Local Seashells Provide More Than Just a Home for Hermit Crabs by Jennifer Peura

Total Page:16

File Type:pdf, Size:1020Kb

Local Seashells Provide More Than Just a Home for Hermit Crabs by Jennifer Peura Refuge Notebook • Vol. 17, No. 45 • November 6, 2015 Local seashells provide more than just a home for hermit crabs by Jennifer Peura Gastropod shells collected near St. Lawrence Island were studied to assess if their populations affected hermit crab populations. After beachcombing at low tide, perchance coin- of calcium carbonate, the major compound in shells, ciding with a full or new moon to maximize your suc- coral, the exoskeleton of lobsters and crabs, and (im- cess, be it at Captain Cook State Park or Homer’s portantly to Sockeye lovers) pteropods. Pteropods are Bishop’s Beach, you’re likely to end up with a small the major food source of krill, which in turn is the ma- collection of shells, crab exoskeletons, or other rem- jor food source for juvenile salmon. Sea shells also nants of marine life. Even without regard to the ac- provide habitats for multiple fish species at different tual animals whose exoskeleton remains are now sim- stages in their life cycle, notably to hide from preda- ply just seashells that adorn the mantle in your living tion. Shells are used by shorebirds to build nests, by room, the shells themselves have other ecological val- barnacles as a substrate to grow on, and by hermit ues. crabs for protection. The breakdown of shells provides nutrients for or- The lowly hermit crab you might purchase from ganisms that live in the ocean’s benthos (or bottom). PetCo is often assumed to be a textbook example of This nutrient recycling is integral to the availability one species that can’t exist without another in close 86 USFWS Kenai National Wildlife Refuge Refuge Notebook • Vol. 17, No. 45 • November 6, 2015 proximity. That is to say, as a responsible hermit crab and to acquire food, making bivalves sensitive to tox- owner, your aquarium should hold gastropod (slugs, ins even as they serve as a vector for humans to ingest snails, whelks and periwinkles) shells of various sizes toxins. that your growing pet crustacean can use as disposable Unfortunately the same issue is true for the once houses. lucrative fisheries of Long Island and Hudson Bay. So you might think that hermit crab populations After Hurricane Sandy, 76 clammers filed a lawsuit are dependent on gastropod populations. It turns out against the City of New York claiming wastewater that’s not the case. As a graduate student at Southern from a treatment facility that lost power contaminated Illinois University, I studied exactly that question by their fishery. Prior to Sandy, many blamed overhar- examining populations of hermit crabs and gastropods vesting of clams caused the demise of that fishery, sampled at 52 sites around St. Lawrence Island with a which resulted in Manhattan chowder frequently (and trawl net by the U.S. Coast Guard’s icebreaker Healy. ironically) served with clams imported from Florida. Although I tortured the data collected from the 10,000- Like many other fisheries, the impact of harvesting square-mile study area with lots of different analyses, such a large portion wasn’t considered until the popu- I couldn’t find any evidence to support the commonly lation was in peril. However, is that the whole story— held idea that hermit crab populations are geographi- overfishing and pollution? There’s evidence that an- cally limited by gastropods. Further research is needed other factor is in play as well, and it starts at the be- to explain how gastropod shells were available to her- ginning of the bivalve’s life cycle. mit crabs without the living gastropods being present, Poor larval growth and survival was first observed even after accounting for migration by populations in oysters in 2005 with decreased fertilization rates and elsewhere—a mystery that remains unanswered. increased juvenile mortality due to the unavailability Closer to home, there is another mysterious issue of calcium carbonate. Clams, crabs, lobsters and coral that plucks hard on the heart strings of those who re- struggle from day one to grow because of a lack of the member Clam Gulch, just a few years ago, playing host fundamental building block of their shells. Calcium to a heavy flow of Alaskans setting up shop with clam carbonate is decreasing in marine systems, and it’s due cannons and buckets full of razor clams. During the to a chemical reaction taking place in every ocean of past two years, however, the abundance of razor clams the world. When atmospheric carbon dioxide levels has been shockingly low. The rapid population decline rise, their concentrations in the ocean increase as well, resulted in suspending all clamming activity from the causing a chemical reaction that makes the available mouth of the Kenai River to Homer in hopes that we carbonate less able to bind with calcium. This creates a set up future generations with a successful clam fish- more acidic environment with calcium carbonate lev- ery. els sometimes low enough to inhibit larvae from ma- The question of “where are the clams?” reaches be- turing into shelled clams. yond our Kenai Peninsula beaches. The same question The finding of a simple seashell on a beach canbea is being asked in every state along the Pacific and At- reminder that gastropods and bivalves are both impor- lantic oceans. Clam fisheries are abruptly declining, tant but vulnerable to environmental change. While causing those whose livelihood depends on a respon- water treatment experimentation is underway to help sibly maintained clam fishery to desperately search for clam and oyster hatcheries rebound, I try to leave the an answer and a solution. The Boston Clamdigger’s beach with a little less trash than when I arrived in Association filed a lawsuit against Swissport, a com- hopes that my small efforts may help the plight of pany that provides Boston Logan International Air- these shellfish. port with fuel. The lawsuit claims that the loss ofhar- Jen Peura is a seasonal biotech at the Kenai Na- vestable clams in Boston Harbor was influenced by a tional Wildlife Refuge. Find more information at http: huge fuel spill in 2010. Clams and other bivalves (mus- //www.fws.gov/refuge/kenai/ or http://www.facebook. sels, oysters and scallops) filter water for movement com/kenainationalwildliferefuge. USFWS Kenai National Wildlife Refuge 87.
