Appendix Chemical Composition of Ejecta from Recently Active Volcanoes at Convergent Plate Boundaries *

Total Page:16

File Type:pdf, Size:1020Kb

Appendix Chemical Composition of Ejecta from Recently Active Volcanoes at Convergent Plate Boundaries * Appendix Chemical Composition of Ejecta from Recently Active Volcanoes at Convergent Plate Boundaries * 5 Arcl Volcano2 No.3 <53% 53-57 57-63 >63 KS7.s FeO*/ Ref. 6 Si02 4 MgOS7.S 1. New Zealand (Fig. 1) 1.1 White Island 16 0 1 11 4 1.1 1.4 1,126 1.2 Okataina (Tarawera) 25 0 0 0 25 1,129 1.3 Taupo 4 0 0 0 4 1 1.4 Tongariro 66 3 18 45 0 0.8- 1.4 1,2 1.6 1.5 Ngauruhoe 4 0 2 2 0 1.3 1.6 1,2 1.6 Ruapehu 16 0 3 13 0 1.5 1.6 1,2 1.7 Egmont 22 4 16 2 0 2.2 2.3 1,3 2. Kermadec (Fig. 1) 2.1 Raoul 13 8 3 0 2 0.5 3.0 4,139 2.2 Macauley* 9 8 0 0 1 0.4 5,139 3. Tonga (Fig. 2) 3.1 Hunga Ha'apai 2 0 2 0 0 6 3.2 Tofua 11 0 8 2 1 0.5 2.8 8,9 3.3 Metis Shoal 2 0 0 0 2 6,7 3.4 Late 10 0 9 1 0 0.6 2.7 6 3.5 Fonualei 15 0 0 3 12 (0.8) (3.8) 6 4. Vanuatu (Fig. 3) 4.1 Suretamatai 16 12 3 1 0 1.9 (3.4) 138 4.2 Gaua 8 6 2 0 0 >5.0 >3.7 140 4.3 Aoba 42 42 0 0 0 10 4.4 Ambrym 8 8 0 0 0 10,11 4.5 Lopevi 9 5 1 3 0 1.4 (2.0) 139 4.6 E. Epi* 14 11 3 0 0 1.6 10 4.7 Tongoa 22 18 0 0 4 (2.0) 10 4.8 Erromango 92 77 13 2 0 1.4 2.5 147 + 3.5 4.9 Tanna 9 0 7 2 0 (2.5) (3.0) 10 5. Solomon Islands (Fig. 4) 5.1 Savo 4 0 1 1 2 (1.9) 13 5.2 New Georgia 17 12 5 0 0 3.0 2.1 14 5.3 Bagana 40 1 34 5 0 1.7 2.5 15 5.4 Balbi 2 0 0 2 0 2.5 2.0 15 * See p. 326 for explanation of footnotes, pp.327/328 for references, and pp. 329-336 for figures 318 Appendix 5 Arcl Volcano2 No.3 <53% 53-57 57-63 >63 KS7.s FeO*j Ref. 6 Si024 MgOS7.S 6. Bismarck (Fig. 4) 6.1 Rabaul 21 5 3 8 5 1.7 (2.7) 16,17 6.2 Ulawun 22 19 3 0 0 0.5 (1.7) 19 6.3 Bamus 12 0 8 4 0 0.4 2.8 19 6.4 Hargy- Galloseulo 14 0 4 7 3 0.6 2.3 19 6.5 Lolobau 15 1 5 3 6 0.7 2.6 19 6.6 Sulu* 10 0 7 0 3 0.6 1.6 19 6.7 Witori* 12 0 0 3 9 0.5 3.0 18, 19 6.8 Krummel- Hoskins 35 1 14 13 7 0.7 2.0 18,19 6.9 Talasea 19 1 0 12 6 1.3 2.1 19,20 6.10 N. Willaumez 15 3 2 5 5 1.3 2.5 19,20 6.11 Witu I. 29 13 7 4 5 0.7 19 + 1.7 6.12 Karkar 14 0 13 1 0 0.9 2.7 21,22 6.13 Manam 16 11 4 1 0 21 7. Papua New Guinea (Fig. 4) 7.1 Highlands 30 15 8 6 1 1.5- 2.5 23 2.5 7.2 Lamington 29 1 10 14 4 2.2 1.3 12,13 