Virus-Like Insertions with Sequence Signatures Similar to Those of Endogenous Nonretroviral RNA Viruses in the Human Genome

Total Page:16

File Type:pdf, Size:1020Kb

Virus-Like Insertions with Sequence Signatures Similar to Those of Endogenous Nonretroviral RNA Viruses in the Human Genome Virus-like insertions with sequence signatures similar to those of endogenous nonretroviral RNA viruses in the human genome Shohei Kojimaa,1, Kohei Yoshikawab, Jumpei Itoc, So Nakagawad, Nicholas F. Parrishe, Masayuki Horiea,f, Shuichi Kawanob,2, and Keizo Tomonagaa,g,h,2 aLaboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; bDepartment of Computer and Network Engineering, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan; cDivision of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; dDepartment of Molecular Life Science, Tokai University School of Medicine, Isehara 259-1193, Japan; eGenome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Yokohama 230-0045, Japan; fHakubi Center for Advanced Research, Kyoto University, Kyoto 606-8507, Japan; gLaboratory of RNA Viruses, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan; and hDepartment of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan Edited by Harmit S. Malik, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved December 23, 2020 (received for review May 27, 2020) Understanding the genetics and taxonomy of ancient viruses will level (2, 5). These findings indicate that the detection of nrEVEs give us great insights into not only the origin and evolution of in animal genomes would provide a better understanding of past viruses but also how viral infections played roles in our evolution. viral diversity. Endogenous viruses are remnants of ancient viral infections and are Current methods used to identify nrEVEs depend heavily on thought to retain the genetic characteristics of viruses from ancient pairwise sequence similarity to known viral sequences (12, 13). times. In this study, we used machine learning of endogenous RNA Therefore, our knowledge of ancient viruses is inevitably biased virus sequence signatures to identify viruses in the human genome toward those that are relatively similar to known viruses. In that have not been detected or are already extinct. Here, we show that the k-mer occurrence of ancient RNA viral sequences remains particular, RNA viruses may lose similarity to extant viruses due to the rapid evolution of viral genomes, and even the ancestors similar to that of extant RNA viral sequences and can be differenti- GENETICS ated from that of other human genome sequences. Furthermore, of existing viruses may not be detected. Furthermore, it is pos- using this characteristic, we screened RNA viral insertions in the sible that ancestors of yet-to-be-recognized extant viruses, or human reference genome and found virus-like insertions with phy- extinct viruses, have also been endogenized in animal genomes. logenetic and evolutionary features indicative of an exogenous or- Thus, a comprehensive analysis of nrEVEs in animal genomes igin but lacking homology to previously identified sequences. Our would require a new detection method based on a defining analysis indicates that animal genomes still contain unknown virus- feature of viruses that does not depend on pairwise similarity to derived sequences and provides a glimpse into the diversity of the known viruses. ancient virosphere. endogenous RNA virus | human genome | paleovirology | machine learning Significance ecent advances in metagenomic analysis have shown that Ancient animals left diverse physical fossil records from which Rviruses in nature are more diverse than previously thought, we can deduce that species with extraordinary features once and many viruses with no sequence similarity to known viruses populated our planet. By infecting germlines, some ancient exist, yet undiscovered, in the biosphere. Detecting viral diversity viruses deposited genetic fossil records. However, inferring and discovering new viruses can lead to a comprehensive under- that a sequence is a viral fossil has so far required homology to standing of the coexistence between viruses and organisms and circulating viruses. We developed a method to recognize viral provide effective tools with which to predict the emergence of fossils that do not closely resemble known viruses. Rather than novel viruses with epidemic or pandemic potential. homology, we detected sequence patterns of fossilized and There is no reason to suspect that ancient viruses were less modern RNA viruses that distinguish them from human se- diverse than current viruses. Understanding the genetics and tax- quences. Our results indicate that as-yet-undiscovered fossils onomy of ancient