Recommended publications
  • Can You Engineer an Insect Exoskeleton?
    Page 1 of 14 Can you Engineer an Insect Exoskeleton? Submitted by Catherine Dana and Christina Silliman EnLiST Entomology Curriculum Developers Department of Entomology, University of Illinois Grade level targeted: 4th Grade, but can be easily adapted for later grades Big ideas: Insect exoskeleton, engineering, and biomimicry Main objective: Students will be able to design a functional model of an insect exoskeleton which meets specific physical requirements based on exoskeleton biomechanics Lesson Summary We humans have skin and bones to protect us and to help us stand upright. Insects don’t have bones or skin but they are protected from germs, physical harm, and can hold their body up on their six legs. This is all because of their hard outer shell, also known as their exoskeleton. This hard layer does more than just protect insects from being squished, and students will get to explore some of the many ways the exoskeleton protects insects by building one themselves! For this fourth grade lesson, students will work together in teams to use what they learn about exoskeleton biomechanics to design and build a protective casing. To complete the engineering design cycle, students can use what they learn from testing their case to redesign and re-build their prototype. Prerequisites No prior knowledge is required for this lesson. Students should be introduced to the general form of an insect to facilitate identification of the exoskeleton. Live insects would work best for this, but pictures and diagrams will work as well. Instruction Time 45 – 60 minutes Next Generation Science Standards (NGSS) Framework Alignment Disciplinary Core Ideas LS1.A: Structure and Function o Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.
    [Show full text]
  • Do You Think Animals Have Skeletons Like Ours?
    Animal Skeletons Do you think animals have skeletons like ours? Are there any bones which might be similar? Vertebrate or Invertebrate § Look at the words above… § What do you think the difference is? § Hint: Break the words up (Vertebrae) Vertebrates and Invertebrates The difference between vertebrates and invertebrates is simple! Vertebrates have a backbone (spine)… …and invertebrates don’t Backbone (spine) vertebrate invertebrate So, if the animal has a backbone or a ‘vertebral column’ it is a ‘Vertebrate’ and if it doesn’t, it is called an ‘Invertebrate.’ It’s Quiz Time!! Put this PowerPoint onto full slideshow before starting. You will be shown a series of animals, click if you think it is a ‘Vertebrate’ or an ‘Invertebrate.’ Dog VertebrateVertebrate or InvertebrateInvertebrate Worm VertebrateVertebrate or InvertebrateInvertebrate Dinosaur VertebrateVertebrate or InvertebrateInvertebrate Human VertebrateVertebrate or InvertebrateInvertebrate Fish VertebrateVertebrate or InvertebrateInvertebrate Jellyfish VertebrateVertebrate or InvertebrateInvertebrate Butterfly VertebrateVertebrate or InvertebrateInvertebrate Types of Skeleton § Now we know the difference between ‘Vertebrate’ and ‘Invertebrate.’ § Let’s dive a little deeper… A further classification of skeletons comes from if an animal has a skeleton and where it is. All vertebrates have an endoskeleton. However invertebrates can be divided again between those with an exoskeleton and those with a hydrostatic skeleton. vertebrate invertebrate endoskeleton exoskeleton hydrostatic skeleton What do you think the words endoskeleton, exoskeleton and hydrostatic skeleton mean? Endoskeletons Animals with endoskeletons have Endoskeletons are lighter skeletons on the inside than exoskeletons. of their bodies. As the animal grows so does their skeleton. Exoskeletons Animals with exoskeletons Watch the following have clip to see how they shed their skeletons on their skeletons the outside! (clip the crab below).