7.3 Victory, Trafalgar 19 0 3 16 0 2.0 1.1 13,24 8. Sunda (Fig. 5) a) Sumatra 8.1 Sorikmarapi 2 0 0 2 0 (1.6) (2.0) 25 8.2 Talakmau 3 0 0 3 0 1.6 2.1 25,26 8.3 Marapi 6 0 3 3 0 2.2 (2) 25-27 8.4 Tandikat 5 0 1 3 1 1.7 2.0 25-27 8.5 Krakatau 34 7 4 5 18 1.4 2.3 25,26 b) Java 8.6 Tangkuban 21 3 10 8 0 2.3 2.7 25,28 8.7 Guntur 3 2 0 1 0 0.8 2.2 25,28 + 1.4 8.8 Papandajan 12 0 2 8 2 1.2 2.1 25,28 8.9 Galunggung 4 1 3 0 0 0.8 2.2 25,28 8.10 Tjerimai 15 0 9 6 0 1.6 1.9 25,28 8.11 Slamet 22 18 4 0 0 (1.7) (2.0) 25,28 8.12 Dieng 12 1 3 8 0 1.8 2.2 25,28 8.13 Sundoro 14 2 6 6 0 2.0 2.6 28 8.14 Sumbing 16 1 3 12 0 1.8 2.2 25,28 8.15 Ungaran 19 10 8 1 0 3.1 2.2 25,28 8.16 Merabu 13 6 2 5 0 2.0 2.2 25,28 8.17 Merapi 30 8 22 0 0 2.1 2.6 25,28 8.18 Kelud 6 1 2 3 0 1.0 2.4 25,28 Chemical Composition of Ejecta from Recently Active Volcanoes 319 5 l 2 No.3 53-57 57-63 >63 • Ref. Arc Volcano <53% KS7 S FeO*/ 6 Si024 Mg°S7.S 8.19 Semeru 9 2 1 6 0 1.4 2.9 25,28 8.20 Bromo 7 0 5 2 0 2.9 (2.5) 25,28 8.21 Raung 9 4 3 2 0 1.8 (2.8) 25 c) Bali-Banda 8.22 Batur 9 4 0 0 5 (1.7) 28 8.23 Agung 8 2 5 1 0 1.6 (2.3) 28 8.24 Seraja 4 1 3 0 0 1.7 >2.5 28 8.25 Paluweh 12 5 2 5 0 2.2 2.5 25 8.26 IIi Boleng 3 1 1 1 0 2.1 2.7 25,29 8.27 Lewotolo 7 2 2 3 0 (3.5) (2.4) 25,29 8.28 Sirung 5 2 1 0 2 1.8 (3.2) 29 8.29 Damar 5 0 0 5 0 2.5 1.8 29 8.30 Teun 4 0 0 4 0 (1.8) (1.8) 29 8.31 Nila 5 0 4 1 0 2.2 1.8 29 8.32 Serua 6 0 2 4 0 1.1 1.4 29 8.33 Manuk 5 0 2 3 0 1.0 1.5 29 8.34 Banda 8 1 0 0 7 (0.5) (2.8) 29 9.Halmahera (Fig. 6) 9.1 Dukono 6 1 1 1 3 2.0 (2.7) 25 9.2 Ternate 6 0 2 3 1 1.8 2.9 30 9.3 Tidore* 5 2 0 1 2 1.8 31 10. Sulawesi (Fig. 6) 10.1 Lokon- Empung 5 2 1 0 2 1.5 25 11.S.E. Philippines (Fig. 7) 11.1 Mayon 55 6 47 2 0 1.2 2.2 32,33, 34 12.N.W. Philippines Taiwan (Fig. 7) 12.1 Taal 4 2 1 1 0 (2.2) 3.0 32 12.2 Kuei-shan-tao 5 0 1 4 0 1.1 1.8 35 12.3 Tatun area 16 9 3 3 1 1.8 2.1 35 12.4 Keelung* 9 1 4 4 0 1.6 1.7 35 12.5 Agin-court 3 3 0 0 0 35 13. Ryuku-West Japan (Fig. 8) 13.1 Suwanosezima 13 0 3 10 0 1.3 2.1 36,37 13.2 Nakano-zima 4 0 0 2 2 0.9 1.7 36 13.3 Kutinoerabu- ziina 3 0 0 3 0 « 1.5) « 1.9) 36,37 13.4 Tokara-Iwo- zima 12 2 1 0 9 (0.8) 36 13.5 Sakurajima 83 0 0 37 46 1.4 2.1 36,37 13.6 Kirisima 21 2 7 11 1 1.9 2.4 36,37 320 Appendix 5 Arcl Volcano2 No.3 <53% 53-57 57-63 >63 KS7.S FeO*/ Ref. 6 Si024 MgOS705 13.7 Unzen 7 0 0 3 4 1.6 1.9 36 13.8 Aso 35 9 11 9 4 2.2 2.1 36 13.9 Kuzyo 9 1 3 4 1 1.5 2.7 36 14.Mariana-Izu (Figs. 9, 10) 14.a Sarigan 4 1 2 1 0 0.7 1.9 150 14.b Pagan 16 14 2 0 0 >1.4 >2.4 36,38, 150 14.1 Agrigan 29 17 10 2 0 1.8 4.1 151 14.2 Asuncion 6 0 6 0 0 >2.8 150 14.3 Uracas 5 2 3 0 0 1.2 3.4 36,37 14.4 Tori-zima 8 5 2 1 0 0.4 2.3 36 14.5 Aoga -zima 4 2 0 2 0 0.4 3.8 36 14.6 Hatizyo-zima 32 19 4 5 4 0.5 3.0 36,39 14.7 Miyake-zima 12 4 8 0 0 0.5 5.9 36 14.8 Kozu-zima 5 0 0 0 5 36 14.90sima 7 7 0 0 0 36 15.East Japan (Fig.
Recommended publications
  • Crary-Henderson Collection, B1962.001
    REFERENCE CODE: AkAMH REPOSITORY NAME: Anchorage Museum at Rasmuson Center Bob and Evangeline Atwood Alaska Resource Center 625 C Street Anchorage, AK99501 Phone: 907-929-9235 Fax: 907-929-9233 Email: [email protected] Guide prepared by: Mary Langdon, Volunteer, and Sara Piasecki, Archivist TITLE: Crary-Henderson Collection COLLECTION NUMBER: B1962.001, B1962.001A OVERVIEW OF THE COLLECTION Dates: circa 1885-1930 Extent: 19.25 linear feet Language and Scripts: The collection is in English. Name of creator(s): Will Crary; Nan Henderson; Phinney S. Hunt; Miles Bros.; Lyman; George C. Cantwell; Johnson; L. G. Robertson; Lillie N. Gordon; John E. Worden; W. A. Henderson; H. Schultz; Merl LaVoy; Guy F. Cameron; Eric A. Hegg Administrative/Biographical History: The Crary and Henderson Families lived and worked in the Valdez area during the boom times of the early 1900s. William Halbrook Crary was a prospector and newspaper man born in the 1870s (may be 1873 or 1876). William and his brother Carl N. Crary came to Valdez in 1898. Will was a member of the prospecting party of the Arctic Mining Company; Carl was the captain of the association. The Company staked the “California Placer Claim” on Slate Creek and worked outside of Valdez on the claim. Slate Creek is a tributary of the Chitina River, in the Chistochina District of the Copper River Basin. Will Crary was the first townsite trustee for Valdez. Carl later worked in the pharmaceutical field in Valdez and was also the postmaster. Will married schoolteacher Nan Fitch in Valdez in 1906. Carl died of cancer in 1927 in Portland, Oregon.