viruses, including extinct viruses, will provide from unknown viruses remain hidden in animal genomes. great insights into not only the origin and evolution of viruses but These relics of the ancient virosphere, including sequences also how viral infections played roles in our evolution and how we reported here, will expand our knowledge about the diversity have coexisted with potential pathogens. However, much is not of ancient viruses and also our genomes. known about the diversity of ancient viruses. Author contributions: S. Kojima, M.H., S. Kawano, and K.T. designed research; S. Kojima The clue to the existence of ancient viruses is found in our and S. Kawano performed research; S.N. contributed new reagents/analytic tools; K.Y., genomes. Genome sequences called endogenous viruses are J.I., S.N., N.F.P., M.H., and K.T. analyzed data; and S. Kojima, N.F.P., S. Kawano, and K.T. remnants of ancient viral infections in an organism’s genome that wrote the paper. are thought to retain the genetic characteristics of the viruses that The authors declare no competing interest. prevailed in ancient times (1). In addition to retroviruses, which This article is a PNAS Direct Submission. are well-recognized as endogenized relics, sequences from RNA Published under the PNAS license. viruses, called nonretroviral endogenous RNA virus elements 1Present address: Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster (nrEVEs), have also been inserted into animal genomes (2–5). For for Pioneering Research, Yokohama 230-0045, Japan. example, endogenous bornavirus- and filovirus-like elements show 2To whom correspondence may be addressed. Email: [email protected] or detectable sequence similarity to their extant relatives and that [email protected]. ancient viruses were directly linked to the evolution of current This article contains supporting information online at https://www.pnas.org/lookup/suppl/ viral lineages (6–11). On the other hand, some nrEVEs fall into doi:10.1073/pnas.2010758118/-/DCSupplemental. lineages distantly related to current viruses at the genus or family Published January 25, 2021. PNAS 2021 Vol. 118 No. 5 e2010758118 https://doi.org/10.1073/pnas.2010758118 | 1of10 Downloaded by guest on September 30, 2021 Extant viruses have been found to share certain patterns in the sequences within each group lacked pairwise similarity to se- occurrence of nucleic acid combinations of length k,calledk-mers. quences in other groups (SI Appendix,Fig.S2). When bornavirus The dinucleotide (k-mer = 2) composition is generally uniform in nucleoprotein (N)-derived nrEVEs were retained as test data, an animal RNA virus family (14). Prokaryotic viral sequences have more than 75% of the test sequences were correctly classified distinctive k-mer frequencies that distinguish them from the se- (Fig. 1B). Consistently, we observed 44 to 83% of the test data quences of the host (15). k-mer occurrence in viral genomes is were correctly classified when using the other nrEVE groups as thought to be shaped by several selective constraints, such as co- test sequences, with one exception: training performed without don usage bias, which buffers against error-prone replication, and filovirus glycoprotein (GP)-derived nrEVEs. From these obser- the low-CG dinucleotide property that allows viruses to evade vations, we conclude that, regardless of their origin, nrEVEs share immune response (16, 17). These observations suggest the possi- distinguishing sequence characteristics in almost all cases. bility that both ancient and modern viruses share defining k-mer signatures. Similarity in the Sequence Characteristics of nrEVEs and RNA Viruses. In this study, we employ machine learning of sequence sig- The above result demonstrates the commonality in k-mer com- natures of ancient RNA viruses to search for nrEVEs without position in nrEVE sequences. Because the genetic architecture local sequence similarity to known viruses and demonstrate the of RNA viruses seems to be influenced by a number of con- presence of nrEVEs originating from an as-yet-unrecognized straints, such as immune pressure and error-prone replication, infectious agent in the human genome. Interestingly, we find that k and has a pattern distinct from that of host species (16, 17), we the -mer frequencies of nrEVEs are more similar to those of next assessed whether the k-mer composition of nrEVEs is more current RNA viral sequences than to those of human genomic similar to human coding sequences or to the coding genes in the sequences. Furthermore, we discover not only previously unex- single-strand, negative-sense RNA [(−)ssRNA] virus group, plored ancient bornavirus-derived insertions but also a viral-like which includes bornaviruses and filoviruses.
