Convergent Body Size Evolution of Crocodyliformes Upon Entering the Aquatic Realm William Gearty

Total Page:16

File Type:pdf, Size:1020Kb

Convergent Body Size Evolution of Crocodyliformes Upon Entering the Aquatic Realm William Gearty University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Posters & Presentations in Biological Sciences Biological Sciences, School of 1-2018 Convergent body size evolution of Crocodyliformes upon entering the aquatic realm William Gearty Jonathan Payne Follow this and additional works at: https://digitalcommons.unl.edu/bioposters Part of the Biology Commons, Evolution Commons, and the Terrestrial and Aquatic Ecology Commons This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Posters & Presentations in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Convergent body size evolution of Crocodyliformes upon entering the aquatic realm William Gearty* and Jonathan L. Payne Department of Geological Sciences, Stanford University *[email protected] 1. Introduction 2. Materials and Methods Twenty-four species of crocodile populate the globe today, but this • Calculated body masses of 249 crocodyliformes (living and Figure 2.1: Maximum clade richness represents a minute fraction of the diversity and disparity of extinct) using measurements from primary literature credibility tree of Crocodyliformes Crocodyliformes since their origin early in the Triassic. Across this • Assigned habitats based on compilations and primary literature showing invasions of the aquatic • Crocodyliformes supertree (Bronzati et al. 2015) realm within three clades clade, three major diversification events into the aquatic realm have • Species fossil ranges from compilations and PBDB Summary tree of posterior occurred. Aquatic and terrestrial habitats impose differing selective • Characterless tip-dating analysis using R and MrBayes distribution of trees from MrBayes pressures on body size. However, previous research on this topic in • Macroevolutionary Ornstein-Uhlenbeck (OU) model fitting characterless tip-dating analysis of Crocodyliformes remains qualitative in nature. In this study, our goal • OUwie R package (Beaulieu et al. 2012) the Crocodyliformes supertree. Tips • was to quantify the influence of habitat (terrestrial versus aquatic) Results model-averaged across 17 different models using AIC without habitat and/or size data General Equation of an OU Model: were dropped. Tip labels indicate .on the evolution of body size in Crocodyliformes. We find a history ࢊࢄ ࢚ൌࢻࣂ െ ࢄሺݐሻ ࢊ࢚ ൅ ࣌ࢊ࡮ሺ࢚ሻ terrestrial and aquatic species of repeated body size increase and convergence following shifts to ܺ ݐ : initial body size હ: strength of selection an aquatic lifestyle, suggesting common selective pressures on life in ݀ܺ ݐ : change in body size ો: intensity of random drift ሺݐሻ: random variation ી: body size optimumܤ݀ .water spanning multiple independent aquatic clades 3. Results 4. Conclusions Figure 3.1: Aquatic clades converge on Figure 3.4: Body size governs • All three aquatic clades converge larger body size optima relative time invested in on greater optima, with shorter Weighted means and 2σ confidence temperature regulation intervals of model-averaged body mass Ratios of the time it takes to cool phylogenetic half-lives and optima (θ) as estimated by OUwie analyses down versus the time it takes to smaller stationary variances for terrestrial and aquatic regimes. Aquatic warm up in crocodiles in air and clades have statistically greater body mass in water (Smith 1976) compared • Lung volume, which has long optima than the terrestrial regime to a stacked histogram of been proposed as the main (p < .001, Mann-Whitney test). terrestrial and aquatic body masses. Larger sizes require less constraint on diving capacity, is warming time with respect to only a constraint at sizes greater Figure 3.2: Aquatic clades converge on cooling time. Living in air is shorter phylogenetic half-lives thermally advantageous