Vasopressin in Vasodilatory Shock
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copyright by Ernesto Lopez 2015
Copyright by Ernesto Lopez 2015 The Dissertation Committee for Ernesto Lopez Certifies that this is the approved version of the following dissertation: The role of arginine vasopressin receptor 2 in microvascular hyperpermeability during severe sepsis and septic shock Committee: Perenlei Enkhbaatar, M.D., Ph.D. Supervisor or Mentor, Chair Jose M. Barral M.D., Ph.D. Donald S. Prough, M.D. Robert A. Cox, Ph.D. Jae-Woo Lee, M.D. _______________________________ David W. Niesel, PhD. Dean, Graduate School The role of arginine vasopressin receptor 2 in microvascular hyperpermeability during severe sepsis and septic shock by Ernesto Lopez, M.D. Dissertation Presented to the Faculty of the Graduate School of The University of Texas Medical Branch in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas Medical Branch 2015 Acknowledgements First I would like to gratefully thank my mentor, Dr. Enkhbaatar for his dedication and support and for giving me the opportunity to work in his lab as a graduate student. Dr. Enkhbaatar helped me to improve my scientific and professional skills with great attention. I had a true opportunity to be exposed to every aspect of the biomedical sciences. Moreover, I would like to express my gratitude to the members of my dissertation committee Dr. Prough, Dr. Cox, Dr. Barral and Dr. Lee as well as Dr. Hawkins, Dr. Herndon, Dr. Rojas and Jacob MS, for all the critiques and ideas that certainly enhanced this project. I would also like to thank to all current and past members of the translational intensive care unit (TICU) for their enormous support and professionalism in completing this project; John Salsbury, Christina Nelson, Ashley Smith, Timothy Walker, Mackenzie Gallegos, Jisoo Kim, Uma Nwikoro, Ryan Scott, Jeffrey Jinkins, Lesia Tower, Cindy Moncebaiz, Cindy Hallum, Lindsey Willis, Paul Walden, Randi Bolding, Jameisha Lee, Mengyi Ye, as well as Drs. -
Vasopressin in Pediatric Critical Care
182 Review Article Vasopressin in Pediatric Critical Care Karen Choong1 1 Department of Pediatrics, Critical Care, Epidemiology and Address for correspondence Karen Choong, MB, BCh, MSc, Biostatistics, McMaster University, Hamilton, Ontario, Canada Department of Pediatrics, Critical Care, Epidemiology and Biostatistics, McMaster University, 1280 Main Street West, Room 3E20, J Pediatr Intensive Care 2016;5:182–188. Hamilton, Ontario, Canada L8S4K1 (e-mail: [email protected]). Abstract Vasopressin is a unique hormone with complex receptor physiology and numerous physiologic functions beyond its well-known vascular actions and osmoregulation. While vasopressin has in the past been primarily used in the management of diabetes insipidus and acute gastrointestinal bleeding, an increased understanding of the physiology of refractory shock, and the role of vasopressin in maintaining cardiovascular homeostasis prompted a renewed interest in the therapeutic roles for this hormone in the critical care setting. Identifying vasopressin-deficient individuals for the purposes of assessing responsiveness to exogenous hormone and prognosticating outcome has expanded research into the evaluation of vasopressin and its precursor, copeptin as Keywords useful biomarkers. This review summarizes the current evidence for vasopressin in ► vasopressin critically ill children, with a specific focus on its use in the management of shock. We ► pediatrics outline important considerations and current guidelines, when considering the use of ► shock vasopressin or its -
Ready, Set, (Vaso)Action! Vasoactive Agents for Catecholamine Refractory
Lights, Camera, (Vaso)Action! Vasoactive Agents for Catecholamine Refractory Septic Shock Gregory Kelly, Pharm.D. PGY2 Emergency Medicine Pharmacy Resident University of Rochester Medical Center October 28, 2017 Conflicts of Interest I have no conflicts of interest to disclose Presentation Objectives 1. Discuss the currently available literature evaluating angiotensin II as a treatment modality for septic shock. 2. Interpret the results of the ATHOS-3 trial and its applicability to the management of patients with septic shock. Vasopressin Vasopressin: A History Case series of vasopressin First case report deficiency in in severe shock septic shock 1960-80’s 1954 1957 1997 2003 Vasopressin Use of First RCT first vasopressin for suggesting synthesized GI superiority of hemorrhage, vasopressin + diabetes norepinephrine to insipidus and norepinephrine ileus alone Matis-Gradwohl I, et al. Crit Care. 2013;17:1002. VAAST Trial: design VASST Trial Design Mutlicenter, international, randomized, double-blind trial • n = 778 Population • Refractory septic shock Intervention Vasopressin 0.01-0.03 units/min vs. Norepinephrine alone Russell JA, et al. New Engl J Med. 2008;358:877-87. Drug Titration Vasopressin start at 0.01 units/min Titrate by 0.005 units/min Every 10 minutes to reach max of 0.03 units/min MAP ≥65-70mmHg MAP <65-70mmHg Decrease Increase norepinephrine by norepinephrine 1-2 mcg/min every 5-10 minutes Russell JA, et al. New Engl J Med. 2008;358:877-87. Norepinephrine Requirements Norepinephrine Vasopressin Russell JA, et al. New Engl J Med. 2008;358:877-87. Mortality 450 Day 28 Day 90 400 P = 0.27 P = 0.10 350 300 250 200 150 Patients Alive Patients 100 50 0 0 10 20 30 40 50 60 70 80 90 Days Since Drug Initiation Vasopressin Norepinephrine Russell JA, et al. -