Recommended publications
  • Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms
    Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms Biological Methods Subcommittee Biology/DNA Scientific Area Committee Organization of Scientific Area Committees (OSAC) for Forensic Science Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms OSAC Proposed Standard Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms Prepared by Biological Methods Subcommittee Version: 1.0 Disclaimer: This document has been developed by the Biological Methods Subcommittee of the Organization of Scientific Area Committees (OSAC) for Forensic Science through a consensus process and is proposed for further development through a Standard Developing Organization (SDO). This document is being made available so that the forensic science community and interested parties can consider the recommendations of the OSAC pertaining to applicable forensic science practices. The document was developed with input from experts in a broad array of forensic science disciplines as well as scientific research, measurement science, statistics, law, and policy. This document has not been published by an SDO. Its contents are subject to change during the standards development process. All interested groups or individuals are strongly encouraged to submit comments on this proposed document during the open comment period administered by the Academy Standards Board (www.asbstandardsboard.org). Best Practice Recommendations for Internal Validation of Human Short Tandem Repeat Profiling on Capillary Electrophoresis Platforms Foreword This document outlines best practice recommendations for the internal validation of human short tandem repeat DNA profiling on capillary electrophoresis platforms utilized in forensic laboratories.
    [Show full text]
  • The Variability of Hop Latent Viroid As Induced Upon Heat Treatment
    Virology 287, 349–358 (2001) doi:10.1006/viro.2001.1044, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector The Variability of Hop Latent Viroid as Induced upon Heat Treatment Jaroslav Matousˇek,* Josef Patzak,† Lidmila Orctova´,* Jo¨rg Schubert,‡ Luka´sˇ Vrba,* Gerhard Steger,§ and Detlev Riesner§,1 *Department of Molecular Genetics, Institute of Plant Molecular Biology Czech Academy of Sciences, Branisˇovska´31, 37005 Cˇ eske´Bude˘jovice, Czech Republic; †Department of Virology, Institute of Hop Research and Breeding, Kadanˇska´2525, 438 46 Zˇatec, Czech Republic; ‡Federal Centre for Breeding Research, Institute for Resistance Research and Pathogen Diagnostics, Theodor-Roemer-Weg 4, 06449 Aschersleben, Germany; and §Institute of Physical Biology, Heinrich-Heine Universita¨t Du¨sseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany Received March 28, 2001; returned to author for revision March 30, 2001; accepted June 11, 2001; published online August 2, 2001 We have previously shown that heat treatment of hop plants infected by hop latent viroid (HLVd) reduces viroid levels. Here we investigate whether such heat treatment leads to the accumulation of sequence variability in HLVd. We observed a negligible level of mutated variants in HLVd under standard cultivation conditions. In contrast, the heat treatment of hop led to HLVd degradation and, simultaneously, to a significant increase in sequence variations, as judged from temperature gradient–gel electrophoresis analysis and cDNA library screening by DNA heteroduplex analysis. Thirty-one cDNA clones (9.8%) were identified as deviating forms.
    [Show full text]
  • Microsatellites Within the Feline Androgen Receptor Are
    JFM0010.1177/1098612X16634386Journal of Feline Medicine and SurgeryFarwick et al 634386research-article2016 Original Article Journal of Feline Medicine and Surgery 1 –7 Microsatellites within the feline © The Author(s) 2016 Reprints and permissions: androgen receptor are suitable for X sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1098612X16634386 chromosome-linked clonality testing jfms.com in archival material Nadine M Farwick1, Robert Klopfleisch1, Achim D Gruber1 and Alexander Th A Weiss2 Abstract Objectives A hallmark of neoplasms is their origin from a single cell; that is, clonality. Many techniques have been developed in human medicine to utilise this feature of tumours for diagnostic purposes. One approach is X chromosome-linked clonality testing using polymorphisms of genes encoded by genes on the X chromosome. The aim of this study was to determine if the feline androgen receptor gene was suitable for X chromosome-linked clonality testing. Methods The feline androgen receptor gene, was characterised and used to test clonality of feline lymphomas by PCR and polyacrylamide gel electrophoresis, using archival formalin-fixed, paraffin-embedded material. Results Clonality of the feline lymphomas under study was confirmed and the gene locus was shown to represent a suitable target in clonality testing. Conclusions and relevance Because there are some pitfalls using X chromosome-linked clonality testing, further studies are necessary to establish this technique in the cat. Accepted: 26 January 2016 Introduction Most tumours arise
    [Show full text]
  • HERV-K(HML7) Integrations in the Human Genome: Comprehensive Characterization and Comparative Analysis in Non-Human Primates
    biology Article HERV-K(HML7) Integrations in the Human Genome: Comprehensive Characterization and Comparative Analysis in Non-Human Primates Nicole Grandi 1,* , Maria Paola Pisano 1 , Eleonora Pessiu 1, Sante Scognamiglio 1 and Enzo Tramontano 1,2 1 Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy; [email protected] (M.P.P.); [email protected] (E.P.); [email protected] (S.S.); [email protected] (E.T.) 2 Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy * Correspondence: [email protected] Simple Summary: The human genome is not human at all, but it includes a multitude of sequences inherited from ancient viral infections that affected primates’ germ line. These elements can be seen as the fossils of now-extinct retroviruses, and are called Human Endogenous Retroviruses (HERVs). View as “junk DNA” for a long time, HERVs constitute 4 times the amount of DNA needed to produce all cellular proteins, and growing evidence indicates their crucial role in primate brain evolution, placenta development, and innate immunity shaping. HERVs are also intensively studied for a pathological role, even if the incomplete knowledge about their exact number and genomic position has thus far prevented any causal association. Among possible relevant HERVs, the HERV-K Citation: Grandi, N.; Pisano, M.P.; supergroup is of particular interest, including some of the oldest (HML5) as well as youngest (HML2) Pessiu, E.; Scognamiglio, S.; integrations. Among HERV-Ks, the HML7 group still lack a detailed description, and the present Tramontano, E.
