Thyasira Flexuosa

Total Page:16

File Type:pdf, Size:1020Kb

Thyasira Flexuosa Thyasira flexuosa (Montagu, 1803) AphiaID: 141662 . Animalia (Reino) > Mollusca (Filo) > Bivalvia (Classe) > Autobranchia (Subclasse) > Heteroconchia (Infraclasse) > Imparidentia (Superordem) > Lucinida (Ordem) > Thyasiroidea (Superfamilia) > Thyasiridae (Familia) Natural History Museum Rotterdam - WoRMS Sinónimos Axinus angulatus J. Sowerby, 1821 Axinus flexuosus (Montagu, 1803) Axinus unicarinatus Nyst, 1835 Lucina gouldii Philippi, 1845 Lucina sinuata Lamarck, 1818 Tellina flexuosa Montagu, 1803 1 Thyasira flexuosa var. rotunda Jeffreys, 1881 Referências additional source Turgeon, D.; Quinn, J.F.; Bogan, A.E.; Coan, E.V.; Hochberg, F.G.; Lyons, W.G.; Mikkelsen, P.M.; Neves, R.J.; Roper, C.F.E.; Rosenberg, G.; Roth, B.; Scheltema, A.; Thompson, F.G.; Vecchione, M.; Williams, J.D. (1998). Common and scientific names of aquatic invertebrates from the United States and Canada: mollusks. 2nd ed. American Fisheries Society Special Publication, 26. American Fisheries Society: Bethesda, MD (USA). ISBN 1-888569-01-8. IX, 526 + cd-rom pp. [details] additional source Oliver, P.G.; Killeen, I.J.; Ockelmann, K.W. (2002). The Thyasiridae (Mollusca: Bivalvia) of the British Continental Shelf and North Sea oil fields: an identification manual. Studies in Marine Biodiversity and Systematics from the National Museum of Wales. BIOMÔR Reports, 3. National Museums & Galleries of Wales: Cardiff, UK. ISBN 0-7200-0531-0. vi, 73 pp., available online at http://www.vliz.be/imisdocs/publications/156186.pdf [details] basis of record Gofas, S.; Le Renard, J.; Bouchet, P. (2001). Mollusca. in: Costello, M.J. et al. (eds), European Register of Marine Species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels. 50: 180-213. [details] additional source Ardovini, R.; Cossignani, T. (2004). West African seashells (including Azores, Madeira and Canary Is.) = Conchiglie dell’Africa Occidentale (incluse Azzorre, Madeira e Canarie). English- Italian edition. L’Informatore Piceno: Ancona, Italy. ISBN 88-86070-11-X. 319 pp. [details] additional source Abbott R. T. (1974). American seashells. The marine Mollusca of the Atlantic and Pacific coast of North America. ed. 2. Van Nostrand, New York. 663 pp., 24 pls. [October 1974]. [details] additional source Coan, E. V.; Valentich-Scott, P. (2012). Bivalve seashells of tropical West America. Marine bivalve mollusks from Baja California to northern Peru. 2 vols, 1258 pp. [details] additional source Valentich Scott P. (1998). Class Bivalvia. In: Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and Western Santa Barbara Channel. The Mollusca Part 1 – The Aplacophora, Polyplacophora, Scaphopoda, Bivalvia and Cephalopoda. Santa Barbara Museum of Natural History. volume 8: 97-173. [details] additional source Kamenev G.M. (2013) Species composition and distribution of bivalves in bathyal and abyssal depths of the Sea of Japan. Deep-Sea Research II 86-87: 124-139. [Published online 2 August 2012] , available online at https://doi.org/10.1016/j.dsr2.2012.08.004 [details] context source (Deepsea) Intergovernmental Oceanographic Commission (IOC) of UNESCO. The Ocean Biogeographic Information System (OBIS), available online at http://www.iobis.org/ [details] Última atualização: 26 Jan. 2018 2.
