Antarctic Krill (Euphausia Superba)

Total Page:16

File Type:pdf, Size:1020Kb

Antarctic Krill (Euphausia Superba) Antarctic Krill (Euphausia superba) Stephen Nicol and So Kawaguchi General information Antarctic Krill (Euphausia superba) are one of the larger species of krill (Euphausiids – free swimming shrimp-like crustaceans) reaching a maximum length of 60 mm and a weight of 2 g when mature. They live exclusively in the Southern Ocean and have a very wide distribution over a range of habitats. They are a swarming (or schooling species) and much of the krill biomass is to be found in large, dense aggregations that can extend for tens of kilometers. Krill can be found in the surface layer, in mid water and near the ocean floor, and can undertake daily vertical migrations. Antarctic Krill have a complicated life history, changing size, shape and habitat as they grow (Nicol 2006). They mature at two years old and can live for up to 11 years. Adult krill are capable of living anywhere in the Southern Ocean – from the very surface layer to the seafloor, and from inshore areas to the deep open ocean. Larval and juvenile krill are associated with sea ice and feed on algae that grow on the underside. There is a lack of clarity on whether there are distinct populations of krill around the Antarctic or whether there is regular interchange between centers of distribution. The krill population is large and their production rate is high consequently they are preyed upon by a range of vertebrates including seals, penguins and baleen whales as well as by invertebrates such as squid. Range The range of krill is estimated to be 19 x 106 km2 (Atkinson et al. 2009). See figure 1. THE IUCN RED LIST OF THREATENED SPECIES™ Figure 1. Map generated from the KRILLBASE data base* derived from a historical compilation of scientific net hauls from 1926 onwards. Green dots indicate the presence of Antarctic Krill in the catch, red dots indicate absence. The blue area encompasses the range of krill: for a given longitude, the extent is taken as the northernmost latitude of any krill observation in a 30-degree sector centred on that given longitude. The three major frontal systems in the Southern Ocean are indicated. *Krill Base data (version March 2014) has been provided with by the major data contributors to the database (A. Atkinson, S. Hill, V. Siegel, E. Pakhomov, C. Reiss, S. Kawaguchi). Krill abundance The overall mean abundance of krill estimated from scientific net surveys conducted between1926-2004 was estimated to be 379 million tons (Atkinson et al. 2009). Atkinson et al. (2009) estimated the krill biomass for January-February 2000 to be 133 million tons. This estimate was based on an acoustic estimate of biomass derived from the CCAMLR2000 survey of the South Atlantic of 37.3 million tons which was estimated to be 28% of the global krill biomass. CCAMLR has subsequently revised this biomass estimate (SC-CCAMLR 2010 para. 3.29) to 60.3 million tons. Applying the process used in Atkinson et al. (2009) to this new estimate of biomass results in a global krill biomass of 215 million tons in the year 2000. Generation length The generation length of Antarctic krill has been calculated to be 5 years using the standard IUCN methodology and the following inputs: • Survival up to 12 month=0.03: Based on average number of juveniles survived from eggs in Nagoya Aquarium (Hirano et al. 2003). • Survival from 1st to 2nd year = 0.1: Based on Brinton and Townsend (1984). • Survival from 2nd year onwards = 0.4: Based on widely accepted krill post-larval mortality rate (M=0.8) which equals to survival rate of 0.4. • Life span = lives until end of its 6th year (Siegel 1987). • Annual fecundity, 12,000 for age 3+ onwards based on Tarling et al. (2007). Annual fecundity of 6,000 was used for age 2+ krill (spawning during 3rd their summer) due to their smaller body size. Trends in krill biomass. Although a decline in krill density in the 1970s and 1980s has been reported from analysis of net survey data in the Southwest Atlantic sector (Atkinson et al. 2004) the magnitude of any such decline is difficult to ascertain. For the purposes of this current assessment the trend in krill biomass over the last 15 years (3generation times) has been used. Two time series of acoustic data (the standard method of biomass assessment used by CCAMLR) exist within the range of Antarctic krill – one for South Georgia (Fielding et al. 2014) and one for the Elephant Island area Cossio et al. 2011). Both of these time series are from the South Atlantic region where 28% of the krill biomass is thought to reside (Atkinson et al. 2009). There is considerable inter-annual (and intra-annual) fluctuation in krill density (either measured acoustically or using nets) at a fixed location; however, in neither of these two acoustic time series is there a significant trend in the data. Figure 2. (a) Frequency distribution of log10(krill density+1) for each annual mid- season survey. The median (white circles), mean (black crosses), and inter-quartile range (black bar) is shown. (b) The mean WCB krill density from 1997 to 2013 following Jolly and Hampton (1990). Figure 3. Acoustic estimates based on updated methods from ASAM 2010 of Antarctic Krill biomass (tons) between 1996 and 2011 for the AMLR study area during the January-February (A) and February-March (B) legs. Biomass for each area is calculated if the area was sampled. In several recent years no second leg has been conducted. The krill fishery: The krill fishery has been operating for more than over 40 years. Catches peaked in the early 1980s with Japanese and Soviet vessels catching over half a million tons a year (see below). 600 500 400 300 200 catch thousands in of tonnes 100 0 1973 1979 1985 1991 1997 2003 2009 2015 year ending Figure 4. Catches of krill in the Southern Ocean from 1973 to 2014 (data from the CCAMLR Statistical Bulletin). Today, about 300,000 tons are caught from the South West Atlantic, largely by Norwegian vessels, producing high-end aquaculture feed and krill oil supplements for human consumption (Foster et al., 2011). When the krill fishery was established there was concern that it might cause irreversible damage to the Antarctic ecosystem, so a unique international treaty was signed to ensure it would be managed using an approach that took into account the needs of the entire ecosystem. This treaty was the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). The management of the krill fishery has been guided by its principles since the early 1980s. The fishery is regulated through a series of measures that specify how much can be caught, where it can be caught, acceptable levels of by-catch and other operational restrictions. The amount of krill that can be caught in any one year is set through “Precautionary Catch Limits (PCL)”, which is more conservative than normal fishery quotas because of the sensitivity of the Antarctic krill biomass, the animals that depend on it as a food source, and the unique environment in which they live (Nicol and Foster 2003). Catch limits are calculated for a particular area by working out how much krill is in that area and by determining the proportion of the krill stock in that area that can be harvested without irreversibly impacting the ecosystem in the long-term. Currently, only 9.3% of the krill stock is available to the fishery. Precautionary Catch Limits have been set for several large areas of the Southern Ocean, totaling more than 8 million tons per year. In the South Atlantic, where the krill fishery currently operates, there is a Precautionary Catch Limit of 5.6 million tons. As an added element of precaution, CCAMLR has applied a “Trigger Level” of 620,000 tons throughout the main fishing grounds – a level of catch that cannot be exceeded until more advanced management procedures are in place. Climate change and krill. The life history and population dynamics of Antarctic krill are likely to be impacted by the climate change due to increasing levels of CO2 in the atmosphere (Flores et al. 2012), and may result in a reduced habitat range (Hill et al. 2013). The reproductive output and recruitment success of krill has been related to the extent, timing and duration of winter sea ice cover. The underside structure of sea ice provides a nursery ground for overwintering krill larvae and a substrate for algae which are their food. Extensive winter sea ice promotes strong spring phytoplankton bloom when retreating in spring which fuels the adults’ reproductive output for their summer spawning season (Quetin and Ross 2001). Krill growth has also been observed to decrease above a temperature optimum of 0.5°C (Atkinson et al. 2006). Their early developmental stage of krill is vulnerable to increased levels of CO2 projected within their habitat range in year 2100 and beyond (Kawaguchi et al. 2013). Overall, the cumulative impact of climate change is most likely to be negative. References Atkinson, A., Siegel, V., Pakhomov, E. and Rothery, P. (2004). Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature. 432(7013): 100-103. Atkinson, A., Shreeve, R.S., Hirst, A.G., Rothery, P., Tarling, G.A., Pond, DW., Korb, R.E., Murphy, E.J. and Watkins, J.L. (2006). Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnology and Oceanography. 51(2): 973-987. Atkinson, A., Siegel, V., Pakhomov, E.A., Jessopp, M.J.
Recommended publications
  • Climate Change and Fisheries: Policy, Trade and Sustainable Nal of Fisheries Management 22:852-862
    Climate Change and Alaska Fisheries TERRY JOHNSON Alaska Sea Grant University of Alaska Fairbanks 2016 ISBN 978-1-56612-187-3 http://doi.org/10.4027/ccaf.2016 MAB-67 $10.00 Credits Alaska Sea Grant is supported by the US Department of Commerce, NOAA National Sea Grant, grant NA14OAR4170079 (A/152-32) and by the University of Alaska Fairbanks with state funds. Sea Grant is a partnership with public and private sectors combining research, education, and extension. This national network of universities meets changing environmental and Alaska Sea Grant economic needs of people in coastal, ocean, and Great Lakes University of Alaska Fairbanks regions. Fairbanks, Alaska 99775-5040 Funding for this project was provided by the Alaska Center for Climate Assessment and Policy (ACCAP). Cover photo by (888) 789-0090 Deborah Mercy. alaskaseagrant.org TABLE OF CONTENTS Abstract .................................................................................................... 2 Take-home messages ...................................................................... 2 Introduction............................................................................................. 3 1. Ocean temperature and circulation ................................................ 4 2. Ocean acidification ............................................................................ 9 3. Invasive species, harmful algal blooms, and disease-causing pathogens .................................................... 12 4. Fisheries effects—groundfish and crab ......................................
    [Show full text]
  • Krill Oil and Astaxanthin
    Krill Oil and Astaxanthin Krill are small reddish-color crustaceans, similar to shrimp, that abound in cold Arctic waters. They survive in such cold, frigid temperatures because of their natural anti- freeze, the polyunsaturated fatty acids EPA and DHA. EPA and DHA are bound to molecules called phospholipids (especially phosphatidyl choline) that act to help transport nutrients into cells and change the structure of animal cell membranes. Studies show that these combined fatty acids have better absorption into the cell membranes throughout the body, especially the brain, as compared to other types of fish oils. Although it has less EPA/DHA content than most fish oils, krill oil seems to be almost twice as absorbable. Unlike fish oil, krill oil also contains a very potent antioxidant, astaxanthin, which helps prevent krill oil from oxidizing (turning rancid). Astaxanthin is a red pigment found in different types of algae and phytoplankton. It is astaxanthin that gives salmon and trout their reddish color. It is considered to be one of the most potent natural antioxidants, almost 50 times stronger than beta-carotenes found in fruits and vegetables and 65 times better as an anti-oxidant than vitamin C. Krill oil is composed of 40% phospholipids, 30% EPA and DHA, astaxanthin, vitamin A, vitamin C, various other fatty acids, and flavanoids (anti-oxidant compounds) Human studies indicate krill oil is powerful at decreasing inflammation throughout the body, especially in the brain. It reduces C-reactive protein, a marker for heart disease. Tests indicate it has a powerful anti-inflammatory remedy for rheumatoid as well as osteoarthritis.
    [Show full text]
  • Balaenoptera Bonaerensis – Antarctic Minke Whale
    Balaenoptera bonaerensis – Antarctic Minke Whale compared to B. bonaerensis. This smaller form, termed the “Dwarf” Minke Whale, may be genetically different from B. bonaerensis, and more closely related to the North Pacific Minke Whales, and thus has been classified B. acutorostrata (Wada et al. 1991; IWC 2001). This taxonomic position, although somewhat controversial, has been accepted by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), and the Convention on Migratory Species (CMS). Assessment Rationale The current IWC global estimate of abundance of Antarctic Dr. Meike Scheidat Minke Whales is about 500,000 individuals. The abundance estimates declined from about 700,000 for the second circumpolar set of abundance survey cruises Regional Red List status (2016) Least Concern* (1985/86 to 1990/91) to about 500,000 for the third National Red List status (2004) Least Concern (1991/92 to 2003/04). Although this decline was not statistically significant, the IWC Scientific Committee does Reasons for change No change consider these results to reflect a change. However, Global Red List status (2008) Data Deficient whether this change is genuine or attributed to greater proportions of pack ice limiting the survey extent, has not TOPS listing (NEMBA) (2007) None yet been determined. More detailed results from an CITES listing (1986) Appendix I assessment model are available for the mid-Indian to the mid-Pacific region, and suggest that the population Endemic No increased to a peak in 1970 and then declined, with it *Watch-list Data being unclear whether this decline has levelled off or is still continuing past 2000.
    [Show full text]
  • The Health Benefits of Krill Oil Versus Fish Oil
    The Health Benefits of Krill Oil versus Fish Oil Antarctic krill Euphausia superba Antarctic krill is a rich source of long chain Ȧ-3 PUFAs: EPA & DHA Human trials show EPA and DHA significantly lower i~70% incorporated into phospholipids and ~30% is free fatty acids triglycerides, VLDL, LDL, and iDHA content in krill oil is similar to fish oil, EPA content is much higher blood pressure, and raise HDL. in krill oil than fatty fish Fish oil, a prominent source of Krill Oil contains antioxidants Vitamin A, Vitamin E, and Astaxanthin EPA and DHA, maintains a long founded history in Clinical Trials epidemiologic and intervention i1 g and 1.5 g krill oil significantly more effective than 3 g fish oil in studies which support it can reducing glucose and LDL help reduce atherosclerotic plaque growth, cancer, i2 g and 3 g krill oil showed significantly greater reduction in glucose, arrhythmia, inflammation, LDL, and triglycerides compared to 3 g fish oil arthritis, kidney disease, and iAfter an additional 120 days at 0.5 g/d krill oil (after 90 days at 1±1.5 g/d skin disorders, as well as krill oil) cholesterol, LDL, HDL, triglycerides, and glucose became increase endothelial function, significantly different from baseline anti-thrombosis, insulin sensitivity, neurological i.ULOORLO¶VKLJKSURSRUWLRQRI(3$ '+$ERXQGWRSKRVSKROLSLGVDQGDV function, retinal and brain free fatty acids demonstrates greater bioavailability and absorption in development, and the intestine compared to fish oil whose EPA & DHA is bound to immunological function. The triglycerides level of causation is so i Mice fed 10% krill oil had higher liver expression of endogenous profound even the American antioxidant enzymes than corn fed mice.
    [Show full text]
  • Heart Health Through Whole Foods
    Heart Health Through Whole Foods Certain whole foods in a diet can ultimately provide heart-healthy benefits. The right foods consumed in the right amounts can help lower cholesterol and/or triglycerides. They may also help to reduce risk for heart disease. Even though the benefits of whole foods may be known, too often individuals turn to over-the-counter supplements instead. It is important to discuss all supplements prior to ingestion with your physician. Individuals may not realize that taking some supplements with certain medications may be harmful or that taking too much of a good thing can be bad. The purpose of this session is to educate how to obtain certain nutrients through whole foods rather then through supplements. It must be noted that some individuals may still need supplements in addition to diet. Once again this should be guided by a physician. Supplement Health Benefits Caution Dietary Alternative Omega-3 Fatty Acids: Fish oil is used for There are some safety concerns Consuming fish oil from dietary Fish Oils reduction in cholesterol about using high doses of fish oil. sources such as fatty fish (e.g., and triglycerides. It is Doses greater than 3 grams per tuna, salmon), two servings Fish oils contain used for hyperlipidemia, day can inhibit blood coagulation per week, is associated with Eicosapentaenoic hypertriglyceridemia, and potentially increase the risk a reduced risk of developing Acid (EPA) and coronary heart disease of bleeding. Doses greater than 3 cardiovascular disease Docosahexaenoic and hypertension. grams per day might also suppress (primary prevention). Acid (DHA) immune response.
    [Show full text]
  • Effect of Protein Hydrolysate from Antarctic Krill on the State of Water and Denatur- Ation of Lizard Fish Myofibrils During Frozen Storage
    Food Sci. Technol. Res., 8 (3), 200–206, 2002 Effect of Protein Hydrolysate from Antarctic Krill on the State of Water and Denatur- ation of Lizard Fish Myofibrils during Frozen Storage Nong ZHANG1, Yasumitsu YAMASHITA1 and Yukinori NOZAKI2* 1Graduate School of Marine Science and Engineering, and 2Faculty of Fisheries, Nagasaki University, Bunkyo, Nagasaki 852-8521, Japan Received May 24, 2001; Accepted April 17, 2002 Protein hydrolysates were prepared from Antarctic krill and two types of shrimp by enzymatic treatment using protease. Hydrolysates prepared from the krill were added to lizard fish myofibrils, and changes in the amount of unfrozen water in myofibrils during freezing were analyzed by differential scanning calorimetry. Ca-ATPase activity of myofibrils was measured concurrently and the results were compared with those using hydrolysates from shrimp. The amount of unfrozen water increased after addition of the hydrolysates and decreased moderately during frozen storage. When hydrolysates were not added to myofibrils, the amount of water rapidly decreased during frozen stor- age. The decrease in ATPase activity during frozen storage followed that of unfrozen water, indicating a close correla- tion between ATPase activity and the amount of unfrozen water. These results suggest that the denaturation of myofibrils may be suppressed by the addition of hydrolysates, since the hydrolysates appeared to increase the amount of unfrozen water. Keywords: krill, myofibrils, ATPase, hydrolysate, freeze-denaturation, unfrozen water, frozen storage
    [Show full text]
  • Spatial Association Between Hotspots of Baleen Whales and Demographic Patterns of Antarctic Krill Euphausia Superba Suggests Size-Dependent Predation
    Vol. 405: 255–269, 2010 MARINE ECOLOGY PROGRESS SERIES Published April 29 doi: 10.3354/meps08513 Mar Ecol Prog Ser Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Euphausia superba suggests size-dependent predation Jarrod A. Santora1, 2,*, Christian S. Reiss2, Valerie J. Loeb3, Richard R. Veit4 1Farallon Institute for Advanced Ecosystem Research, PO Box 750756, Petaluma, California 94952, USA 2Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, 3333 Torrey Pines Ct., La Jolla, California 92037, USA 3Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, California 95039, USA 4Biology Department, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, USA ABSTRACT: We examined the spatial association between baleen whales and their principal prey, Antarctic krill Euphausia superba near the South Shetland Islands (Antarctic Peninsula) using data collected by the US Antarctic Marine Living Resources (AMLR) program during January surveys from 2003 through 2007. Whale distributions were determined using ship-based visual surveys, while data on krill distribution, abundance, and demographic characteristics were derived from net hauls. Approximately 25 000 km of transects and 500 net hauls were sampled over 5 yr. We defined hotspots based on statistical criteria to describe persistent areas of occurrence of both whales and krill. Hotspots were identified, and whales and krill length-maturity classes exhibited distinct spatial seg- regation in their distribution patterns. We found that baleen whales aggregated to krill hotspots that differed in size structure. Humpback whales Megaptera novaeangliae were associated with small (<35 mm) juvenile krill in Bransfield Strait, whereas fin whales Balaenoptera physalus were associ- ated with large (>45 mm) mature krill located offshore.
    [Show full text]
  • Feeding and Energy Budgets of Larval Antarctic Krill Euphausia Superba in Summer
    MARINE ECOLOGY PROGRESS SERIES Vol. 257: 167–177, 2003 Published August 7 Mar Ecol Prog Ser Feeding and energy budgets of larval Antarctic krill Euphausia superba in summer Bettina Meyer1,*, Angus Atkinson2, Bodo Blume1, Ulrich V. Bathmann1 1Alfred Wegener Institute for Polar and Marine Research, Department of Pelagic Ecosystems, Handelshafen 12, 27570 Bremerhaven, Germany 2British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom ABSTRACT: The physiological condition and feeding activity of the dominant larval stages of Eu- phausia superba (calyptopis stage III, furcilia stages I and II) were investigated from February to March 2000 at the Rothera Time Series monitoring station (67° 34’ S, 68° 07’ W, Adelaide Island, West- ern Antarctic Peninsula). A dense phytoplankton bloom (5 to 25 µg chl a l–1) occupied the mixed layer throughout the study period. The feeding of larvae was measured by incubating the animals in natural seawater. Food concentrations ranged from 102 to 518 µg C l–1 across experiments, and the mean daily C rations were 28% body C for calyptosis stage III (CIII), 25% for furcilia stage I (FI) and 15% for FII. The phytoplankton, dominated by diatoms and motile prey taxa, ranged from 8 to 79 µm in size. Across this size spectrum of diatoms, CIII cleared small cells most efficiently, as did FI to a lesser degree. FII, however, showed no clear tendency for a specific cell size. Across the measured size spectrum of the motile taxa, all larvae stages showed a clear preference towards the larger cells. Estimated C assimi- lation efficiencies were high, from 70 to 92% (mean 84%).
    [Show full text]
  • Fall Feeding Aggregations of Fin Whales Off Elephant Island (Antarctica)
    SC/64/SH9 Fall feeding aggregations of fin whales off Elephant Island (Antarctica) BURKHARDT, ELKE* AND LANFREDI, CATERINA ** * Alfred Wegener Institute for Polar and Marine research, Am Alten Hafen 26, 256678 Bremerhaven, Germany ** Politecnico di Milano, University of Technology, DIIAR Environmental Engineering Division Pza Leonardo da Vinci 32, 20133 Milano, Italy Abstract From 13 March to 09 April 2012 Germany conducted a fisheries survey on board RV Polarstern in the Scotia Sea (Elephant Island - South Shetland Island - Joinville Island area) under the auspices of CCAMLR. During this expedition, ANT-XXVIII/4, an opportunistic marine mammal survey was carried out. Data were collected for 26 days along the externally preset cruise track, resulting in 295 hrs on effort. Within the study area 248 sightings were collected, including three different species of baleen whales, fin whale (Balaenoptera physalus), humpback whale ( Megaptera novaeangliae ), and Antarctic minke whale (Balaenoptera bonaerensis ) and one toothed whale species, killer whale ( Orcinus orca ). More than 62% of the sightings recorded were fin whales (155 sightings) which were mainly related to the Elephant Island area (116 sightings). Usual group sizes of the total fin whale sightings ranged from one to five individuals, also including young animals associated with adults during some encounters. Larger groups of more than 20 whales, and on two occasions more than 100 individuals, were observed as well. These large pods of fin whales were observed feeding in shallow waters (< 300 m) on the north-western shelf off Elephant Island, concordant with large aggregations of Antarctic krill ( Euphausia superba ). This observation suggests that Elephant Island constitutes an important feeding area for fin whales in early austral fall, with possible implications regarding the regulation of (krill) fisheries in this area.
    [Show full text]
  • (Cciea) California Current Ecosystem Status Report, 2020
    Agenda Item G.1.a IEA Team Report 2 March 2020 SUPPLEMENTARY MATERIALS TO THE CALIFORNIA CURRENT INTEGRATED ECOSYSTEM ASSESSMENT (CCIEA) CALIFORNIA CURRENT ECOSYSTEM STATUS REPORT, 2020 Appendix A LIST OF CONTRIBUTORS TO THIS REPORT, BY AFFILIATION NWFSC, NOAA Fisheries SWFSC, NOAA Fisheries Mr. Kelly Andrews Dr. Eric Bjorkstedt Ms. Katie Barnas Dr. Steven Bograd Dr. Richard Brodeur Ms. Lynn deWitt Dr. Brian Burke Dr. John Field Dr. Jason Cope Dr. Newell (Toby) Garfield (co-lead editor) Dr. Correigh Greene Dr. Elliott Hazen Dr. Thomas Good Dr. Michael Jacox Dr. Chris Harvey (co-lead editor) Dr. Andrew Leising Dr. Daniel Holland Dr. Nate Mantua Dr. Kym Jacobson Mr. Keith Sakuma Dr. Stephanie Moore Dr. Jarrod Santora Dr. Stuart Munsch Dr. Andrew Thompson Dr. Karma Norman Dr. Brian Wells Dr. Jameal Samhouri Dr. Thomas Williams Dr. Nick Tolimieri (co-editor) University of California-Santa Cruz Ms. Margaret Williams Ms. Rebecca Miller Dr. Jeannette Zamon Dr. Barbara Muhling Pacific States Marine Fishery Commission Dr. Isaac Schroeder Ms. Amanda Phillips Humboldt State University Mr. Gregory Williams (co-editor) Ms. Roxanne Robertson Oregon State University California Department of Public Health Ms. Jennifer Fisher Ms. Christina Grant Ms. Cheryl Morgan Mr. Duy Trong Ms. Samantha Zeman Ms. Vanessa Zubkousky-White AFSC, NOAA Fisheries California Department of Fish and Wildlife Dr. Stephen Kasperski Ms. Christy Juhasz Dr. Sharon Melin CA Office of Env. Health Hazard Assessment NOAA Fisheries West Coast Region Dr. Rebecca Stanton Mr. Dan Lawson Oregon Department of Fish and Wildlife Farallon Institute Dr. Caren Braby Dr. William Sydeman Mr. Matthew Hunter Point Blue Conservation Science Oregon Department of Agriculture Dr.
