x2+2 can represent any number value. • Similarly, variables in computer program are symbols for arbitrary data. MIT-Africa Internet Technology Initiative 3 ©2005 A Variable Analogy • Think of variables as an empty box that you can put values in. • We can label the box with a name like “Box X” and re-use it many times. • Can perform tasks on the box without caring about what’s inside: – “Move Box X to Shelf A” – “Put item Z in box” – “Open Box X” – “Remove contents from Box X” MIT-Africa Internet Technology Initiative 4 ©2005 Variables Types in Java • Variables in Java have a type. • The type defines what kinds of values a variable is allowed to store. • Think of a variable’s type as the size or shape of the empty box. • The variable x in f(x)=x2+2 is implicitly a number. • If x is a symbol representing the word “Fish”, the formula doesn’t make sense. MIT-Africa Internet Technology Initiative 5 ©2005 Java Types • Integer Types: – int: Most numbers you’ll deal with. – long: Big integers; science, finance, computing. – short: Small integers.
    [Show full text]
  • Lecture Notes on Types for Part II of the Computer Science Tripos
    Q Lecture Notes on Types for Part II of the Computer Science Tripos Prof. Andrew M. Pitts University of Cambridge Computer Laboratory c 2016 A. M. Pitts Contents Learning Guide i 1 Introduction 1 2 ML Polymorphism 6 2.1 Mini-ML type system . 6 2.2 Examples of type inference, by hand . 14 2.3 Principal type schemes . 16 2.4 A type inference algorithm . 18 3 Polymorphic Reference Types 25 3.1 The problem . 25 3.2 Restoring type soundness . 30 4 Polymorphic Lambda Calculus 33 4.1 From type schemes to polymorphic types . 33 4.2 The Polymorphic Lambda Calculus (PLC) type system . 37 4.3 PLC type inference . 42 4.4 Datatypes in PLC . 43 4.5 Existential types . 50 5 Dependent Types 53 5.1 Dependent functions . 53 5.2 Pure Type Systems . 57 5.3 System Fw .............................................. 63 6 Propositions as Types 67 6.1 Intuitionistic logics . 67 6.2 Curry-Howard correspondence . 69 6.3 Calculus of Constructions, lC ................................... 73 6.4 Inductive types . 76 7 Further Topics 81 References 84 Learning Guide These notes and slides are designed to accompany 12 lectures on type systems for Part II of the Cambridge University Computer Science Tripos. The course builds on the techniques intro- duced in the Part IB course on Semantics of Programming Languages for specifying type systems for programming languages and reasoning about their properties. The emphasis here is on type systems for functional languages and their connection to constructive logic. We pay par- ticular attention to the notion of parametric polymorphism (also known as generics), both because it has proven useful in practice and because its theory is quite subtle.
    [Show full text]
  • Csci 658-01: Software Language Engineering Python 3 Reflexive
    CSci 658-01: Software Language Engineering Python 3 Reflexive Metaprogramming Chapter 3 H. Conrad Cunningham 4 May 2018 Contents 3 Decorators and Metaclasses 2 3.1 Basic Function-Level Debugging . .2 3.1.1 Motivating example . .2 3.1.2 Abstraction Principle, staying DRY . .3 3.1.3 Function decorators . .3 3.1.4 Constructing a debug decorator . .4 3.1.5 Using the debug decorator . .6 3.1.6 Case study review . .7 3.1.7 Variations . .7 3.1.7.1 Logging . .7 3.1.7.2 Optional disable . .8 3.2 Extended Function-Level Debugging . .8 3.2.1 Motivating example . .8 3.2.2 Decorators with arguments . .9 3.2.3 Prefix decorator . .9 3.2.4 Reformulated prefix decorator . 10 3.3 Class-Level Debugging . 12 3.3.1 Motivating example . 12 3.3.2 Class-level debugger . 12 3.3.3 Variation: Attribute access debugging . 14 3.4 Class Hierarchy Debugging . 16 3.4.1 Motivating example . 16 3.4.2 Review of objects and types . 17 3.4.3 Class definition process . 18 3.4.4 Changing the metaclass . 20 3.4.5 Debugging using a metaclass . 21 3.4.6 Why metaclasses? . 22 3.5 Chapter Summary . 23 1 3.6 Exercises . 23 3.7 Acknowledgements . 23 3.8 References . 24 3.9 Terms and Concepts . 24 Copyright (C) 2018, H. Conrad Cunningham Professor of Computer and Information Science University of Mississippi 211 Weir Hall P.O. Box 1848 University, MS 38677 (662) 915-5358 Note: This chapter adapts David Beazley’s debugly example presentation from his Python 3 Metaprogramming tutorial at PyCon’2013 [Beazley 2013a].
    [Show full text]
  • Open C++ Tutorial∗
    Open C++ Tutorial∗ Shigeru Chiba Institute of Information Science and Electronics University of Tsukuba [email protected] Copyright c 1998 by Shigeru Chiba. All Rights Reserved. 1 Introduction OpenC++ is an extensible language based on C++. The extended features of OpenC++ are specified by a meta-level program given at compile time. For dis- tinction, regular programs written in OpenC++ are called base-level programs. If no meta-level program is given, OpenC++ is identical to regular C++. The meta-level program extends OpenC++ through the interface called the OpenC++ MOP. The OpenC++ compiler consists of three stages: preprocessor, source-to-source translator from OpenC++ to C++, and the back-end C++ com- piler. The OpenC++ MOP is an interface to control the translator at the second stage. It allows to specify how an extended feature of OpenC++ is translated into regular C++ code. An extended feature of OpenC++ is supplied as an add-on software for the compiler. The add-on software consists of not only the meta-level program but also runtime support code. The runtime support code provides classes and functions used by the base-level program translated into C++. The base-level program in OpenC++ is first translated into C++ according to the meta-level program. Then it is linked with the runtime support code to be executable code. This flow is illustrated by Figure 1. The meta-level program is also written in OpenC++ since OpenC++ is a self- reflective language. It defines new metaobjects to control source-to-source transla- tion. The metaobjects are the meta-level representation of the base-level program and they perform the translation.
    [Show full text]
  • Metaclasses: Generative C++
    Metaclasses: Generative C++ Document Number: P0707 R3 Date: 2018-02-11 Reply-to: Herb Sutter ([email protected]) Audience: SG7, EWG Contents 1 Overview .............................................................................................................................................................2 2 Language: Metaclasses .......................................................................................................................................7 3 Library: Example metaclasses .......................................................................................................................... 18 4 Applying metaclasses: Qt moc and C++/WinRT .............................................................................................. 35 5 Alternatives for sourcedefinition transform syntax .................................................................................... 41 6 Alternatives for applying the transform .......................................................................................................... 43 7 FAQs ................................................................................................................................................................. 46 8 Revision history ............................................................................................................................................... 51 Major changes in R3: Switched to function-style declaration syntax per SG7 direction in Albuquerque (old: $class M new: constexpr void M(meta::type target,
    [Show full text]