Glypressin Ferring Pharmaceuticals Pty Ltd PM-2010-03182-3-3 Final 26 November 2012
Attachment 1: Product information for AusPAR Glypressin Ferring Pharmaceuticals Pty Ltd PM-2010-03182-3-3 Final 26 November 2012. This Product Information was approved at the time this AusPAR was published. Product Information ® GLYPRESSIN Solution for Injection NAME OF THE MEDICINE Terlipressin (as terlipressin acetate). The chemical name is N-[N-(N-Glycylglycyl)glycyl]-8-L- lysinevasopressin. Terlipressin has an empirical formula of C52H74N16O15S2 and a molecular weight of 1227.4. CAS No: 14636-12-5. The pKa is approximately 10. Terlipressin is freely soluble in water. Although the active ingredient is terlipressin, the drug substance included in this product contains non-stoichiometric amounts of acetic acid and water, and this material is freely soluble in water. The structural formula of terlipressin is DESCRIPTION GLYPRESSIN is for intravenous injection. It consists of a clear, colourless liquid containing 0.85 mg terlipressin (equivalent to 1 mg terlipressin acetate) in 8.5 mL solution in an ampoule. The concentration of terlipressin is 0.1 mg/mL (equivalent to terlipressin acetate 0.12 mg/mL). List of excipients GLYPRESSIN contains the following excipients: Sodium chloride, acetic acid, sodium acetate trihydrate, Water for Injections PHARMACOLOGY Pharmacodynamics Terlipressin belongs to the pharmacotherapeutic group: Posterior pituitary lobe hormones (vasopressin and analogues), ATC code: H 01 BA 04. Terlipressin is a dodecapeptide that has three glycyl residues attached to the N-terminal of lysine vasopressin (LVP). Terlipressin acts as a pro-drug and is converted via enzymatic cleavage of its three glycyl residues to the biologically active lysine vasopressin. A large body of evidence has consistently shown that terlipressin given at doses of 0.85 mg and 1.7 mg respectively (equivalent to terlipressin acetate 1 mg and 2 mg respectively) can effectively reduce the portal venous pressure and produces marked vasoconstriction. -
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
Septic Shock Management Guided by Ultrasound: a Randomized Control Trial (SEPTICUS Trial)
Septic Shock Management Guided by Ultrasound: A Randomized Control Trial (SEPTICUS Trial) RESEARCH PROTOCOL dr. Saptadi Yuliarto, Sp.A(K), MKes PEDIATRIC EMERGENCY AND INTENSIVE THERAPY SAIFUL ANWAR GENERAL HOSPITAL, MALANG MEDICAL FACULTY OF BRAWIJAYA UNIVERSITY DECEMBER 30, 2020 1 SUMMARY Research Title Septic Shock Management Guided by Ultrasound: A Randomized Control Trial (SEPTICUS Trial) Research Design A multicentre experimental study in pediatric patients with a diagnosis of septic shock. Research Objective To examine the differences in fluid resuscitation outcomes for septic shock patients with the USSM and mACCM protocols • Patient mortality rate • Differences in clinical parameters • Differences in macrocirculation hemodynamic parameters • Differences in microcirculation laboratory parameters Inclusion/Exclusion Criteria Inclusion: Pediatric patients (1 month - 18 years old), diagnosed with septic shock Exclusion: patients with congenital heart defects, already receiving fluid resuscitation or inotropic-vasoactive drugs prior to study recruitment, patients after cardiac surgery Research Setting A multicenter study conducted in all pediatric intensive care units (HCU / PICU), emergency department (IGD), and pediatric wards in participating hospitals in Indonesia. Sample Size Calculating the minimum sample size using the clinical trial formula for the mortality rate, obtained a sample size of 340 samples. Research Period The study was carried out in the period January 2021 to December 2022 Data Collection Process Pediatric patients who met the study inclusion criteria were randomly divided into 2 groups, namely the intervention group (USSM protocol) or the control group (mACCM protocol). Patients who respond well to resuscitation will have their outcome analyzed in the first hour (15-60 minutes). Patients with fluid refractory shock will have their output analyzed at 6 hours. -