    [Show full text]
  • Arenal Volcano Tours
    TRUST THE EXPERTS Hand Crafted Itineraries Curated Hotel Collection Luxury Vehicles Experienced Travel Consultants ARENAL VOLCANO 24/7 In-Country TOURS Assistance The Arenal Volcano once erupted an average of 41 times per day. Today, the volcano is in a resting phase but still a sight to behold. The region is not only home to the volcano, it also benefits from volcano-fed thermal hot springs, plunging waterfalls, the impressive Over 50,000 Satisfied size of Lake Arenal, and a rich secondary rainforest ecosystem with Customers exotic wildlife. Now considered by many the adventure capital of Costa Rica, Arenal is a great base for adventure tours like zip-lining, whitewater rafting, COSTA RICA waterfall rappelling, and more. EXPERTS The listed tours are available from hotels in the central Arenal zone. 3166 N Lincoln Ave., Additional fees may apply for hotels outside of the central zone Suite 424 Chicago, IL. 60657 www.costaricaexperts.com Phone: 800-827-9046 Fax: 773-935-9252 Arenal Hanging Bridges Hike Hike across the Arenal Hanging Bridges with a naturalist guide for a perfect half-day Arenal tour. This ecotourism project of solid ground trails and state of the art hanging bridges was designed for the observation and conservation of Costa Rica’s incredible nature. The reserve, with nearly 370 acres of rainforest, is home to countless species of amazing birds, mammals, and lush vegetation. You will walk along the treetops with your naturalist guide, encountering 8 fixed bridges and 6 hanging bridges. These connect gaps in the reserve canyon, allowing you to walk right into the most important layers of the rainforest.
    [Show full text]
  • Monitoreo De Los Volcanes Coropuna, Ticsani Y Tutupaca, Para El Periodo Entre Enero a Diciembre De 2015, Ha Permitido Llegar a Las Siguientes Conclusiones
    Observatorio Vulcanológico del INGEMMET INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO Creado por Resolución dePresidencia) Nº 037–2013–INGEMMET-PCD Informe técnico: MONITOREO DE LOS VOLCA NES COROPUNA, TICSANI Y TUTUPACA, 2015 Por: Fredy Apaza, Beto Ccallata, Rafael Miranda, Domingo Ramos AREQUIPA – PERU 2015 Dirección: Barrio Magisterial Nro. 2 B-16 / Umacollo - Arequipa Visítanos Central Lima: 016189800 - Anexo 415 W eb: http//ww.ovi.ingemmet.gob.pe/portal_volcan/ Oficina Arequipa Telefax: 054- 250575 - 250648 Observatorio Vulcanológico del INGEMMET INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO Creado por Resolución dePresidencia) Nº 037–2013–INGEMMET-PCD Director Dirección de Geología Ambiental y Riesgo Geológico Lionel Fidel Smoll Coordinador del Observatorio vulcanológico del INGEMMET: Marco Rivera Porras Integrantes del grupo de monitoreo volcánico del Observatorio Vulcanológico del INGEMMET: Domingo Ramos Pablo Masías Edú Taipe Roger Machaca Beto Ccallata Mayra Ortega Fredy Apaza Ivonne Lazarte Dino Enríquez Rafael Miranda Rosa Anccasi André Gironda Guido Núñez Jonathan Díaz Albert Ramos Dirección: Barrio Magisterial Nro. 2 B-16 / Umacollo - Arequipa Visítanos Central Lima: 016189800 - Anexo 415 W eb: http//ww.ovi.ingemmet.gob.pe/portal_volcan/ Oficina Arequipa Telefax: 054- 250575 - 250648 Observatorio Vulcanológico del INGEMMET INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO DIRECCIÓN DE GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO Creado por Resolución
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]
  • Mejoras En El Paradigma Del Manejo De La Gestión Del Riesgo En Los Parques Nacionales Volcánicos De Costa Rica, Entre El Año 2000 Y El 2020
    Revista Geológica de América Central, 64, 1-15 , 2021 doi: 10.15517/rgac.v0i64.46615 ISSN: 0256-7024 Mejoras en el paradigma del manejo de la gestión del riesgo en los parques nacionales volcánicos de Costa Rica, entre el año 2000 y el 2020 Improvements in risk management paradigm in Costa Rican volcanic national parks between 2000 and 2020 Guillermo E. Alvarado*, Lidier Esquivel y Blas Sánchez Comisión Nacional de Prevención de Riesgos y Atención de Emergencias (CNE), Unidad de Investigación y Análisis del Riesgo, San José, Costa Rica *Autor para contacto: [email protected] (Recibido: 23/08/2020; aceptado 13/01/2021) RESUMEN: Costa Rica es conocida a nivel mundial como una meca turística. A partir de 1955, casi todos los grandes volcanes comenzaron a ser declarados parques nacionales, deteniendo la ocupación y explotación humana