    [Show full text]
  • Virus, Viroids and Mycoplasma
    By: Dr. Bibha Kumari Dept. of Zoology Magadh Mahila College, Patna Email: [email protected] Virus •The viruses are non-cellular organisms. • They, in fact, have an inert crystalline structure outside the living cell. • Once they infect a cell, they take over the machinery of the host cell to replicate themselves, killing the host. •Pasteur. D.J. Ivanowsky (1892) gave the name virus. • It means venom or poisonous fluid. • According to his research, certain microbes caused the mosaic disease of tobacco. •These organisms were smaller than bacteria because they passed through bacteria-proof filters. • M.W. Beijerinek (1898) demonstrated that the extract of the infected plants of tobacco could cause infection in healthy plants. • He named the fluid as Contagium vivum fluidum (infectious living fluid). •W.M. Stanley (1935) discovered that viruses could be crystallized. These virus crystals are composed largely of proteins. •They are inert outside their specific host cell. Viruses are nothing but obligate parasites. Genetic Material of Viruses: •In addition to proteins, viruses also contain genetic material, that could be either RNA or DNA. • No virus contains both RNA and DNA. A virus is a nucleoprotein and the genetic material is infectious. •Speaking in strictly general terms, viruses infecting plants have single- stranded RNA. • On the other hand, viruses that infect animals have either single or double-stranded RNA or they might have double-stranded DNA •Bacterial viruses or bacteriophages usually have a double-stranded DNA structure. By bacteriophages, we mean viruses that infect the bacteria. • The protein coat, capsid made of small subunits (capsomeres) protects the nucleic acid.
    [Show full text]
  • Paleovirology of 'Syncytins', Retroviral Env Genes Exapted for a Role in Placentation
    Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation Christian Lavialle1,2, Guillaume Cornelis1,2, Anne Dupressoir1,2, Ce´cile Esnault1,2, Odile Heidmann1,2,Ce´cile Vernochet1,2 1,2 rstb.royalsocietypublishing.org and Thierry Heidmann 1UMR 8122, Unite´ des Re´trovirus Endoge`nes et E´le´ments Re´troı¨des des Eucaryotes Supe´rieurs, CNRS, Institut Gustave Roussy, 94805 Villejuif, France 2Universite´ Paris-Sud XI, 91405 Orsay, France Review The development of the emerging field of ‘paleovirology’ allows biologists to reconstruct the evolutionary history of fossil endogenous retroviral sequences Cite this article: Lavialle C, Cornelis G, integrated within the genome of living organisms and has led to the retrieval of conserved, ancient retroviral genes ‘exapted’ by ancestral hosts to fulfil Dupressoir A, Esnault C, Heidmann O, essential physiological roles, syncytin genes being undoubtedly among the Vernochet C, Heidmann T. 2013 Paleovirology most remarkable examples of such a phenomenon. Indeed, syncytins are of ‘syncytins’, retroviral env genes exapted for a ‘new’ genes encoding proteins derived from the envelope protein of endogen- role in placentation. Phil Trans R Soc B 368: ous retroviral elements that have been captured and domesticated on multiple 20120507. occasions and independently in diverse mammalian species, through a pro- http://dx.doi.org/10.1098/rstb.2012.0507 cess of convergent evolution. Knockout of syncytin genes in mice provided evidence for their absolute requirement for placenta development and embryo survival, via formation by cell–cell fusion of syncytial cell layers at One contribution of 13 to a Theme Issue the fetal–maternal interface.