    [Show full text]
  • Climate Change and Fisheries: Policy, Trade and Sustainable Nal of Fisheries Management 22:852-862
    Climate Change and Alaska Fisheries TERRY JOHNSON Alaska Sea Grant University of Alaska Fairbanks 2016 ISBN 978-1-56612-187-3 http://doi.org/10.4027/ccaf.2016 MAB-67 $10.00 Credits Alaska Sea Grant is supported by the US Department of Commerce, NOAA National Sea Grant, grant NA14OAR4170079 (A/152-32) and by the University of Alaska Fairbanks with state funds. Sea Grant is a partnership with public and private sectors combining research, education, and extension. This national network of universities meets changing environmental and Alaska Sea Grant economic needs of people in coastal, ocean, and Great Lakes University of Alaska Fairbanks regions. Fairbanks, Alaska 99775-5040 Funding for this project was provided by the Alaska Center for Climate Assessment and Policy (ACCAP). Cover photo by (888) 789-0090 Deborah Mercy. alaskaseagrant.org TABLE OF CONTENTS Abstract .................................................................................................... 2 Take-home messages ...................................................................... 2 Introduction............................................................................................. 3 1. Ocean temperature and circulation ................................................ 4 2. Ocean acidification ............................................................................ 9 3. Invasive species, harmful algal blooms, and disease-causing pathogens .................................................... 12 4. Fisheries effects—groundfish and crab ......................................
    [Show full text]
  • Krill Oil and Astaxanthin
    Krill Oil and Astaxanthin Krill are small reddish-color crustaceans, similar to shrimp, that abound in cold Arctic waters. They survive in such cold, frigid temperatures because of their natural anti- freeze, the polyunsaturated fatty acids EPA and DHA. EPA and DHA are bound to molecules called phospholipids (especially phosphatidyl choline) that act to help transport nutrients into cells and change the structure of animal cell membranes. Studies show that these combined fatty acids have better absorption into the cell membranes throughout the body, especially the brain, as compared to other types of fish oils. Although it has less EPA/DHA content than most fish oils, krill oil seems to be almost twice as absorbable. Unlike fish oil, krill oil also contains a very potent antioxidant, astaxanthin, which helps prevent krill oil from oxidizing (turning rancid). Astaxanthin is a red pigment found in different types of algae and phytoplankton. It is astaxanthin that gives salmon and trout their reddish color. It is considered to be one of the most potent natural antioxidants, almost 50 times stronger than beta-carotenes found in fruits and vegetables and 65 times better as an anti-oxidant than vitamin C. Krill oil is composed of 40% phospholipids, 30% EPA and DHA, astaxanthin, vitamin A, vitamin C, various other fatty acids, and flavanoids (anti-oxidant compounds) Human studies indicate krill oil is powerful at decreasing inflammation throughout the body, especially in the brain. It reduces C-reactive protein, a marker for heart disease. Tests indicate it has a powerful anti-inflammatory remedy for rheumatoid as well as osteoarthritis.
    [Show full text]
  • The Health Benefits of Krill Oil Versus Fish Oil
    The Health Benefits of Krill Oil versus Fish Oil Antarctic krill Euphausia superba Antarctic krill is a rich source of long chain Ȧ-3 PUFAs: EPA & DHA Human trials show EPA and DHA significantly lower i~70% incorporated into phospholipids and ~30% is free fatty acids triglycerides, VLDL, LDL, and iDHA content in krill oil is similar to fish oil, EPA content is much higher blood pressure, and raise HDL. in krill oil than fatty fish Fish oil, a prominent source of Krill Oil contains antioxidants Vitamin A, Vitamin E, and Astaxanthin EPA and DHA, maintains a long founded history in Clinical Trials epidemiologic and intervention i1 g and 1.5 g krill oil significantly more effective than 3 g fish oil in studies which support it can reducing glucose and LDL help reduce atherosclerotic plaque growth, cancer, i2 g and 3 g krill oil showed significantly greater reduction in glucose, arrhythmia, inflammation, LDL, and triglycerides compared to 3 g fish oil arthritis, kidney disease, and iAfter an additional 120 days at 0.5 g/d krill oil (after 90 days at 1±1.5 g/d skin disorders, as well as krill oil) cholesterol, LDL, HDL, triglycerides, and glucose became increase endothelial function, significantly different from baseline anti-thrombosis, insulin sensitivity, neurological i.ULOORLO¶VKLJKSURSRUWLRQRI(3$ '+$ERXQGWRSKRVSKROLSLGVDQGDV function, retinal and brain free fatty acids demonstrates greater bioavailability and absorption in development, and the intestine compared to fish oil whose EPA & DHA is bound to immunological function. The triglycerides level of causation is so i Mice fed 10% krill oil had higher liver expression of endogenous profound even the American antioxidant enzymes than corn fed mice.