en la cúspide de estos sectores, al tiempo que varios parques han estado expuestos a la actividad eruptiva de los cinco volcanes históricamente activos. Los parques nacionales volcánicos están sujetos al turismo y, con ello, al peligro de que se puedan generar afectación y pérdidas en vidas huma- nas. La muerte de una turista norteamericana y su guía costarricense en el año 2000, así como la repentina erupción del Poás en el año 2017, aunado a la persistente actividad eruptiva del Turrialba por más de 10 años, fueron los mecanismos disparadores de cuatro grandes cambios en el manejo y seguridad de los parques volcánicos costarricenses: a) la generación del decreto de restricción del uso de la tierra alrededor
    [Show full text]
  • Lombok Island, Sumbawa Island, and Samalas Volcano
    ECOLE DOCTORALE DE GEOGRAPHIE DE PARIS (ED 4434) Laboratoire de Géographie Physique - UMR 8591 Doctoral Thesis in Geography Bachtiar Wahyu MUTAQIN IMPACTS GÉOMORPHIQUES DE L'ÉRUPTION DU SAMALAS EN 1257 LE LONG DU DÉTROIT D'ALAS, NUSA TENGGARA OUEST, INDONÉSIE Defense on: 11 December 2018 Supervised by : Prof. Franck LAVIGNE (Université Paris 1 – Panthhéon Sorbonne) Prof. HARTONO (Universitas Gadjah Mada) Rapporteurs : Prof. Hervé REGNAULD (Université de Rennes 2) Prof. SUWARDJI (Universitas Mataram) Examiners : Prof. Nathalie CARCAUD (AgroCampus Ouest) Dr. Danang Sri HADMOKO (Universitas Gadjah Mada) 1 Abstract As the most powerful event in Lombok’s recent eruptive history, volcanic materials that were expelled by the Samalas volcano in 1257 CE covered the entire of Lombok Island and are widespread in its eastern part. Almost 800 years after the eruption, the geomorphological impact of this eruption on the island of Lombok remains unknown, whereas its overall climatic and societal consequences are now better understood. A combination of stratigraphic information, present-day topography, geophysical measurement with two-dimensional resistivity profiling technique, local written sources, as well as laboratory and computational analysis, were used to obtain detailed information concerning geomorphic impacts of the 1257 CE eruption of Samalas volcano on the coastal area along the Alas Strait in West Nusa Tenggara Province, Indonesia. This study provides new information related to the geomorphic impact of a major eruption volcanic in coastal areas, in this case, on the eastern part of Lombok and the western coast of Sumbawa. In the first place, the study result shows that since the 1257 CE eruption, the landscape on the eastern part of Lombok is still evolved until the present time.
    [Show full text]
  • Tracing a Major Crustal Domain Boundary Based on the Geochemistry of Minor Volcanic Centres in Southern Peru
    7th International Symposium on Andean Geodynamics (ISAG 2008, Nice), Extended Abstracts: 298-301 Tracing a major crustal domain boundary based on the geochemistry of minor volcanic centres in southern Peru Mirian Mamani1, Gerhard Wörner2, & Jean-Claude Thouret3 1 Georg-August University, Goldschmidstr. 1, 37077 Göttingen, Germany ([email protected], [email protected]) 2 Université Blaise Pascal, Clermont Ferrand, France ([email protected]) KEYWORDS : minor volcanic centres, crust, tectonic erosion, Central Andes, isotopes Introduction Geochemical studies of Tertiary to Recent magmatism in the Central Volcanic Zone have mainly focused on large stratovolcanoes. This is because mafic minor volcanic centres and related flows that formed during a single eruption are relatively rare and occur in locally clusters (e.g. Andagua/Humbo fields in S. Peru, Delacour et al., 2007; Negrillar field in N. Chile, Deruelle 1982) or in the back arc region (Davidson and de Silva, 1992). These studies showed that the "monogenetic" lavas are high-K calc-alkaline and their major, trace, and rare elements, as well as Sr-, Nd- and Pb- isotopes data display a range comparable to those of the Central Volcanic Zone composite volcanoes (Delacour et al., 2007). It has been argued that the eruptive products of these minor centers bypass the large magma chamber systems below Andean stratovolcanoes and thus may represent magmas that were derived from a deeper level in the crust (Davidson and de Silva, 1992; Ruprecht and Wörner, 2007). This study represents a continuation of our work to understand the regional variation in erupted magma composition in the Central Andes (Mamani et al., 2008; Wörner et al., 1992).