    [Show full text]
  • Hammerhead Ribozymes Against Virus and Viroid Rnas
    Hammerhead Ribozymes Against Virus and Viroid RNAs Alberto Carbonell, Ricardo Flores, and Selma Gago Contents 1 A Historical Overview: Hammerhead Ribozymes in Their Natural Context ................................................................... 412 2 Manipulating Cis-Acting Hammerheads to Act in Trans ................................. 414 3 A Critical Issue: Colocalization of Ribozyme and Substrate . .. .. ... .. .. .. .. .. ... .. .. .. .. 416 4 An Unanticipated Participant: Interactions Between Peripheral Loops of Natural Hammerheads Greatly Increase Their Self-Cleavage Activity ........................... 417 5 A New Generation of Trans-Acting Hammerheads Operating In Vitro and In Vivo at Physiological Concentrations of Magnesium . ...... 419 6 Trans-Cleavage In Vitro of Short RNA Substrates by Discontinuous and Extended Hammerheads ........................................... 420 7 Trans-Cleavage In Vitro of a Highly Structured RNA by Discontinuous and Extended Hammerheads ........................................... 421 8 Trans-Cleavage In Vivo of a Viroid RNA by an Extended PLMVd-Derived Hammerhead ........................................... 422 9 Concluding Remarks and Outlooks ........................................................ 424 References ....................................................................................... 425 Abstract The hammerhead ribozyme, a small catalytic motif that promotes self- cleavage of the RNAs in which it is found naturally embedded, can be manipulated to recognize and cleave specifically
    [Show full text]
  • Role of Human Endogenous Retroviral Long Terminal Repeats (Ltrs) in Maintaining the Integrity of the Human Germ Line
    Viruses 2011, 3, 901-905; doi:10.3390/v3060901 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Commentary Role of Human Endogenous Retroviral Long Terminal Repeats (LTRs) in Maintaining the Integrity of the Human Germ Line Meihong Liu and Maribeth V. Eiden * Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, 49 Convent Drive MSC 4483, Bethesda, MD 20892, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.:+1-301-402-1641 Fax: +1-301-402-1748. Received: 27 April 2011; in revised form: 10 June 2011 / Accepted: 15 June 2011 / Published: 21 June 2011 Abstract: Retroviruses integrate a reverse transcribed double stranded DNA copy of their viral genome into the chromosomal DNA of cells they infect. Occasionally, exogenous retroviruses infect germ cells and when this happens a profound shift in the virus host dynamic occurs. Retroviruses maintained as hereditable viral genetic material are referred to as endogenous retroviruses (ERVs). After millions of years of co-evolution with their hosts many human ERVs retain some degree of function and a few have even become symbionts. Thousands of copies of endogenous retrovirus long terminal repeats (LTRs) exist in the human genome. There are approximately 3000 to 4000 copies of the ERV-9 LTRs in the human genome and like other solo LTRs, ERV-9 LTRs can exhibit distinct promoter/enhancer activity in different cell lineages. It has been recently reported that a novel transcript of p63, a primordial member of the p53 family, is under the transcriptional control of an ERV-9 LTR [1].
    [Show full text]
  • A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder
    G C A T T A C G G C A T genes Article A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder Matteo Delucchi 1,2 , Elke Schaper 1,2,† , Oxana Sachenkova 3,‡, Arne Elofsson 3 and Maria Anisimova 1,2,* 1 ZHAW Life Sciences und Facility Management, Applied Computational Genomics, 8820 Wädenswil, Switzerland; [email protected] 2 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 3 Science of Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +41-(0)58-934-5882 † Present address: Carbon Delta AG, 8002 Zürich, Switzerland. ‡ Present address: Vildly AB, 385 31 Kalmar, Sweden. Received: 9 March 2020; Accepted: 1 April 2020; Published: 9 April 2020 Abstract: Protein tandem repeats (TRs) are often associated with immunity-related functions and diseases. Since that last census of protein TRs in 1999, the number of curated proteins increased more than seven-fold and new TR prediction methods were published. TRs appear to be enriched with intrinsic disorder and vice versa. The significance and the biological reasons for this association are unknown. Here, we characterize protein TRs across all kingdoms of life and their overlap with intrinsic disorder in unprecedented detail. Using state-of-the-art prediction methods, we estimate that 50.9% of proteins contain at least one TR, often located at the sequence flanks. Positive linear correlation between the proportion of TRs and the protein length was observed universally, with Eukaryotes in general having more TRs, but when the difference in length is taken into account the difference is quite small.
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • An Intronic Variable Number of Tandem Repeat Polymorphisms of the Cold
    European Journal of Human Genetics (2006) 14, 1295–1305 & 2006 Nature Publishing Group All rights reserved 1018-4813/06 $30.00 www.nature.com/ejhg ARTICLE An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension Toshinori Omi1, Maki Kumada1, Toyomi Kamesaki1, Hiroshi Okuda1, Lkhagvasuren Munkhtulga1, Yoshiko Yanagisawa1, Nanami Utsumi1, Takaya Gotoh1, Akira Hata2, Masayoshi Soma3, Satoshi Umemura4, Toshio Ogihara5, Norio Takahashi6, Yasuharu Tabara7, Kazuyuki Shimada8, Hiroyuki Mano9, Eiji Kajii1, Tetsuro Miki7 and Sadahiko Iwamoto*,1 1Division of Human Genetics, Center for Community Medicine, Jichi Medical School, Tochigi, Japan; 2Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan; 3Department of Nephrology and Endocrinology, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan; 4Second Department of Internal Medicine, Yokohama City University Medical School, Kanagawa, Japan; 5Department of Genetics, Radiation Effects Research Foundation, Hiroshima, Japan; 6Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; 7Department of Geriatric Medicine, Ehime University School of Medicine, Ehime, Japan; 8Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical School, Tochigi, Japan; 9Division of Functional Genomics, Jichi Medical School, Kawachigun, Tochigi, Japan Cold-induced autoinflammatory syndrome 1 (CIAS1) gene is a member of the NALP subfamily of the CATERPILLER protein family that is expressed predominantly in peripheral blood leukocytes, which is to regulate apoptosis or inflammation through the activation of NF-jB and caspase. Recent genetic analyses suggested an association between inflammation and oxidative stress-related genes in the development of hypertension. This is the first genetic study indicating an association between the CIAS1 gene and susceptibility to essential hypertension (EH).
    [Show full text]
  • Long Terminal Repeat Enhancer Core Sequences in Proviruses Adjacent to C-Myc in T-Cell Lymphomas Induced by a Murine Retrovirus
    JOURNAL OF VIROLOGY, Jan. 1995, p. 446–455 Vol. 69, No. 1 0022-538X/95/$04.0010 Copyright q 1995, American Society for Microbiology Long Terminal Repeat Enhancer Core Sequences in Proviruses Adjacent to c-myc in T-Cell Lymphomas Induced by a Murine Retrovirus HARRY L. MORRISON, BOBBY SONI, AND JACK LENZ* Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461 Received 28 June 1994/Accepted 17 October 1994 The transcriptional enhancer in the long terminal repeat (LTR) of the T-lymphomagenic retrovirus SL3-3 differs from that of the nonleukemogenic virus Akv at several sites, including a single base pair difference in an element termed the enhancer core. Mutation of this T-A base pair to the C-G sequence found in Akv significantly attenuated the leukemogenicity of SL3-3. Thus, this difference is important for viral leukemoge- nicity. Since Akv is an endogenous virus, this suggests that the C-G in its core is an adaptation to being minimally pathogenic. Most tumors that occurred in mice inoculated with the mutant virus, called SAA, contained proviruses with reversion or potential suppressor mutations in the enhancer core. We also found that the 72-bp tandem repeats constituting the viral enhancer could vary in number. Most tumors contained mixtures of proviruses with various numbers of 72-bp units, usually between one and four. Variation in repeat number was most likely due to recombination events involving template misalignment during viral replication. Thus, two processes during viral replication, misincorporation and recombination, combined to alter LTR enhancer structure and generate more pathogenic variants from the mutant virus.
    [Show full text]