1 Advances in Therapeutic Peptides Targeting G Protein-Coupled
Advances in therapeutic peptides targeting G protein-coupled receptors Anthony P. Davenport1Ϯ Conor C.G. Scully2Ϯ, Chris de Graaf2, Alastair J. H. Brown2 and Janet J. Maguire1 1Experimental Medicine and Immunotherapeutics, Addenbrooke’s Hospital, University of Cambridge, CB2 0QQ, UK 2Sosei Heptares, Granta Park, Cambridge, CB21 6DG, UK. Ϯ Contributed equally Correspondence to Anthony P. Davenport email: [email protected] Abstract Dysregulation of peptide-activated pathways causes a range of diseases, fostering the discovery and clinical development of peptide drugs. Many endogenous peptides activate G protein-coupled receptors (GPCRs) — nearly fifty GPCR peptide drugs have been approved to date, most of them for metabolic disease or oncology, and more than 10 potentially first- in-class peptide therapeutics are in the pipeline. The majority of existing peptide therapeutics are agonists, which reflects the currently dominant strategy of modifying the endogenous peptide sequence of ligands for peptide-binding GPCRs. Increasingly, novel strategies are being employed to develop both agonists and antagonists, and both to introduce chemical novelty and improve drug-like properties. Pharmacodynamic improvements are evolving to bias ligands to activate specific downstream signalling pathways in order to optimise efficacy and reduce side effects. In pharmacokinetics, modifications that increase plasma-half life have been revolutionary. Here, we discuss the current status of peptide drugs targeting GPCRs, with a focus on evolving strategies to improve pharmacokinetic and pharmacodynamic properties. Introduction G protein-coupled receptors (GPCRs) mediate a wide range of signalling processes and are targeted by one third of drugs in clinical use1. Although most GPCR-targeting therapeutics are small molecules2, the endogenous ligands for many GPCRs are peptides (comprising 50 or fewer amino acids), which suggests that this class of molecule could be therapeutically useful. -
Vasopressin, Norepinephrine, and Vasodilatory Shock After Cardiac Surgery Another “VASST” Difference?
Vasopressin, Norepinephrine, and Vasodilatory Shock after Cardiac Surgery Another “VASST” Difference? James A. Russell, A.B., M.D. AJJAR et al.1 designed, Strengths of VANCS include H conducted, and now report the blinded randomized treat- in this issue an elegant random- ment, careful follow-up, calcula- ized double-blind controlled trial tion of the composite outcome, of vasopressin (0.01 to 0.06 U/ achieving adequate and planned Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/126/1/9/374893/20170100_0-00010.pdf by guest on 01 October 2021 min) versus norepinephrine (10 to sample size, and evaluation of 60 μg/min) post cardiac surgery vasopressin pharmacokinetics. with vasodilatory shock (Vaso- Nearly 20 yr ago, Landry et al.2–6 pressin versus Norepinephrine in discovered relative vasopressin defi- Patients with Vasoplegic Shock ciency and benefits of prophylactic After Cardiac Surgery [VANCS] (i.e., pre cardiopulmonary bypass) trial). Open-label norepinephrine and postoperative low-dose vaso- was added if there was an inad- pressin infusion in patients with equate response to blinded study vasodilatory shock after cardiac drug. Vasodilatory shock was surgery. Previous trials of vasopres- defined by hypotension requiring sin versus norepinephrine in cardiac vasopressors and a cardiac index surgery were small and underpow- greater than 2.2 l · min · m-2. The “[The use of] …vasopressin ered for mortality assessment.2–6 primary endpoint was a compos- Vasopressin stimulates arginine ite: “mortality or severe complica- infusion for treatment of vasopressin receptor 1a, arginine tions.” Patents with vasodilatory vasodilatory shock after vasopressin receptor 1b, V2, oxy- shock within 48 h post cardiopul- tocin, and purinergic receptors monary bypass weaning were eli- cardiac surgery may causing vasoconstriction (V1a), gible. -
Largescale Synthesis of Peptides