    [Show full text]
  • Redalyc. Trophic Ecology of the Lobster Krill Munida Gregariain San
    Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Vinuesa, Julio H.; Varisco, Martín Trophic ecology of the lobster krill Munida gregariain San Jorge Gulf, Argentina Latin American Journal of Aquatic Research, vol. 35, núm. 2, 2007, pp. 25-34 Pontificia Universidad Católica de Valparaíso Valparaiso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175020538003 Abstract The "langostilla", Munida gregaria, also called lobster krill or squat lobster, is a very common galatheid crustacean in San Jorge Gulf and around the southern tip of South America. Previous studies have shown that this species plays animportantrolein the trophic webs whereverit has been studied. In order to determineits naturalfood sources, we analyzed 10 samples (30-36 individuals each) taken from different sites in San Jorge Gulf. Moreover, stomach analyses were performed on 32 fish species, 4 mollusk species, and 7 crustacean species from the gulf. Thelobster krillis primarily a detritivore or surface deposit-feeder and secondarily a predator and/or scavenger. Its main energy sources are particulate organic matter and their associated bacteria, small live organisms on the surface of the sediment layer (ostracods, copepods, foraminifers, other protists), and animal debris. Polychaetes are the main prey of lobster krill in the study area. This dual complementary feeding behavior is common in the studied galatheids, making them a fundamental link between detritus and benthic and demersal top predators. Some species of these predators constitute important fisheries. Different life-cycle stages of the squat lobster were preyed on by 32 of the examined species.
    [Show full text]
  • Marine Region 2016 Year in Review
    MARINE REGION 2016 YEAR IN REVIEW Cavanaugh Gulch, near Elk in northern California photo by K. Joe A Message From Craig Shuman, Marine Region Manager Most of us have experienced déjà vu – that strong feeling on the beach by the hundreds of thousands and reports of familiarity with an experience or event, as though we of sea turtles more at home off the Galapagos. State have already experienced it in the past. For Marine Region record-sized tuna continued to be logged into the books staff, many of the events in 2016 had that same strong by anglers and spear fishermen, besting old records by as feeling of familiarity. much as 80 pounds or more. Elevated levels of domoic acid As the offshore environment continued to impact California’s continued to experience rapid wildlife and fisheries, keeping Marine Region Mission: change, Marine Region staff were commercial crabbers tied to the To protect, maintain, enhance, there monitoring, meeting with the dock for part of the season and public, and developing strategies recreational razor clammers off the and restore California’s to help better understand how beaches of northern California for marine ecosystems for their the changes would affect the much of the year. The commercial ecological values and their marine environment and our sardine fishery remained closed fisheries. Statewide, our biologists for its second year and the use and enjoyment by the and analysts were busy studying, combined effects of drought and public through good science monitoring, and assessing fish and poor ocean conditions impacted and effective communication. shellfish populations, including recreational and commercial abalone, halibut (California and salmon catches.
    [Show full text]