Recommended publications
  • Thyasirid Bivalves from Cretaceous and Paleogene Cold Seeps
    Thyasirid bivalves from Cretaceous and Paleogene cold seeps KRZYSZTOF HRYNIEWICZ, KAZUTAKA AMANO, ROBERT G. JENKINS, and STEFFEN KIEL Hryniewicz, K., Amano, K., Jenkins, R.G., and Kiel, S. 2017. Thyasirid bivalves from Cretaceous and Paleogene cold seeps. Acta Palaeontologica Polonica 62 (4): 705–728. We present a systematic study of thyasirid bivalves from Cretaceous to Oligocene seep carbonates worldwide. Eleven species of thyasirid bivalves are identified belonging to three genera: Conchocele, Maorithyas, and Thyasira. Two spe- cies are new: Maorithyas humptulipsensis sp. nov. from middle Eocene seep carbonates in the Humptulips Formation, Washington State, USA, and Conchocele kiritachiensis sp. nov. from the late Eocene seep deposit at Kiritachi, Hokkaido, Japan. Two new combinations are provided: Conchocele townsendi (White, 1890) from Maastrichtian strata of the James Ross Basin, Antarctica, and Maorithyas folgeri (Wagner and Schilling, 1923) from Oligocene rocks from California, USA. Three species are left in open nomenclature. We show that thyasirids have Mesozoic origins and appear at seeps be- fore appearing in “normal” marine environments. These data are interpreted as a record of seep origination of thyasirids, and their subsequent dispersal to non-seep environments. We discuss the age of origination of thyasirids in the context of the origin of the modern deep sea fauna and conclude that thyasirids could have deep sea origins. This hypothesis is supported by the observed lack of influence of the Cretaceous and Paleogene Oceanic Anoxic Events on the main evolutionary lineages of the thyasirids, as seen in several other members of the deep sea fauna. Key words: Bivalvia, Thyasiridae, cold seeps, deep sea, ecology, evolution, Cretaceous, Paleogene.
    [Show full text]
  • New Records of Non-Indigenous Molluscs from the Eastern Mediterranean Sea
    BioInvasions Records (2018) Volume 7, Issue 3: 245–257 Open Access DOI: https://doi.org/10.3391/bir.2018.7.3.05 © 2018 The Author(s). Journal compilation © 2018 REABIC Research Article New records of non-indigenous molluscs from the eastern Mediterranean Sea Jan Steger1,*, Martina Stockinger1, Angelina Ivkić1,2, Bella S. Galil3 and Paolo G. Albano1 1Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria 2Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands 3The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv 69978, Israel Author e-mails: [email protected] (JS), [email protected] (MS), [email protected] (AI), [email protected] (BSG), [email protected] (PGA) *Corresponding author Received: 15 June 2018 / Accepted: 11 July 2018 / Published online: 2 August 2018 Handling editor: Fred Wells Abstract We report new findings of non-indigenous Indo-Pacific molluscs from shallow water habitats off Israel, Greece and Egypt, eastern Mediterranean Sea. The bivalves Pillucina vietnamica Zorina, 1978 and Alveinus miliaceus (Issel, 1869) were collected from sandy bottoms off Israel, whereas Gregariella cf. ehrenbergi (Issel, 1869) was recovered from a buoy originating from Port Said, Egypt, and stranded on the Israeli coast. The three species are first records for the Mediterranean Sea. Additionally, we report range extensions for several gastropods: Varicopeza pauxilla (A. Adams, 1855) is recorded from Israel, Phidiana militaris (Alder and Hancock, 1864) from southern Israel (Ashqelon), and Viriola cf. bayani Jousseaume, 1884 from Israel and Crete. Shells and valves of an unidentified lucinid bivalve morphologically distinct from any known Mediterranean species were found along the Israeli Mediterranean shore.
    [Show full text]
  • Metagenomic Analysis Suggests Broad Metabolic Potential in Extracellular Symbionts of the Bivalve Thyasira Cf
    McCuaig et al. Animal Microbiome (2020) 2:7 Animal Microbiome https://doi.org/10.1186/s42523-020-00025-9 RESEARCH ARTICLE Open Access Metagenomic analysis suggests broad metabolic potential in extracellular symbionts of the bivalve Thyasira cf. gouldi Bonita McCuaig1, Lourdes Peña-Castillo1,2 and Suzanne C. Dufour1* Abstract Background: Next-generation sequencing has opened new avenues for studying metabolic capabilities of bacteria that cannot be cultured. Here, we provide a metagenomic description of chemoautotrophic gammaproteobacterial symbionts associated with Thyasira cf. gouldi, a sediment-dwelling bivalve from the family Thyasiridae. Thyasirid symbionts differ from those of other bivalves by being extracellular, and recent work suggests that they are capable of living freely in the environment. Results: Thyasira cf. gouldi symbionts appear to form mixed, non-clonal populations in the host, show no signs of genomic reduction and contain many genes that would only be useful outside the host, including flagellar and chemotaxis genes. The thyasirid symbionts may be capable of sulfur oxidation via both the sulfur oxidation and reverse dissimilatory sulfate reduction pathways, as observed in other bivalve symbionts. In addition, genes for hydrogen oxidation and dissimilatory nitrate reduction were found, suggesting varied metabolic capabilities under a range of redox conditions. The genes of the tricarboxylic acid cycle are also present, along with membrane bound sugar importer channels, suggesting that the bacteria may be mixotrophic. Conclusions: In this study, we have generated the first thyasirid symbiont genomic resources. In Thyasira cf. gouldi, symbiont populations appear non-clonal and encode genes for a plethora of metabolic capabilities; future work should examine whether symbiont heterogeneity and metabolic breadth, which have been shown in some intracellular chemosymbionts, are signatures of extracellular chemosymbionts in bivalves.
    [Show full text]
  • Thomsen E., Rasmussen TL, Sztybor K., Hanken N.-M
    Supplementary material for: Thomsen E., Rasmussen T.L., Sztybor K., Hanken N.-M., Tendal O.S. & Uchman A. 2019. Cold-seep fossil macrofaunal assemblages from Vestnesa Ridge, eastern Fram Strait, during the past 45 000 years. Polar Research 38. Correspondence: Elsebeth Thomsen, The Arctic University Museum of Norway, UiT—The Arctic University of Norway, NO-9037 Tromsø, Norway. E-mail: [email protected] Taxonomy Porifera Cladorhizidae indet. Stylocordyla sp. Axinellidae indet. (spicules) Demospongiae indet. (spicules) Annelida Polychaeta (tubes) Spiochaetopterus sp. perhaps Spiochaetopterus bergensis Gitay, 1969 Siboglinidae indet. Polychaeta indet. Arthropoda Cirripedia Verucca stroemia (Müller, 1776) Mollusca Bivalvia Yoldiella solidula Warén, 1989 Yoldiella lenticula? Yoldiella sp. Rhacothyas kolgae Åstrøm & Oliver, 2017 Thyasira sp. Archivesica arctica Hansen et al., 2017 Isorropodon nyeggaensis Krylova, 2011 Cuspidaria glacialis (G.O. Sars, 1878) Bivalvia indet. Gastropoda Skenea sp. Pseudosetia sp. Alvania scrobiculata (Möller, 1842) Alvania sp. 1 Frigidoalvania sp. Euspira sp. Gastropoda indet. Cephalopoda Cephalopoda indet. Echinodermata Echinoidea Echinoidea indet. Ophiuroidea Ophiuroidea indet. Vertebrata Pisces Pisces indet. Trace fossils Oichnus cf. O. ovalis Bromley, 1993 Winding burrows (? Helminthoidicnites isp.) Incertae sedis Tubes of unknown affinities and/or burrow fill/lined tubes, both made of authigenic carbonate. The tubes could be inhalant tubes as seen in a figure of Thyasira equalis in Oliver & Killeen (2002). Taxonomic and other notes on the macrofossils and trace fossils Note 1 The occurrence of a large vesicomyid bivalve in two cores, also from the Vestnesa area, have been published by Ambrose et al. (2015) under the tentative name Phreagena sp. Hansen et al. (2017) elucidate the taxonomy of the specimens from the cores in the present study from Vestnesa: it is a new species Archivesica arctica Hansen et al., 2017.
    [Show full text]
  • Diversity of Benthic Marine Mollusks of the Strait of Magellan, Chile
    ZooKeys 963: 1–36 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.963.52234 DATA PAPER https://zookeys.pensoft.net Launched to accelerate biodiversity research Diversity of benthic marine mollusks of the Strait of Magellan, Chile (Polyplacophora, Gastropoda, Bivalvia): a historical review of natural history Cristian Aldea1,2, Leslie Novoa2, Samuel Alcaino2, Sebastián Rosenfeld3,4,5 1 Centro de Investigación GAIA Antártica, Universidad de Magallanes, Av. Bulnes 01855, Punta Arenas, Chile 2 Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Chile 3 Facultad de Ciencias, Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile 4 Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Chile 5 Instituto de Ecología y Biodiversidad, Santiago, Chile Corresponding author: Sebastián Rosenfeld ([email protected]) Academic editor: E. Gittenberger | Received 19 March 2020 | Accepted 6 June 2020 | Published 24 August 2020 http://zoobank.org/9E11DB49-D236-4C97-93E5-279B1BD1557C Citation: Aldea C, Novoa L, Alcaino S, Rosenfeld S (2020) Diversity of benthic marine mollusks of the Strait of Magellan, Chile (Polyplacophora, Gastropoda, Bivalvia): a historical review of natural history. ZooKeys 963: 1–36. https://doi.org/10.3897/zookeys.963.52234 Abstract An increase in richness of benthic marine mollusks towards high latitudes has been described on the Pacific coast of Chile in recent decades. This considerable increase in diversity occurs specifically at the beginning of the Magellanic Biogeographic Province. Within this province lies the Strait of Magellan, considered the most important channel because it connects the South Pacific and Atlantic Oceans. These characteristics make it an interesting area for marine research; thus, the Strait of Magellan has histori- cally been the area with the greatest research effort within the province.
    [Show full text]
  • Inventory of Mollusks from the Estuary of the Paraíba River in Northeastern Brazil
    Biota Neotropica 17(1): e20160239, 2017 www.scielo.br/bn ISSN 1676-0611 (online edition) inventory Inventory of mollusks from the estuary of the Paraíba River in northeastern Brazil Silvio Felipe Barbosa Lima1*, Rudá Amorim Lucena2, Galdênia Menezes Santos3, José Weverton Souza3, Martin Lindsey Christoffersen2, Carmen Regina Guimarães4 & Geraldo Semer Oliveira4 1Universidade Federal de Campina Grande, Unidade Acadêmica de Ciências Exatas e da Natureza, Centro de Formação de Professores, Cajazeiras, PB, Brazil 2Universidade Federal da Paraíba, Departamento de Sistemática e Ecologia, João Pessoa, PB, Brazil 3Universidade Federal de Sergipe, Departamento de Ecologia, São Cristóvão, SE, Brazil 4Universidade Federal de Sergipe, Departamento de Biologia, São Cristóvão, SE, Brazil *Corresponding author: Silvio Felipe Lima, e-mail: [email protected] LIMA, S.F.B., LUCENA, R.A., SANTOS, G.M., SOUZA, J.W., CHRISTOFFERSEN, M.L., GUIMARÃES, C.R., OLIVEIRA, G.S. Inventory of mollusks from the estuary of the Paraíba River in northeastern Brazil. Biota Neotropica. 17(1): e20160239. http://dx.doi.org/10.1590/1676-0611-BN-2016-0239 Abstract: Coastal ecosystems of northeastern Brazil have important biodiversity with regard to marine mollusks, which are insufficiently studied. Here we provide an inventory of mollusks from two sites in the estuary of the Paraíba River. Mollusks were collected in 2014 and 2016 on the coast and sandbanks located on the properties of Treze de Maio and Costinha de Santo Antônio. The malacofaunal survey identified 12 families, 20 genera and 21 species of bivalves, 17 families, 19 genera and 20 species of gastropods and one species of cephalopod. Bivalves of the family Veneridae Rafinesque, 1815 were the most representative, with a total of five species.
    [Show full text]
  • Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast
    SCCWRP #1171 OCS Study BOEM 2020-021 Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast US Department of the Interior Bureau of Ocean Energy Management Pacific OCS Region OCS Study BOEM 2020-021 Cross-Shelf Habitat Suitability Modeling: Characterizing Potential Distributions of Deep-Sea Corals, Sponges, and Macrofauna Offshore of the US West Coast October 2020 Authors: Matthew Poti1,2, Sarah K. Henkel3, Joseph J. Bizzarro4, Thomas F. Hourigan5, M. Elizabeth Clarke6, Curt E. Whitmire7, Abigail Powell8, Mary M. Yoklavich4, Laurie Bauer1,2, Arliss J. Winship1,2, Michael Coyne1,2, David J. Gillett9, Lisa Gilbane10, John Christensen2, and Christopher F.G. Jeffrey1,2 1. CSS, Inc., 10301 Democracy Ln, Suite 300, Fairfax, VA 22030 2. National Centers for Coastal Ocean Science (NCCOS), National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, 1305 East West Hwy SSMC4, Silver Spring, MD 20910 3. Oregon State University, Hatfield Marine Science Center, 2030 Marine Science Drive, Newport, OR 97365 4. Institute of Marine Sciences, University of California, Santa Cruz & Fisheries Ecology Division, Southwest Fisheries Science Center (SWFSC), NOAA National Marine Fisheries Service (NMFS), Santa Cruz, CA 95060 5. Deep Sea Coral Research & Technology Program, NOAA NMFS, 1315 East West Hwy, Silver Spring, MD 20910 6. Northwest Fisheries Science Center (NWFSC), NOAA NMFS, 2725 Montlake Blvd East, Seattle, WA 98112 7. Fishery Resource Analysis and Monitoring Division, NWFSC, NOAA NMFS, 99 Pacific St, Bldg 255-A, Monterey, CA 93940 8. Lynker Technologies under contract to the NWFSC, NOAA NMFS, 2725 Montlake Blvd East, Seattle, WA 98112 9.