    [Show full text]
  • Heart Health Through Whole Foods
    Heart Health Through Whole Foods Certain whole foods in a diet can ultimately provide heart-healthy benefits. The right foods consumed in the right amounts can help lower cholesterol and/or triglycerides. They may also help to reduce risk for heart disease. Even though the benefits of whole foods may be known, too often individuals turn to over-the-counter supplements instead. It is important to discuss all supplements prior to ingestion with your physician. Individuals may not realize that taking some supplements with certain medications may be harmful or that taking too much of a good thing can be bad. The purpose of this session is to educate how to obtain certain nutrients through whole foods rather then through supplements. It must be noted that some individuals may still need supplements in addition to diet. Once again this should be guided by a physician. Supplement Health Benefits Caution Dietary Alternative Omega-3 Fatty Acids: Fish oil is used for There are some safety concerns Consuming fish oil from dietary Fish Oils reduction in cholesterol about using high doses of fish oil. sources such as fatty fish (e.g., and triglycerides. It is Doses greater than 3 grams per tuna, salmon), two servings Fish oils contain used for hyperlipidemia, day can inhibit blood coagulation per week, is associated with Eicosapentaenoic hypertriglyceridemia, and potentially increase the risk a reduced risk of developing Acid (EPA) and coronary heart disease of bleeding. Doses greater than 3 cardiovascular disease Docosahexaenoic and hypertension. grams per day might also suppress (primary prevention). Acid (DHA) immune response.
    [Show full text]
  • Effect of Protein Hydrolysate from Antarctic Krill on the State of Water and Denatur- Ation of Lizard Fish Myofibrils During Frozen Storage
    Food Sci. Technol. Res., 8 (3), 200–206, 2002 Effect of Protein Hydrolysate from Antarctic Krill on the State of Water and Denatur- ation of Lizard Fish Myofibrils during Frozen Storage Nong ZHANG1, Yasumitsu YAMASHITA1 and Yukinori NOZAKI2* 1Graduate School of Marine Science and Engineering, and 2Faculty of Fisheries, Nagasaki University, Bunkyo, Nagasaki 852-8521, Japan Received May 24, 2001; Accepted April 17, 2002 Protein hydrolysates were prepared from Antarctic krill and two types of shrimp by enzymatic treatment using protease. Hydrolysates prepared from the krill were added to lizard fish myofibrils, and changes in the amount of unfrozen water in myofibrils during freezing were analyzed by differential scanning calorimetry. Ca-ATPase activity of myofibrils was measured concurrently and the results were compared with those using hydrolysates from shrimp. The amount of unfrozen water increased after addition of the hydrolysates and decreased moderately during frozen storage. When hydrolysates were not added to myofibrils, the amount of water rapidly decreased during frozen stor- age. The decrease in ATPase activity during frozen storage followed that of unfrozen water, indicating a close correla- tion between ATPase activity and the amount of unfrozen water. These results suggest that the denaturation of myofibrils may be suppressed by the addition of hydrolysates, since the hydrolysates appeared to increase the amount of unfrozen water. Keywords: krill, myofibrils, ATPase, hydrolysate, freeze-denaturation, unfrozen water, frozen storage
    [Show full text]
  • Distribution of Calcium Phosphate in the Exoskeleton of Larval Exeretonevra Angustifrons Hardy (Diptera: Xylophagidae)
    Arthropod Structure & Development 34 (2005) 41–48 www.elsevier.com/locate/asd Distribution of calcium phosphate in the exoskeleton of larval Exeretonevra angustifrons Hardy (Diptera: Xylophagidae) Bronwen W. Cribba,b,*, Ron Rascha, John Barrya, Christopher M. Palmerb,1 aCentre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Qd 4072, Australia bDepartment of Zoology and Entomology, The University of Queensland, Brisbane, Qd 4072, Australia Received 28 July 2004; accepted 26 August 2004 Abstract Distribution and organisation of the mineral, amorphous calcium phosphate (ACP), has been investigated in the exoskeleton of the xylophagid fly larva Exeretonevra angustifrons Hardy. While head capsule and anal plate are smooth with a thin epicuticle, the epicuticle of the body is thicker and shows unusual micro-architecture comprised of minute hemispherical (dome-shaped) protrusions. Electron microprobe analysis and energy dispersive spectroscopy revealed heterogeneity of mineral elements across body cuticle and a concentration of ACP in the epicuticle, especially associated with the hemispherical structures. Further imaging and analysis showed the bulk of the ACP to be present in nano-sized granules. It is hypothesised that the specific distribution of ACP may enhance cuticular hardness or durability without reducing flexibility. q 2004 Elsevier Ltd. All rights reserved. Keywords: Insect; Cuticle; Integument; Hardening; Analytical electron microscopy; Electron microprobe 1. Introduction was distributed heterogeneously. Further investigation of the distribution of the mineral phase at the micron and Strengthening of biological structures through cuticular nanometre level is needed to discover where deposition is calcification is well developed in decapod crustaceans but it occurring and how this might affect exoskeletal organis- rarely occurs in insects, where it is poorly understood ation.
    [Show full text]
  • (Cciea) California Current Ecosystem Status Report, 2020
    Agenda Item G.1.a IEA Team Report 2 March 2020 SUPPLEMENTARY MATERIALS TO THE CALIFORNIA CURRENT INTEGRATED ECOSYSTEM ASSESSMENT (CCIEA) CALIFORNIA CURRENT ECOSYSTEM STATUS REPORT, 2020 Appendix A LIST OF CONTRIBUTORS TO THIS REPORT, BY AFFILIATION NWFSC, NOAA Fisheries SWFSC, NOAA Fisheries Mr. Kelly Andrews Dr. Eric Bjorkstedt Ms. Katie Barnas Dr. Steven Bograd Dr. Richard Brodeur Ms. Lynn deWitt Dr. Brian Burke Dr. John Field Dr. Jason Cope Dr. Newell (Toby) Garfield (co-lead editor) Dr. Correigh Greene Dr. Elliott Hazen Dr. Thomas Good Dr. Michael Jacox Dr. Chris Harvey (co-lead editor) Dr. Andrew Leising Dr. Daniel Holland Dr. Nate Mantua Dr. Kym Jacobson Mr. Keith Sakuma Dr. Stephanie Moore Dr. Jarrod Santora Dr. Stuart Munsch Dr. Andrew Thompson Dr. Karma Norman Dr. Brian Wells Dr. Jameal Samhouri Dr. Thomas Williams Dr. Nick Tolimieri (co-editor) University of California-Santa Cruz Ms. Margaret Williams Ms. Rebecca Miller Dr. Jeannette Zamon Dr. Barbara Muhling Pacific States Marine Fishery Commission Dr. Isaac Schroeder Ms. Amanda Phillips Humboldt State University Mr. Gregory Williams (co-editor) Ms. Roxanne Robertson Oregon State University California Department of Public Health Ms. Jennifer Fisher Ms. Christina Grant Ms. Cheryl Morgan Mr. Duy Trong Ms. Samantha Zeman Ms. Vanessa Zubkousky-White AFSC, NOAA Fisheries California Department of Fish and Wildlife Dr. Stephen Kasperski Ms. Christy Juhasz Dr. Sharon Melin CA Office of Env. Health Hazard Assessment NOAA Fisheries West Coast Region Dr. Rebecca Stanton Mr. Dan Lawson Oregon Department of Fish and Wildlife Farallon Institute Dr. Caren Braby Dr. William Sydeman Mr. Matthew Hunter Point Blue Conservation Science Oregon Department of Agriculture Dr.
    [Show full text]
  • Effects of CO2-Induced Ph Reduction on the Exoskeleton Structure and Biophotonic Properties of the Shrimp Lysmata Californica
    UC San Diego UC San Diego Previously Published Works Title Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Permalink https://escholarship.org/uc/item/3mj6d2n4 Journal Scientific reports, 5(1) ISSN 2045-2322 Authors Taylor, Jennifer RA Gilleard, Jasmine M Allen, Michael C et al. Publication Date 2015-06-01 DOI 10.1038/srep10608 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic Received: 10 November 2014 Accepted: 07 April 2015 properties of the shrimp Lysmata Published: 01 June 2015 californica Jennifer R. A. Taylor1, Jasmine M. Gilleard2, Michael C. Allen1 & Dimitri D. Deheyn1 The anticipated effects of CO2-induced ocean acidification on marine calcifiers are generally negative, and include dissolution of calcified elements and reduced calcification rates. Such negative effects are not typical of crustaceans for which comparatively little ocean acidification research has been conducted. Crustaceans, however, depend on their calcified exoskeleton for many critical functions. Here, we conducted a short-term study on a common caridean shrimp, Lysmata californica, to determine the effect of CO2-driven reduction in seawater pH on exoskeleton growth, structure, and mineralization and animal cryptic coloration. Shrimp exposed to ambient (7.99 ± 0.04) and reduced pH (7.53 ± 0.06) for 21 days showed no differences in exoskeleton growth (percent increase in carapace length), but the calcium weight percent of their cuticle increased significantly in reduced pH conditions, resulting in a greater Ca:Mg ratio.
    [Show full text]
  • Redalyc. Trophic Ecology of the Lobster Krill Munida Gregariain San
    Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Vinuesa, Julio H.; Varisco, Martín Trophic ecology of the lobster krill Munida gregariain San Jorge Gulf, Argentina Latin American Journal of Aquatic Research, vol. 35, núm. 2, 2007, pp. 25-34 Pontificia Universidad Católica de Valparaíso Valparaiso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175020538003 Abstract The "langostilla", Munida gregaria, also called lobster krill or squat lobster, is a very common galatheid crustacean in San Jorge Gulf and around the southern tip of South America. Previous studies have shown that this species plays animportantrolein the trophic webs whereverit has been studied. In order to determineits naturalfood sources, we analyzed 10 samples (30-36 individuals each) taken from different sites in San Jorge Gulf. Moreover, stomach analyses were performed on 32 fish species, 4 mollusk species, and 7 crustacean species from the gulf. Thelobster krillis primarily a detritivore or surface deposit-feeder and secondarily a predator and/or scavenger. Its main energy sources are particulate organic matter and their associated bacteria, small live organisms on the surface of the sediment layer (ostracods, copepods, foraminifers, other protists), and animal debris. Polychaetes are the main prey of lobster krill in the study area. This dual complementary feeding behavior is common in the studied galatheids, making them a fundamental link between detritus and benthic and demersal top predators. Some species of these predators constitute important fisheries. Different life-cycle stages of the squat lobster were preyed on by 32 of the examined species.
    [Show full text]
  • Marine Region 2016 Year in Review
    MARINE REGION 2016 YEAR IN REVIEW Cavanaugh Gulch, near Elk in northern California photo by K. Joe A Message From Craig Shuman, Marine Region Manager Most of us have experienced déjà vu – that strong feeling on the beach by the hundreds of thousands and reports of familiarity with an experience or event, as though we of sea turtles more at home off the Galapagos. State have already experienced it in the past. For Marine Region record-sized tuna continued to be logged into the books staff, many of the events in 2016 had that same strong by anglers and spear fishermen, besting old records by as feeling of familiarity. much as 80 pounds or more. Elevated levels of domoic acid As the offshore environment continued to impact California’s continued to experience rapid wildlife and fisheries, keeping Marine Region Mission: change, Marine Region staff were commercial crabbers tied to the To protect, maintain, enhance, there monitoring, meeting with the dock for part of the season and public, and developing strategies recreational razor clammers off the and restore California’s to help better understand how beaches of northern California for marine ecosystems for their the changes would affect the much of the year. The commercial ecological values and their marine environment and our sardine fishery remained closed fisheries. Statewide, our biologists for its second year and the use and enjoyment by the and analysts were busy studying, combined effects of drought and public through good science monitoring, and assessing fish and poor ocean conditions impacted and effective communication. shellfish populations, including recreational and commercial abalone, halibut (California and salmon catches.
    [Show full text]