    [Show full text]
  • Geothermal Resources in Peru
    GEOTHERMAL RESOURCES IN PERU Ing. Guillermo Diaz Huaina Catedrático Universidad Nacional Mayor de San Marcos Universidad Nacional de Ingeniería Consultor en Geotermia Address: Prlg. Andahuaylas 984-dpto.158 La Victoria - Lima ( [email protected]) Starting from the unforeseen increasing of oil price that took place in 1973, a favorable attitude at international level toward the examination of an eventual substitution of this fuel was taken regarding the exploitation of other alternating and Renewable Energetic Sources as the GEOTHERM, a present resource existing in Peru. In fact , the Peruvian territory is part of the Pacific Fire Circle, Characterized by the occurrence of seismic movements, tectonic phenomena, a high concentration of geothermal caloric flow and the presence of vast volcanic rock deposits, some of them of recent age that make evident a latent magmatic activity. More than 400 thermal water manifestations between 40 – 89°C, had been identified at Peruvian territory, situated preferently along the Occidental Cordillera, and in less proportion at inland valleys and Oriental zone.(Fig N°1). This has permitted the determination of six (06) Geothermal Regions (Fig N° 2) GEOTHERMAL REGION SOUTH The recogniton research made at V REGION, Volcanic range, has permitted to establish geothermal areas of interest with the denomination of GEOTHERMAL FIELDS. A) FIELD TUTUPACA – CALACOA GEOTHERMAL The TUTUPACA – CALACOA geothermal field is also located on the southern part of Peru.. Calacoa area is at the inlands of Moquegua, and TUTUPACA is on Tacna and a portion of Moquegua (Fig N° 3). THERMAL MANIFESTATIONS In Calacoa area, the thermal manifestations are mainly associated with the Quaternary Volcanism, and they are shown as flows, fumaroles and geysers (Photo N° 1).
    [Show full text]
  • Undiscovered Papua National Mask Festival
    UNDISCOVERED PAPUA NATIONAL MASK FESTIVAL One of the world’s most astonishing man-made spectacles, the Papua New Guinea national mask festival celebrates the unique mask cultures of the tribes of East New Britain: the Tolai, Baining, Pomio and Sulka. The festival itself is a four day extravaganza of storytelling, music, cultural dancing, and ritual performance. On the first day at dawn, the Kinavai is held, signalling the arrival of the Tolai Tubuans who arrive on canoes amidst the chanting and beating of kundu drums. Traditional masks will be on display during the festival – some many decades old, brought over from New Ireland Province and other parts of Papua New Guinea. Many of these masks are sacred and are not meant to be viewed, and the opening ceremony acts as a cleansing or appeasement ritual for the broken taboos. The highlight of the evening performances are the spectacular fire dances in which young initiated Baining men perform exhilarating rituals through blazing fires as their elders chant in haunting tones. During our stay we will also have time to visit wartime sites and WWII relics, travel through colourful welcoming villages and tour the rim of an active volcano. Attend the astonishing Kinavai ceremony on Kokopo beach at dawn. Witness the arrival of the Tolai people on canoes with wild drum beats. See traditional masks from all over Papua New Guinea. Be immersed by the performance of the Asaro mud-men warriors from the central highlands. Climb an active volcano and visit a vulcanology research station. Travel to the landing spot of Australian forces in World War One.
    [Show full text]
  • Glenn Highway Tok Cutoff (GJ-125 to GJ-0) to Milepost a 160
    Map GLENN HIGHWAY • TOK CUTOFF Glenn Highway To Chicken and Eagle © The MILEPOST To Delta Junction (see TAYLOR HIGHWAY section) Key to mileage boxes ver (see ALASKA HIGHWAY section) Tanana Ri miles/kilometres G miles/kilometres Tanacross 5 from: la A L c A Swb T-Tok V-Valdez ia S K 2 Tok Map Location G-Glennallen ted A ® GJ-Gakona Junction A re A-Anchorage a R 2 A 1 Tetlin Junction J-Junction N HJ-Haines Junction Mount Kimball G T-0 a To Haines DJ-Delta Junction in 10,300 ft./3,139m E ch r w GJ-125/201km Junction Chisto cie G la A-328/528km (see ALASKA Principal Route Logged Key to Advertiser er HIGHWAY Services T iv DJ-108/174km C -Camping ok R section) Paved Unpaved R HJ-296/476km D -Dump Station iv ok Other Roads Logged d -Diesel er T G -Gas (reg., unld.) Tetlin I -Ice Lake Other Roads Scenic Byway L -Lodging M -Meals T Refer to Log for Visitor Facilities P -Propane Tok Cutoff ok Cu L R -Car Repair (major) na i Scale Sla R Mineral Lakes t iv t r -Car Repair (minor) e l 0 10 Miles r e S -Store (grocery) 0 10 Kilometres T -Telephone (pay) . t Cr t Bartell off (GJ-125 r Mentasta Lake e r e t T r. o v iv C i R Mentasta Lake S t ation k R Mentasta Summit n T-65/105km 2,434 ft./742m M a . i r E N d J-0 t C T A n e S I .