at smaller than 10 kg size whereas living in water is Boxplots of model-averaged phylogenetic • half-lives (ln(2)/α) as estimated by OUwie preferable at larger size. The rate of cooling strongly analyses for terrestrial and aquatic regimes. constrains diving capacity at sizes Outliers have been removed. Aquatic clades Figure 3.5: Lung volume and smaller than 10 kg and may be have statistically shorter phylogenetic half- cooling enforce diving capacity lives compared to the terrestrial regime the primary driver of larger body constraints at different sizes (p < .001, Mann-Whitney test). sizes in diving crocodyliformes Lung volume (Wright and Kirshner, 1987; Seymour et al. Figure 3.3: Aquatic clades converge on 2013) and cooling (Smith 1976) References and Acknowledgements smaller stationary variances limits on the diving capacity of crocodiles compared to a stacked Beaulieu JM, et al. 2012. Evolution. Boxplots of model-averaged stationary Bronzati M, Montefeltro FC, Langer MC. 2015. R Soc Open Sci. variances (σ2/(2*α)) as estimated by OUwie histogram of terrestrial and Farlow JO, et al. 2005. J Vert Paleo. aquatic body masses. Cooling Mannion PD, et al. 2015. Nat Commun. analyses for terrestrial and aquatic regimes. Seymour RS, et al. 2013. J Comp Physiol B. Outliers have been removed. Aquatic clades rapidly restricts diving capacity at Smith EN. 1976. Phys Zool. smaller sizes. The smallest aquatic Tennant JP, Mannion PD, Upchurch P. 2016. Proc R Soc B. have statistically smaller stationary Wright JC and Kirshner DS. 1987. J Exp Biol. variances compared to the terrestrial crocodiles are at the smallest size where lung volume is more Thanks to David Bapst for help with tip-dating regime (p < .001, Mann-Whitney test). Thanks to Margaret Deng for collecting crocodile body limiting than heat loss. measurements Silhouettes from phylopic.org.
Recommended publications
  • Crocodylomorpha, Neosuchia), and a Discussion on the Genus Theriosuchus
    bs_bs_banner Zoological Journal of the Linnean Society, 2015. With 5 figures The first definitive Middle Jurassic atoposaurid (Crocodylomorpha, Neosuchia), and a discussion on the genus Theriosuchus MARK T. YOUNG1,2, JONATHAN P. TENNANT3*, STEPHEN L. BRUSATTE1,4, THOMAS J. CHALLANDS1, NICHOLAS C. FRASER1,4, NEIL D. L. CLARK5 and DUGALD A. ROSS6 1School of GeoSciences, Grant Institute, The King’s Buildings, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK 2School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, UK 3Department of Earth Science and Engineering, Imperial College London, London SW6 2AZ, UK 4National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK 5The Hunterian, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK 6Staffin Museum, 6 Ellishadder, Staffin, Isle of Skye IV51 9JE, UK Received 1 December 2014; revised 23 June 2015; accepted for publication 24 June 2015 Atoposaurids were a clade of semiaquatic crocodyliforms known from the Late Jurassic to the latest Cretaceous. Tentative remains from Europe, Morocco, and Madagascar may extend their range into the Middle Jurassic. Here we report the first unambiguous Middle Jurassic (late Bajocian–Bathonian) atoposaurid: an anterior dentary from the Isle of Skye, Scotland, UK. A comprehensive review of atoposaurid specimens demonstrates that this dentary can be referred to Theriosuchus based on several derived characters, and differs from the five previously recog- nized species within this genus. Despite several diagnostic features, we conservatively refer it to Theriosuchus sp., pending the discovery of more complete material. As the oldest known definitively diagnostic atoposaurid, this discovery indicates that the oldest members of this group were small-bodied, had heterodont dentition, and were most likely widespread components of European faunas.
    [Show full text]
  • 8. Archosaur Phylogeny and the Relationships of the Crocodylia
    8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988.
    [Show full text]
  • Craniofacial Morphology of Simosuchus Clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar
    Society of Vertebrate Paleontology Memoir 10 Journal of Vertebrate Paleontology Volume 30, Supplement to Number 6: 13–98, November 2010 © 2010 by the Society of Vertebrate Paleontology CRANIOFACIAL MORPHOLOGY OF SIMOSUCHUS CLARKI (CROCODYLIFORMES: NOTOSUCHIA) FROM THE LATE CRETACEOUS OF MADAGASCAR NATHAN J. KLEY,*,1 JOSEPH J. W. SERTICH,1 ALAN H. TURNER,1 DAVID W. KRAUSE,1 PATRICK M. O’CONNOR,2 and JUSTIN A. GEORGI3 1Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794-8081, U.S.A., [email protected]; [email protected]; [email protected]; [email protected]; 2Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio 45701, U.S.A., [email protected]; 3Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308, U.S.A., [email protected] ABSTRACT—Simosuchus clarki is a small, pug-nosed notosuchian crocodyliform from the Late Cretaceous of Madagascar. Originally described on the basis of a single specimen including a remarkably complete and well-preserved skull and lower jaw, S. clarki is now known from five additional specimens that preserve portions of the craniofacial skeleton. Collectively, these six specimens represent all elements of the head skeleton except the stapedes, thus making the craniofacial skeleton of S. clarki one of the best and most completely preserved among all known basal mesoeucrocodylians. In this report, we provide a detailed description of the entire head skeleton of S. clarki, including a portion of the hyobranchial apparatus. The two most complete and well-preserved specimens differ substantially in several size and shape variables (e.g., projections, angulations, and areas of ornamentation), suggestive of sexual dimorphism.
    [Show full text]
  • CROCODYLIFORMES, MESOEUCROCODYLIA) from the EARLY CRETACEOUS of NORTH-EAST BRAZIL by DANIEL C
    [Palaeontology, Vol. 52, Part 5, 2009, pp. 991–1007] A NEW NEOSUCHIAN CROCODYLOMORPH (CROCODYLIFORMES, MESOEUCROCODYLIA) FROM THE EARLY CRETACEOUS OF NORTH-EAST BRAZIL by DANIEL C. FORTIER and CESAR L. SCHULTZ Departamento de Paleontologia e Estratigrafia, UFRGS, Avenida Bento Gonc¸alves 9500, 91501-970 Porto Alegre, C.P. 15001 RS, Brazil; e-mails: [email protected]; [email protected] Typescript received 27 March 2008; accepted in revised form 3 November 2008 Abstract: A new neosuchian crocodylomorph, Susisuchus we recovered the family name Susisuchidae, but with a new jaguaribensis sp. nov., is described based on fragmentary but definition, being node-based group including the last com- diagnostic material. It was found in fluvial-braided sedi- mon ancestor of Susisuchus anatoceps and Susisuchus jagua- ments of the Lima Campos Basin, north-eastern Brazil, ribensis and all of its descendents. This new species 115 km from where Susisuchus anatoceps was found, in corroborates the idea that the origin of eusuchians was a rocks of the Crato Formation, Araripe Basin. S. jaguaribensis complex evolutionary event and that the fossil record is still and S. anatoceps share a squamosal–parietal contact in the very incomplete. posterior wall of the supratemporal fenestra. A phylogenetic analysis places the genus Susisuchus as the sister group to Key words: Crocodyliformes, Mesoeucrocodylia, Neosuchia, Eusuchia, confirming earlier studies. Because of its position, Susisuchus, new species, Early Cretaceous, north-east Brazil. B razilian crocodylomorphs form a very expressive Turonian–Maastrichtian of Bauru basin: Adamantinasu- record of Mesozoic vertebrates, with more than twenty chus navae (Nobre and Carvalho, 2006), Baurusuchus species described up to now.
    [Show full text]
  • From the Late Cretaceous of Brazil and the Phylogeny of Baurusuchidae
    A New Baurusuchid (Crocodyliformes, Mesoeucrocodylia) from the Late Cretaceous of Brazil and the Phylogeny of Baurusuchidae Felipe C. Montefeltro1*, Hans C. E. Larsson2, Max C. Langer1 1 Departamento de Biologia, Faculdade de Filosofia, Cieˆncias e Letras de Ribeira˜o Preto – Universidade de Sa˜o Paulo, Ribeira˜o Preto, Brazil, 2 Redpath Museum, McGill University, Montre´al, Canada Abstract Background: Baurusuchidae is a group of extinct Crocodyliformes with peculiar, dog-faced skulls, hypertrophied canines, and terrestrial, cursorial limb morphologies. Their importance for crocodyliform evolution and biogeography is widely recognized, and many new taxa have been recently described. In most phylogenetic analyses of Mesoeucrocodylia, the entire clade is represented only by Baurusuchus pachecoi, and no work has attempted to study the internal relationships of the group or diagnose the clade and its members. Methodology/Principal Findings: Based on a nearly complete skull and a referred partial skull and lower jaw, we describe a new baurusuchid from the Vale do Rio do Peixe Formation (Bauru Group), Late Cretaceous of Brazil. The taxon is diagnosed by a suite of characters that include: four maxillary teeth, supratemporal fenestra with equally developed medial and anterior rims, four laterally visible quadrate fenestrae, lateral Eustachian foramina larger than medial Eustachian foramen, deep depression on the dorsal surface of pterygoid wing. The new taxon was compared to all other baurusuchids and their internal relationships were examined based on the maximum parsimony analysis of a discrete morphological data matrix. Conclusion: The monophyly of Baurusuchidae is supported by a large number of unique characters implying an equally large morphological gap between the clade and its immediate outgroups.
    [Show full text]
  • First Post-Mesozoic Record of Crocodyliformes from Chile
    First post−Mesozoic record of Crocodyliformes from Chile STIG A. WALSH and MARIO SUÁREZ Walsh, S.A. and Suárez, M. 2005. First post−Mesozoic record of Crocodyliformes from Chile. Acta Palaeontologica Polonica 50 (3): 595–600. Fossil crocodilians are well known from vertebrate bearing localities in South America, but the last record of the group in Chile is from the Cretaceous. No living crocodilians occur in Chile today, and the timing of their disappearance from the country is unknown. We provide the first post−Mesozoic report of crocodilian remains from late Miocene marine deposits of the Bahía Inglesa Formation, northern Chile. The fragmentary material provides proof that Crocodiliformes were pres− ent in Chile until at least seven million years ago. We suggest that late Neogene climatic cooling and changes in South American palaeophysiography caused the extinction of the group in Chile. Key words: Crocodyliformes, climate change, extinction, Bahía Inglesa Formation, Neogene, Chile. Stig A. Walsh [[email protected]], Department of Palaeontology, Natural History Museum, Cromwell Road, London, United Kingdom; Mario E. Suárez [[email protected]], Museo Paleontológico de Caldera, Av. Wheelright, Caldera, Chile. Introduction Inglesa Formation of northern Chile. The occurrence of these specimens in late Miocene sediments demonstrates that cro− Crocodilians have a long and diverse fossil record in South codilians were present in Chile until at least seven million America, with Tertiary freshwater and terrestrial deposits in years ago. particular having provided exceptionally rich faunas. In fact, Institutional abbreviations.—BMNH, Natural History Mu− crocodilians are encountered throughout much of the South seum, London, United Kingdom; MNHN, Muséum National American Tertiary, and are known from Argentina, Brazil, d’Histoire Naturelle, Paris, France; SGO−PV, Sección Pale− Colombia, Peru, and Venezuela (Langstone 1965; Buffetaut ontología, Museo Nacional de Historia Natural, Santiago, 1982; Gasparini 1996; Brochu 1999; Kay et al.
    [Show full text]
  • Postcranial Skeletons of Caipirasuchus (Crocodyliformes, Notosuchia, Sphagesauridae) from the Upper Cretaceous (Turonianesantonian) of the Bauru Basin, Brazil
    Cretaceous Research 60 (2016) 109e120 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Postcranial skeletons of Caipirasuchus (Crocodyliformes, Notosuchia, Sphagesauridae) from the Upper Cretaceous (TuronianeSantonian) of the Bauru Basin, Brazil * Fabiano Vidoi Iori a, b, , Ismar de Souza Carvalho c, Thiago da Silva Marinho d a Museu de Paleontologia “Prof. Antonio Celso de Arruda Campos”, Centro de Artes, Praça do Centenario, CEP 15910-000, Monte Alto, SP, Brazil b Instituto Municipal de Ensino Superior de Catanduva (IMES), Rodovia Washington Luis, km 382, CEP 15800-971, Catanduva, SP, Brazil c Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Geoci^encias (IGEO), Departamento de Geologia, Cidade Universitaria, Ilha do Fundao,~ Av. Athos da Silveira Ramos, 274, Bloco G, 21941-916, Rio de Janeiro, RJ, Brazil d Universidade Federal do Triangulo^ Mineiro (UFTM), Pro-Reitoria de Extensao~ Universitaria, Centro de Pesquisas Paleontologicas L. I. Price, Complexo Cultural e Científico de Peiropolis (CCCP), R. Estanislau Collenghi 194, Peiropolis, 38039-755 Uberaba, MG, Brazil article info abstract Article history: Caipirasuchus is a sphagesaurid crocodyliform genus known from Upper Cretaceous rocks (Turonian Received 10 August 2015 eSantonian) of the Bauru Basin, Brazil. Although their earlier descriptions were restricted to skull and Received in revised form mandible morphology, three species have been identified. In the present study, the skeletons of three 30 November 2015 specimens were analyzed from the collection of Prof. Antonio Celso de Arruda Campos Paleontology Accepted in revised form 30 November 2015 Museum: Caipirasuchus montealtensis (MPMA 68-0003/12), Caipirasuchus paulistanus (MPMA 67-0001/ Available online xxx 00) and Caipirasuchus sp.
    [Show full text]
  • A Short-Snouted, Middle Triassic Phytosaur and Its Implications For
    www.nature.com/scientificreports OPEN A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Received: 28 September 2016 Accepted: 08 March 2017 Biogeography of Phytosauria Published: 10 April 2017 Michelle R. Stocker1, Li-Jun Zhao2, Sterling J. Nesbitt1, Xiao-Chun Wu3 & Chun Li4 Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys. The Permian-Triassic mass extinction resulted in a colossal change in global vertebrate community structure1,2.
    [Show full text]
  • Environmental Drivers of Body Size Evolution in Crocodile-Line Archosaurs ✉ Maximilian T
    ARTICLE https://doi.org/10.1038/s42003-020-01561-5 OPEN Environmental drivers of body size evolution in crocodile-line archosaurs ✉ Maximilian T. Stockdale1 & Michael J. Benton 2 1234567890():,; Ever since Darwin, biologists have debated the relative roles of external and internal drivers of large-scale evolution. The distributions and ecology of living crocodilians are controlled by environmental factors such as temperature. Crocodilians have a rich history, including amphibious, marine and terrestrial forms spanning the past 247 Myr. It is uncertain whether their evolution has been driven by extrinsic factors, such as climate change and mass extinctions, or intrinsic factors like sexual selection and competition. Using a new phylogeny of crocodilians and their relatives, we model evolutionary rates using phylogenetic com- parative methods. We find that body size evolution follows a punctuated, variable rate model of evolution, consistent with environmental drivers of evolution, with periods of stability interrupted by periods of change. Regression analyses show warmer environmental tem- peratures are associated with high evolutionary rates and large body sizes. We confirm that environmental factors played a significant role in the evolution of crocodiles. 1 School of Geographical Sciences, University Road, Bristol BS8 1RL, United Kingdom. 2 School of Earth Sciences, Life Sciences Building, 24 Tyndall Avenue, ✉ Bristol BS8 1TQ, United Kingdom. email: [email protected] COMMUNICATIONS BIOLOGY | (2021) 4:38 | https://doi.org/10.1038/s42003-020-01561-5 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01561-5 rocodiles might be interpreted as something of an ana- cooling throughout the later Cenozoic.
    [Show full text]
  • (Crocodyliformes, 1 Mesoeucrocodylia) During
    1 DIVERSITY PATTERNS OF NOTOSUCHIA (CROCODYLIFORMES, 2 MESOEUCROCODYLIA) DURING THE CRETACEOUS OF GONDWANA 3 4 5 DIEGO POL1 and JUAN MARTIN LEARDI2 6 7 1CONICET. Museo Paleontológico Egidio Feruglio, Av. Fontana 140, U9100GYO 8 Trelew, Chubut, Argentina. [email protected] 9 2IDEAN, Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Ciudad 10 Universitaria Pab. II, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina. 11 [email protected] 12 13 38pp. (text+references); 5 figs. 14 15 RH: POL AND LEARDI: NOTOSUCHIAN DIVERSITY PATTERNS 16 1 17 Abstract. Notosuchia is a diverse clade of Crocodyliformes that achieved a remarkable 18 diversity during the Cretaceous. This group is particularly abundant in continental 19 deposits of Gondwana throughout the Cretaceous, especially in South America. 20 Notosuchia was first recognized as a distinct group by the early work of Gasparini in the 21 1970’s and in the last decades numerous discoveries and studies have increased the 22 geographical, temporal and taxonomical scope of this clade. Here we analyze the 23 patterns of diversity of Notosuchia during the Cretaceous, considering their taxic and 24 phylogenetic diversity, as well as implementing sampling corrections aiming to account 25 for the uneven fossil record of different stages of the Cretaceous. We identify two 26 subsequent pulses of diversification in the late Early Cretaceous and the middle Late 27 Cretaceous, followed by two separate extinction events that occurred during the latest 28 Cretaceous (Campanian/Maastrichtian). We discuss the contribution of the South 29 American, African, and Malagasy fossil records to the diversity curves, which indicates 30 the African fossil record dominates the first pulse of diversification and the South 31 American fossil record exclusively compose the second pulse of diversification.
    [Show full text]
  • Redescription of the Aetosaur Chilenosuchus Forttae Casamiquela (Diapsida: Archosauria): Presence of Continental Triassic in Northern Chile
    Redescription of the aetosaur Chilenosuchus forttae Casamiquela (Diapsida: Archosauria): presence of continental Triassic in northern Chile Julia B. Desojo Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina [email protected] RESUMEN Se redescribe Chilenosochus forttae Casamiquela sobre la base del material original y tres nuevos moldes del sintipo. El material consiste en impresiones fragmentarias de escudos dérmicos y huesos poscraneales provenientes de la Región de Antofagasta. Este estudio confirma la identificación de estos restos como de aetosaurios, indicando de esta manera la edad triásica del nivel portador, el que fue atribuido a los Estratos El Bordo. Esta edad se contradice con la antigüedad carbónico-pérmica inferida para dicha sucesión sobre la base de plantas e invertebrados fósiles. Palabras claves: Arcosauria, Aetosauria, Chilenosuchus forttae Casamiquela, Estratos El Bordo, Triásico, Región de Antofagasta, Chile. ABSTRACT Chilenosuchus forttae Casamiquela, is redescribed on the basis of part of the original material and three new casts of the syntype. The material consists of fragmentary impressions of dermal scutes and postcranial bones from the Antofagasta Region. This study confirms the aetosaurian nature of these remains, thus indicating a Triassic age for the bearing level which was attributed to the Estratos El Bordo. This age conflicts with the Carboniferous-Permian age inferred for this succession based on fossil plants and invertebrates. Key words: Archosauria, Aetosauria, Chilenosuchus forttae Casamiquela, Estratos El Bordo, Triassic, Antofagasta Region, Chile. Revista Gelógica de Chile, Vol. 30, No. 1, p. 53-63, 1 Fig., 2 Pls., July 2003.
    [Show full text]
  • Osteology of the Late Triassic Aetosaur Scutarx Deltatylus (Archosauria: Pseudosuchia)
    Osteology of the Late Triassic aetosaur Scutarx deltatylus (Archosauria: Pseudosuchia) William G. Parker1,2 1 Division of Resource Management, Petrified Forest National Park, Petrified Forest, Arizona, United States 2 Jackson School Museum of Earth History, University of Texas at Austin, Austin, Texas, United States ABSTRACT Aetosaurians are some of the most common fossils collected from the Upper Triassic Chinle Formation of Arizona, especially at the Petrified Forest National Park (PEFO). Aetosaurians collected from lower levels of the park include Desmatosuchus spurensis, Paratypothorax, Adamanasuchus eisenhardtae, Calyptosuchus wellesi, and Scutarx deltatylus. Four partial skeletons collected from the park between 2002 and 2009 represent the holotype and referred specimens of Scutarx deltatylus. These specimens include much of the carapace, as well as the vertebral column, and shoulder and pelvic girdles, and a new naming convention proposed for osteoderms descriptions better differentiates portions of the carapace and ventral armor. A partial skull from the holotype specimen represents the first aetosaur skull recovered and described from Arizona since the 1930s. The key morphological feature distinguishing Scutarx deltatylus is the presence of a prominent, triangular boss located in the posteromedial corner of the dorsal surface of the dorsal paramedian osteoderms. Scutarx deltatylus can be distinguished from closely related forms Calyptosuchus wellesi and Adamanasuchus eisenhardtae not only morphologically, but also stratigraphically.
    [Show full text]