    [Show full text]
  • Documenti Del Gruppo Malacologico Livornese
    Documenti del Gruppo Malacologico Livornese A cura di C. Bogi e E. Campani La Famiglia Thyasiridae Dall, 1901 in Mediterraneo Novembre 2004 Caratteristiche morfologiche della conchiglia di una Thyasira Sistematica Abbiamo scelto le specie riportate per il Mediterraneo da Chiarelli, 1999 raggruppandole nell’unico genere Thyasira Leach, 1817 ed eventualmente attribuendo loro un sottogenere sulla base dei più recenti lavori sulla famiglia (Payne & Allen, 1991, Oliver & Killen, 2002). Per quanto riguarda Axinulus cycladius (Wood S., 1848: Kellia), in accordo con quanto indicato in CLEMaM, la specie è probabilmente stata confusa con Kelliopsis jozinae van Aartsen & Carrozza, 1997 e pertanto non sarà qui riportata. Subclassis Heterodonta Neumayr, 1884 Ordo Venerida Adams H. & A., 1857 Superfamilia Lucinoidea Fleming, 1828 Familia Thyasiridae Dall, 1901 Thyasira (Thyasira) biplicata (Philippi,1836) Thyasira (Thyasira) obsoleta (Verrill & Bush,1898) Thyasira (Thyasira) planata (Jeffreys,1882) Thyasira (Thyasira) succisa (Jeffreys,1876) Thyasira (Parathyasira) granulosa (Monterosato,1874 ex Jeffreys ms.) Thyasira (Parathyasira) subovata (Jeffreys,1881) Thyasira oblonga (Monterosato,1878) Thyasira perplicata Salas,1996 Thyasira striata (Sturany,1896) Thyasira (Leptaxinus) exintermedia Gaglini,1992 Thyasira (Leptaxinus) incrassata (Jeffreys,1876) Thyasira (Axinulus) alleni Carozza,1981 Thyasira (Axinulus) croulinenesis (Jeffreys,1847) Thyasira (Axinulus) dilatata Gaglini,1992 Thyasira (Axinulus) eumyaria (Sars M.,1870) Thyasira (Mendicula) ferruginosa
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 152, NUMBER 1 Smithsonian Publication 4695 Cdatlesi Ji. anb iHarp Vanx tlHIIalcott iElesieartt) Jf unti CRETACEOUS THYASIRA FROM THE WESTERN INTERIOR OF NORTH AMERICA (With Five Plates) By ERLE G. KAUFFMAN U. S. NATIONAL MUSEUM SMITHSONIAN INSTITUTION THE SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON JUNE 30, 1967 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 152, NUMBER 1 Smithsonian Publication 4695 Cfjarlej; M. anb ifttarp "^aux Malcott i^ejieatcl) jFunb CRETACEOUS THYASIRA FROM THE WESTERN INTERIOR OF NORTH AMERICA (With Five Plates) By ERLE G. KAUFFMAN U. S. NATIONAL MUSEUM SMITHSONIAN INSTITUTION THE SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON JUNE 30, 1967 Library of Congress Catalog Card Number 67-60093 PORT CITY PRESS- INC. BALTIMORE, MD., U. S. A. CijarlcsJ B. anb iWarp Uaux Malcott l^ejfearcf) jFunb CRETACEOUS THYASIRA FROM THE WESTERN INTERIOR OF NORTH AMERICA By ERLE G. KAUFFMAN U. S. National Museum Smithsonian Institu Hon (With Five Plates) ABSTRACT The unique lucinoid Thyasira is represented in the Western In- terior Cretaceous by 7 new species and 10 new subspecies distributed through 11 Campanian ammonite zones. Two species complexes are recognized, containing five evolving lineages with Atlantic Realm affinities. Early Campanian radiation of one stock occurs prior to introduction of Thyasira into the Interior with southern migration of arctic waters ; abrupt Late Campanian radiation of the second stock accompanies replacement of the initial complex. Southern migration of Thyasira proceeds through the Campanian ; it disappears from the Interior during the Late Campanian, having attained maxi- mum southern migration. The morphology, ecology, and anatomy of Thyasira are similar in Cretaceous and living species ; evolution has been conservative since the Cretaceous.