Lars Andersson1 Lennart Blomberg1 Large-Scale Synthesis of Martin Flegel2 Ludek Lepsa2 Peptides Bo Nilsson1 Michael Verlander3 1 PolyPeptide Laboratories (Sweden) AB, Malmo, Sweden 2 PolyPeptide Laboratories SpoL, Prague, Czech Republic 3 PolyPeptide Laboratories, Inc., Torrance, CA, 90503 USA Abstract: Recent advances in the areas of formulation and delivery have rekindled the interest of the pharmaceutical community in peptides as drug candidates, which, in turn, has provided a challenge to the peptide industry to develop efficient methods for the manufacture of relatively complex peptides on scales of up to metric tons per year. This article focuses on chemical synthesis approaches for peptides, and presents an overview of the methods available and in use currently, together with a discussion of scale-up strategies. Examples of the different methods are discussed, together with solutions to some specific problems encountered during scale-up development. Finally, an overview is presented of issues common to all manufacturing methods, i.e., methods used for the large-scale purification and isolation of final bulk products and regulatory considerations to be addressed during scale-up of processes to commercial levels. © 2000 John Wiley & Sons, Inc. Biopoly 55: 227–250, 2000 Keywords: peptide synthesis; peptides as drug candidates; manufacturing; scale-up strategies INTRODUCTION and plants,5 have all combined to increase the avail- ability and lower the cost of producing peptides. For For almost half a century, since du Vigneaud first many years, however, the major obstacle to the suc- presented his pioneering synthesis of oxytocin to the cess of peptides as pharmaceuticals was their lack of world in 1953,1 the pharmaceutical community has oral bioavailability and, therefore, relatively few pep- been excited about the potential of peptides as “Na- tides reached the marketplace as approved drugs. -
Vasopressin and Terlipressin in Adult Vasodilatory Shock: a Systematic Review and Meta-Analysis of Nine Randomized Controlled Tr
Serpa Neto et al. Critical Care 2012, 16:R154 http://ccforum.com/content/16/4/R154 RESEARCH Open Access Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials Ary Serpa Neto1*, Antônio P Nassar Júnior2, Sérgio O Cardoso1, José A Manetta1, Victor GM Pereira1, Daniel C Espósito1, Maria CT Damasceno1 and James A Russell3 Abstract Introduction: Catecholamines are the most used vasopressors in vasodilatory shock. However, the development of adrenergic hyposensitivity and the subsequent loss of catecholamine pressor activity necessitate the search for other options. Our aim was to evaluate the effects of vasopressin and its analog terlipressin compared with catecholamine infusion alone in vasodilatory shock. Methods: A systematic review and meta-analysis of publications between 1966 and 2011 was performed. The Medline and CENTRAL databases were searched for studies on vasopressin and terlipressin in critically ill patients. The meta-analysis was limited to randomized controlled trials evaluating the use of vasopressin and/or terlipressin compared with catecholamine in adult patients with vasodilatory shock. The assessed outcomes were: overall survival, changes in the hemodynamic and biochemical variables, a decrease of catecholamine requirements, and adverse events. Results: Nine trials covering 998 participants were included. A meta-analysis using a fixed-effect model showed a reduction in norepinephrine requirement among patients receiving terlipressin or vasopressin infusion compared with control (standardized mean difference, -1.58 (95% confidence interval, -1.73 to -1.44); P < 0.0001). Overall, vasopressin and terlipressin, as compared with norepinephrine, reduced mortality (relative risk (RR), 0.87 (0.77 to 0.99); P = 0.04). -
Hemmo Pharmaceuticals Private Limited
Global Supplier of Quality Peptide Products Hemmo Pharmaceuticals Private Limited Corporate Presentation Privileged & Confidential Privileged & Confidential Corporate Overview Privileged & Confidential 2 Company at a glance • Commenced operations in 1966 as a Key Highlights trading house, focusing on Oxytocin amongst other products Amongst the largest Indian peptide manufacturing company • In 1979, ventured into manufacturing of Oxytocin Competent team of 154 people including 6 PhDs, 60+ chemistry graduates/post graduates and 3 engineers • Privately held family owned company Portfolio – Generic APIs, Custom Peptides for Research and Clinical Development and Peptide • Infrastructure Fragments − State of art manufacturing facility in Developed 21 generic products in-house. Navi Mumbai, 5 more in progress − R&D facilities at Thane and Spain − Corporate office at Worli First and the only independent Indian company to have a US FDA approved peptide manufacturing site Privileged & Confidential 3 Transition from a trading house to a research based manufacturing facility Commenced Commenced Investment in State of the Art Opened R& D Expanded operations manufacturing greenfield project facility at Navi Centre in manufacturing as a trading of peptides intended for Mumbai Girona,Spain capacity House regulated markets commissioned R&D center set up in Infrastructure Mumbai 1966 1979 2005 2007 2008 2010 2011 2012 2014 2015 Oxytocin Oxytocin Desmopressin Buserelin Triptorelin Goserelin Linaclotide Glatiramer amongst Gonadorelin Decapeptide Cetrorelix -
Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .