Carbon Sequestration in Short-Rotation Forestry Plantations and in Belgian Forest Ecosystems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Agriculture, Forestry, and Other Human Activities
4 Agriculture, Forestry, and Other Human Activities CO-CHAIRS D. Kupfer (Germany, Fed. Rep.) R. Karimanzira (Zimbabwe) CONTENTS AGRICULTURE, FORESTRY, AND OTHER HUMAN ACTIVITIES EXECUTIVE SUMMARY 77 4.1 INTRODUCTION 85 4.2 FOREST RESPONSE STRATEGIES 87 4.2.1 Special Issues on Boreal Forests 90 4.2.1.1 Introduction 90 4.2.1.2 Carbon Sinks of the Boreal Region 90 4.2.1.3 Consequences of Climate Change on Emissions 90 4.2.1.4 Possibilities to Refix Carbon Dioxide: A Case Study 91 4.2.1.5 Measures and Policy Options 91 4.2.1.5.1 Forest Protection 92 4.2.1.5.2 Forest Management 92 4.2.1.5.3 End Uses and Biomass Conversion 92 4.2.2 Special Issues on Temperate Forests 92 4.2.2.1 Greenhouse Gas Emissions from Temperate Forests 92 4.2.2.2 Global Warming: Impacts and Effects on Temperate Forests 93 4.2.2.3 Costs of Forestry Countermeasures 93 4.2.2.4 Constraints on Forestry Measures 94 4.2.3 Special Issues on Tropical Forests 94 4.2.3.1 Introduction to Tropical Deforestation and Climatic Concerns 94 4.2.3.2 Forest Carbon Pools and Forest Cover Statistics 94 4.2.3.3 Estimates of Current Rates of Forest Loss 94 4.2.3.4 Patterns and Causes of Deforestation 95 4.2.3.5 Estimates of Current Emissions from Forest Land Clearing 97 4.2.3.6 Estimates of Future Forest Loss and Emissions 98 4.2.3.7 Strategies to Reduce Emissions: Types of Response Options 99 4.2.3.8 Policy Options 103 75 76 IPCC RESPONSE STRATEGIES WORKING GROUP REPORTS 4.3 AGRICULTURE RESPONSE STRATEGIES 105 4.3.1 Summary of Agricultural Emissions of Greenhouse Gases 105 4.3.2 Measures and -
Short Rotation Forestry and Agroforestry in CDM Countries and Europe
Kenya Brazil China Europe India Short Rotation Forestry and Agroforestry in CDM Countries and Europe The BENWOOD project is funded by the European Union under the 7th Framework Programme for Research and Innovation 1 KENYA BRAZIL CHINA EUROPE INDIA Short Rotation Forestry and Agroforestry in CDM Countries and Europe Kenya Brazil China Europe India Short Rotation Forestry and Agroforestry in CDM Countries and Europe The BENWOOD The DVD is also available project is for a small fee which covers funded by shipping cost. See details the European Union on how to obtain it from the under the 7th BENWOOD website Framework Programme www.benwood.eu. The BENWOOD consortium for Research and Innovation Compiled by Falko Kaufmann, Genevieve Lamond, Marco Lange, Jochen Schaub, Christian Siebert and Torsten Sprenger KENYA BRAZIL CHINA EUROPE INDIA Foreword As the Head of Unit for ‘Agriculture, Forestry, countries where increased investment will occur. Fisheries and Aquaculture’ within the European In addition, it should lead not only to increased Commission DG Research and Innovation, investment in forestry, but also to increasing mar- I am very pleased to introduce this summarized kets for equipment linked to biomass processing findings presenting the results of the BENWOOD as well as generating markets for forest products project. with a focus on biofuel producers. Project Coordinator BENWOOD The BENWOOD project has been funded by I hope that the outputs from the project, concen- Thomas Lewis the European Commission under the Seventh trated in this summarized findings, will help to energieautark consulting gmbh Research Programme (FP7) Theme addressing support a new era for the production of renew- Hauptstrasse 27/3 ‘Food, Agriculture and Fisheries, and Biotechno- able, carbon-neutral alternatives to non-renewable 1140 Wien – Austria logy’ in order to make relevant information on fossil fuels. -
Mainstreaming Native Species-Based Forest Restoration
93 ISBN 978-9962-614-22-7 Mainstreaming Native Species-Based Forest Restoration July 15-16, 2010 Philippines Sponsored by the Environmental Leadership & Training Initiative (ELTI), the Rain Forest Restoration Initiative (RFRI), and the Institute of Biology, University of the Philippines (UP) Diliman Conference Proceedings 91 Mainstreaming Native Species-Based Forest Restoration Conference Proceedings July 15-16, 2010 Philippines Sponsored by The Environmental Leadership & Training Initiative (ELTI) Rain Forest Restoration Initiative (RFRI) University of the Philippines (UP) 2 This is a publication of the Environmental Leadership & Training Initiative (ELTI), a joint program of the Yale School of Forestry & Environmental Studies (F&ES) and the Smithsonian Tropical Research Institute (STRI). www.elti.org Phone: (1) 203-432-8561 [US] E-mail: [email protected] or [email protected] Text and Editing: J. David Neidel, Hazel Consunji, Jonathan Labozzetta, Alicia Calle, Javier Mateo-Vega Layout: Alicia Calle Photographs: ELTI-Asia Photo Collection Suggested citation: Neidel, J.D., Consunji, H., Labozetta, J., Calle, A. and J. Mateo- Vega, eds. 2012. Mainstreaming Native Species-Based Forest Restoration. ELTI Conference Proceedings. New Haven, CT: Yale University; Panama City: Smithsonian Tropical Research Institute. ISBN 978-9962-614-22-7 3 Acknowledgements ELTI recognizes the generosity of the Arcadia Fund, whose fund- ing supports ELTI and helped make this event possible. Additional funding was provided by the Philippine Tropical Forest Conserva- tion Foundation. 4 List of Acronyms ANR Assisted Natural Regeneration Atty. Attorney CBFM Community-Based Forest Management CDM Clean Development Mechanism CI Conservation International CO2 Carbon Dioxide DENR Department of Environment & Natural Resources FAO United Nations Food & Agriculture Organization FMB Forest Management Bureau For. -
Principles and Practice of Forest Landscape Restoration Case Studies from the Drylands of Latin America Edited by A.C
Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Edited by A.C. Newton and N. Tejedor About IUCN IUCN, International Union for Conservation of Nature, helps the world find pragmatic solutions to our most pressing environment and development challenges. IUCN works on biodiversity, climate change, energy, human livelihoods and greening the world economy by supporting scientific research, managing field projects all over the world, and bringing governments, NGOs, the UN and companies together to develop policy, laws and best practice. IUCN is the world’s oldest and largest global environmental organization, with more than 1,000 government and NGO members and almost 11,000 volunteer experts in some 160 countries. IUCN’s work is supported by over 1,000 staff in 60 offices and hundreds of partners in public, NGO and private sectors around the world. www.iucn.org Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Principles and Practice of Forest Landscape Restoration Case studies from the drylands of Latin America Edited by A.C. Newton and N. Tejedor This book is dedicated to the memory of Margarito Sánchez Carrada, a student who worked on the research project described in these pages. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or the European Commission concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Energy Forestry Exemplar Trials Establishment
Energy Forestry Exemplar Trials Establishment Guidelines Energy Forestry Exemplar Trials Energy Forestry Exemplar Trials Contents Page INTRODUCTION… ....................................................................................2 2. AIMS..................................................................................................2 3. THE TRIAL SITES .................................................................................2 4. GENERAL SITE MANAGEMENT................................................................3 5. SRC and SRF.......................................................................................4 6. RESEARCH, DEVELOPMENT AND MONITORING.........................................4 6.1. Environmental Research..............................................................5 6.2. Silviculture - Short Rotation Forestry (SRF) ...................................7 6.3. Silviculture - Short Rotation Coppice (SRC).................................. 10 6.4. Carbon balance........................................................................ 11 6.5. Regeneration or reinstatement................................................... 11 7. CONCLUSION .................................................................................... 11 BIBLIOGRAPHY ..................................................................................... 12 APPENDICES: Appendix 1: Experiment plans and protocols ............................... 15 - 52 a. Soil sampling and analysis ........................................................... 15 -