    [Show full text]
  • Eruptive History of Arenal Volcano, Costa Rica, 7 Ka to Present
    + MODEL ARTICLE IN PRESS Journal of Volcanology and Geothermal Research xx (2006) xxx–xxx www.elsevier.com/locate/jvolgeores Eruptive history of Arenal Volcano, Costa Rica, 7 ka to present Gerardo J. Soto ⁎, Guillermo E. Alvarado Área de Amenazas y Auscultación Sísmica y Volcánica, Instituto Costarricense de Electricidad, Apdo 10032-1000, San José, Costa Rica Received 30 June 2005; accepted 28 March 2006 Abstract New tephra-stratigraphic studies of Arenal volcano have been used to update its volcanic history. Deposits of major eruptions are renamed AR-1 to AR-22 (from older to younger, in stratigraphic order), extending from 7 ka B.P. to 1968 A.D. Arenal tephras overlie regional tuffs that are N20,000 years old. Isopachs and characteristics of the most relevant and recognized fall deposits are presented. Among Arenal eruptions, plinian events like AR-20, AR-15, AR-12 and AR-9, were the most relevant, with tephra volumes up to 0.44 km3. These plinian eruptions are separated by periods of 750–1080 years. Also 8 subplinian, 7 violent strombolian and 2 vulcanian eruptions have been recognized and correlated in Arenal's tephra sequence. Tens of other minor explosive eruptions resembling in size to AR-22, which occurred in July 1968, have been recognized. Lava cycles have generally followed the plinian eruptions. Typical erupting volumes for these cycles have been in the order of ∼ 0.7 km3. The estimated total volume of tephra fall is ∼ 4.5 km3. The rate of total volcanics erupted is ∼ 2.7 km3 ka−1 (0.086 m3 s−1).
    [Show full text]
  • R. L. Smith, H. R. Shaw, R. G. Luedke, and S. L. Russell U. S. Geological
    COMPREHENSIVE TABLES GIVING PHYSICAL DATA AND THERMAL ENERGY ESTIMATES FOR YOUNG IGNEOUS SYSTEMS OF THE UNITED STATES by R. L. Smith, H. R. Shaw, R. G. Luedke, and S. L. Russell U. S. Geological Survey OPEN-FILE REPORT 78-925 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey Standards and nomenclature INTRODUCTION This report presents two tables. The first is a compre­ hensive table of 157 young igneous systems in the western United States, giving locations, physical data, and thermal en­ ergy estimates, where apropriate, for each system. The second table is a list of basaltic fields probably less than 10,000 years old in the western United States. These tables are up­ dated and reformatted from Smith and Shaw's article "Igneous- related geothermal systems" in Assessment of geothermal re­ sources of the United States 1975 (USGS Circular 726, White and Williams, eds., 1975). This Open-File Report is a compan­ ion to Smith and Shaw's article "Igneous-related geothermal systems" in Assessment of geothermal resources in the United States 1978 (USGS Circular 790, Muffler, ed., 1979). The ar­ ticle in Circular 790 contains an abridged table showing only those igneous systems for which thermal estimates were made. The article also gives an extensive discussion of hydrothermal cooling effects and an explanation of the model upon which the thermal energy estimates are based. Thermal energy is calculated for those systems listed in table 1 that are thought to contribute significant thermal en­ ergy to the upper crust. As discussed by Smith and Shaw (1975), silicic volcanic systems are believed to be associated nearly always with high-level (<10 km) magma chambers.
    [Show full text]