Short Rotation Forestry (SRF) Versus Rapeseed Plantations: Insights from Soil Respiration and Combustion Heat Per Area
Available online at www.sciencedirect.com ScienceDirect Energy Procedia 76 ( 2015 ) 398 – 405 European Geosciences Union General Assembly 2015, EGU Division Energy, Resources & Environment, ERE Short Rotation Forestry (SRF) versus rapeseed plantations: Insights from soil respiration and combustion heat per area כ,Kamal Zurbaa, Jörg Matschullata aTU Bergakademie Freiberg, Interdisciplinary Environmental Research Centre, Freiberg 09599, Germany Abstract Bioenergy crops may be an important contributor to mitigating global warming risks. A comparison between willow and poplar Short Rotation Forestry and rapeseed cultivation was designed to evaluate the ratio between soil respiration and the combustion heat obtained from the extracted products per hectare. A manual dynamic closed chamber system was applied to measure CO2 emissions at the SRF and rapeseed sites during the growing season. Our results show that poplar and willow SRF has a very low ratio compared to rapeseed. We thus recommend poplar and willow SRF as renewable sources for bioenergy over the currently prevalent rapeseed production. © 20152015 The The Authors. Authors. Published Published by Elsevierby Elsevier Ltd. Ltd.This is an open access article under the CC BY-NC-ND license (Peer-reviewhttp://creativecommons.org/licenses/by-nc-nd/4.0/ under responsibility of the GFZ German). Research Centre for Geosciences. Peer-review under responsibility of the GFZ German Research Centre for Geosciences Keywords: Soil respiration; manual dynamic closed chamber; SEMACH-FG; bioenergy crops; climate change mitigation * Corresponding author. Tel.: +49 3731 39-3399; fax: +49 3731 39-4060. E-mail address: [email protected] Nomenclature ha 104 m2 t 103 kg d.w. dry weight yr year MJ 106 joules PAR Photosynthetically active radiation eq equivalent 1876-6102 © 2015 The Authors. -
Short Rotation Forestry, Short Rotation Coppice and Perennial Grasses in the European Union: Agro-Environmental Aspects, Present Use and Perspectives"
"Short Rotation Forestry, Short Rotation Coppice and perennial grasses in the European Union: Agro-environmental aspects, present use and perspectives" 17 and 18 October 2007, Harpenden, United Kingdom Editors J. F. Dallemand , J.E. Petersen, A. Karp EUR 23569 EN - 2008 The Institute for Energy provides scientific and technical support for the conception, development, implementation and monitoring of community policies related to energy. Special emphasis is given to the security of energy supply and to sustainable and safe energy production. European Commission Joint Research Centre Institute for Energy Contact information Address: Joint Research Centre Institute for Energy Renewable Energy Unit TP 450 I-21020 Ispra (Va) Italy E-mail: [email protected] Tel.: 39 0332 789937 Fax: 39 0332 789992 http://ie.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 47547 EUR 23569 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Proceedings of the Expert Consultation: "Short Rotation Forestry, Short Rotation Coppice and perennial grasses in the European Union: Agro-environmental aspects, present use and perspectives" 17 and 18 October 2007, Harpenden, United Kingdom Editors J. -
Implementing Forest Landscape Restoration – a Practitioner’S Guide
Implementing Forest Landscape Restoration – A Practitioner’s Guide A Practitioner’s Restoration – Landscape Implementing Forest IMPLEMENTING FOREST LANDSCAPE RESTORATION A Practitioner’s Guide Editors: John Stanturf, Stephanie Mansourian, Michael Kleine IMPLEMENTING FOREST LANDSCAPE RESTORATION A Practitioner’s Guide Editors: John Stanturf, Stephanie Mansourian, Michael Kleine Recommended citation: Stanturf, John; Mansourian, Stephanie; Kleine, Michael; eds. 2017. Implementing Forest Landscape Restoration, A Practitioner‘s Guide. International Union of Forest Research Organizations, Special Programme for Development of Capacities (IUFRO-SPDC). Vienna, Austria. 128 p. ISBN - 978-3-902762-78-8 Published by: International Union of Forest Research Organizations (IUFRO) Available from: IUFRO Headquarters Special Programme for Development of Capacities Marxergasse 2 1030 Vienna Austria Tel: +43-1-877-0151-0 E-mail: [email protected] www.iufro.org Layout: Schrägstrich Kommunikationsdesign Cover photographs: (top) Diverse tropical landscape in the Caribbean, Martinique. Photo © Andre Purret; (bottom left) Stakeholder consultations in Offinso District, Ghana © Ernest Foli; (bottom right) Communicating forest landscape restoration to all sectors of society is essential for implementation success, Kuala Selangor, Malaysia. Photo © Alexander Buck Printed in Austria by Eigner Druck, Tullner Straße 311, 3040 Neulengbach TABLE OF CONTENTS List of Acronyms 4 Preface Using this guide | John Stanturf 6 Introduction and Overview John Stanturf, Michael Kleine 8 Module I. Getting Started | John Stanturf, Michael Kleine, Janice Burns 14 Module II. Governance and Forest Landscape Restoration | Stephanie Mansourian 26 Module III. Designing a Forest Landscape Restoration Project John Stanturf, Michael Kleine, Stephanie Mansourian 37 Module IV. Technical Aspects of Forest Landscape Restoration Project Implementation John Stanturf, Promode Kant, Palle Madsen 50 Module V. -
Deforestation, Forestation, and Water Supply Mingfang Zhang and Xiaohua Wei
PERSPECTIVES Large-scale deforestation and plantation threaten the water supply for local and regional communities in Indonesia by altering streamflow conditions. and climate. Fires often cause hydrophobic soils, with reduced soil infiltration and ac- celeration of surface runoff and soil erosion. In a recent national assessment of the con- tiguous United States, forest fires had the greatest increase in annual streamflow in semiarid regions, followed by warm temper- ate and humid continental climate regions, with insignificant responses in the subtropi- cal Southeast (6). The hydrological impact of insect infestation is likely less pronounced than those of other disturbances. Large-scale beetle outbreaks in the western United States and British Columbia, Canada, over recent de- cades were predicted to increase streamflow, with reduced evapotranspiration because of Downloaded from the death of infested trees (5). However, fur- ther evidence showed negligible impacts of beetle infestation on annual streamflow, ow- ing to increased evapotranspiration of surviv- ing trees and understory vegetation (7). Forestation can either reduce annual streamflow or increase it (4, 8). Zhang et al. http://science.sciencemag.org/ HYDROLOGY (4) found that 60% of the forestation water- sheds had annual streamflow reduced by 0.7 to 65.1% with 0.7 to 100% forest cover gain, Deforestation, forestation, whereas 30% of them (mostly small water- sheds) had annual streamflow increased by 7 to 167.7% with 12 to 100% forest cover gain. and water supply Variations in annual streamflow response to forestation are even greater than those A systematic approach helps to illuminate caused by deforestation, possibly owing to the complex forest-water nexus site conditions prior to forestation and tree on March 13, 2021 species selected. -
Perception Towards Forestation As a Strategy to Mitigate Climate Change in Somalia
This SocArXiv preprint has been submitted for peer-review Perception towards forestation as a strategy to mitigate climate change in Somalia Osman M. Jama 1,2, Abdishakur W. Diriye 1,2, Abdulhakim M. Abdi 3 1 School of Public Affairs, University of Science and Technology of China, Hefei, People’s Republic of China- 2 Department of Public Administration, Faculty of Economics and Management Science, Mogadishu University, Mogadishu, Somalia. 3 Centre for Environmental and Climate Research, Lund University, Lund, Sweden. Abstract Climate change mitigation strategies need both source reductions in greenhouse gas emissions and a significant enhancement of the land sink of carbon dioxide (CO2) through photosynthesis. In recent years, there has been growing attention to forests as an effective way to mitigate climate change as they capture and store large quantities of CO2 as phytomass and in the soil. Numerous forestation programs have been rolled out internationally and governments, mostly in the developing world, have been fostering tree planting initiatives. However, there is a paucity of studies that assess local perceptions to these initiatives and there are virtually no studies that do so in countries recovering from long-term conflict such as Somalia. Here, we analyze the factors that motivate or hinder the perception of young people in Somalia about forestation as a means to mitigate climate change. This demographic was targeted because 75% of the population of Somalia is between the ages of 18 and 35. Our results show that biocentric value orientation, which emphasizes environmental preservation and ecosystem maintenance, has significant positive influence on attitudes towards forestation whereas anthropocentric value orientation, which treats forests as an instrumental value to humans, did not show a significant influence. -
Evaluation of the Mid Term Review of the Irish Forestry Programme 2014-2020
Evaluation of the Mid Term Review of the Irish Forestry Programme 2014-2020. Report 1 - Forestry in Ireland. Gerry Lawson MICFor CBiol Forest Transitions, Calle Morera 5, Castillo de Bayuela, Toledo 45641, Spain. Environmental Consultancy Services Consultancy Report for Luke Ming Flanagan MEP | 20 September 2018 1. Introduction 2 2. MTR - Call for Submissions March 2017 3 3. MTR - Comparison with EU Common Evaluation Principles. 7 4. MTE - EU State Aid to Forestry Rules 7 4.1 EU Guidelines for state aid in the agricultural and forestry sectors and in rural areas 2014-2020 7 4.2 European Agricultural Fund for Rural Development (EAFRD), as described in Regulations 1305/2013 and 1306/2013 of the European Parliament and of the Council 9 5. MTR - submissions and responses (TOR 4 & 6). 10 5.1 Afforestation and Creation of Woodland (76.2% of total budget) 14 5.1.1 How to increase the species diversity and the proportion of broadleaves? 14 5.1.2 How to achieve the targets for new planting? 16 5.1.3 How to increase the average size of new planting blocks? 19 5.1.4 How to make the Forestry for Fibre scheme more attractive? 19 5.1.5 How to make the agroforestry scheme more attractive?y systems 20 5.2 NeighbourWood Scheme (0.4% of total budget) 22 5.3 Forest Roads (10.5% of total budget) 24 5.4 Reconstitution Scheme (1.8% of total budget) 26 5.5 Woodland Improvement Scheme (2.6% of total budget) 27 5.6 Native Woodland Conservation Scheme (2.8% of total budget) 29 5.7 Knowledge Transfer Measure (3.3% of total budget) 32 5.8 Producer Groups (0.1% of total budget) 33 5.9 Innovative Forest Technology (0.3% of total budget) 34 5.10 Forest Genetic Reproductive Material (0.2% of total budget) 35 5.11 Forest Management Plans (0.7% of total budget) 37 5.12 General Issues 38 5.12.1 How to enhance environment, biodiversity, climate? 38 5.12.2 How to change land use policies? 41 5.12.3 How to enhance the species mix in planting schemes? 43 5.12.4 How to increase collaboration between forest owners? 45 6. -
Carbon Storage and Sequestration Potential of Selected Tree Species in India
Mitig Adapt Strateg Glob Change (2010) 15:489–510 DOI 10.1007/s11027-010-9230-5 ORIGINAL ARTICLE Carbon storage and sequestration potential of selected tree species in India Meenakshi Kaul & G. M. J. Mohren & V. K. Dadhwal Received: 19 November 2009 /Accepted: 19 April 2010 / Published online: 30 April 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract A dynamic growth model (CO2FIX) was used for estimating the carbon sequestration potential of sal (Shorea Robusta Gaertn. f.), Eucalyptus (Eucalyptus Tereticornis Sm.), poplar (Populus Deltoides Marsh), and teak (Tectona Grandis Linn. f.) forests in India. The results indicate that long-term total carbon storage ranges from 101 to 156 Mg Cha−1, with the largest carbon stock in the living biomass of long rotation sal forests (82 Mg Cha−1). The net annual carbon sequestration rates were achieved for fast growing short rotation poplar (8 Mg Cha−1yr−1) and Eucalyptus (6 Mg Cha−1yr−1) plantations followed by moderate growing teak forests (2 Mg Cha−1yr−1) and slow growing long rotation sal forests (1 Mg Cha−1yr−1). Due to fast growth rate and adaptability to a range of environments, short rotation plantations, in addition to carbon storage rapidly produce biomass for energy and contribute to reduced greenhouse gas emissions. We also used the model to evaluate the effect of changing rotation length and thinning regime on carbon stocks of forest ecosystem (trees+soil) and wood products, respectively for sal and teak forests. The carbon stock in soil and products was less sensitive than carbon stock of trees to the change in rotation length.