    [Show full text]
  • (Marlin) Review of Biodiversity for Marine Spatial Planning Within
    The Marine Life Information Network® for Britain and Ireland (MarLIN) Review of Biodiversity for Marine Spatial Planning within the Firth of Clyde Report to: The SSMEI Clyde Pilot from the Marine Life Information Network (MarLIN). Contract no. R70073PUR Olivia Langmead Emma Jackson Dan Lear Jayne Evans Becky Seeley Rob Ellis Nova Mieszkowska Harvey Tyler-Walters FINAL REPORT October 2008 Reference: Langmead, O., Jackson, E., Lear, D., Evans, J., Seeley, B. Ellis, R., Mieszkowska, N. and Tyler-Walters, H. (2008). The Review of Biodiversity for Marine Spatial Planning within the Firth of Clyde. Report to the SSMEI Clyde Pilot from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the United Kingdom. [Contract number R70073PUR] 1 Firth of Clyde Biodiversity Review 2 Firth of Clyde Biodiversity Review Contents Executive summary................................................................................11 1. Introduction...................................................................................15 1.1 Marine Spatial Planning................................................................15 1.1.1 Ecosystem Approach..............................................................15 1.1.2 Recording the Current Situation ................................................16 1.1.3 National and International obligations and policy drivers..................16 1.2 Scottish Sustainable Marine Environment Initiative...............................17 1.2.1 SSMEI Clyde Pilot ..................................................................17
    [Show full text]
  • Spinaxinus (Bivalvia: Thyasiroidea) from Sulfide Biogenerators in the Gulf of Mexico and Hydrothermal Vents in the Fiji Back Arc: Chemosymbiosis and Taxonomy
    SCIENTIA MARINA 77(4) December 2013, 663-676, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.03848.26B Spinaxinus (Bivalvia: Thyasiroidea) from sulfide biogenerators in the Gulf of Mexico and hydrothermal vents in the Fiji Back Arc: chemosymbiosis and taxonomy P. GRAHAM OLIVER 1, CLARA F. RODRIGUES 2, ROBERT CARNEY 3 and SEBASTIEN DUPERRON 4 1 BioSyB, National Museum of Wales, Cathays Park, Cardiff, CF10 3NP, Wales, UK. E-mail: [email protected] 2 Departamento de Biologia and CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal. 3 Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803. 4 UMR 7138 (UPMC CNRS IRD MNHN), Systématique, Adaptation, Evolution, Université Pierre et Marie Curie, 7, quai St. Bernard, bâtiment A, 75005, Paris, France. SUMMARY: Two new species of the thyasirid genus Spinaxinus (S. emicatus Oliver n. sp. and S. phrixicus Oliver n. sp.) are described from the Gulf of Mexico and the southwest Pacific, respectively. Both are compared with the type species of the genus, the eastern Atlantic S. sentosus Oliver and Holmes, 2006. Living specimens from the Gulf of Mexico were retrieved from artificial sulfide bio-generators on the upper Louisiana Slope. Gill morphology and molecular markers from the symbi- otic bacteria confirm that Spinaxinus is chemosynthetic and that the chemoautotrophic bacteria are related to sulfide oxidiz- ing Gammaproteobacteria. Living specimens from the southwest Pacific were retrieved from hydrothermal vent sites in the Fiji and Lau Back Arc Basins. In the Atlantic Spinaxinus is now recorded from two anthropogenic situations and appears to be generally absent from natural cold seep sites and not yet recorded at any hydrothermal sites.
    [Show full text]
  • Paleocene and Miocene Thyasira Sensu Stricto (Bivalvia: Thyasiridae) from Chemosynthetic Communities from Japan and New Zealand
    This is a repository copy of Paleocene and Miocene Thyasira sensu stricto (Bivalvia: Thyasiridae) from chemosynthetic communities from Japan and New Zealand. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85210/ Article: Amano, K, Little, CTS, Campbell, KA et al. (2 more authors) (2015) Paleocene and Miocene Thyasira sensu stricto (Bivalvia: Thyasiridae) from chemosynthetic communities from Japan and New Zealand. Nautilus, 129 (2). pp. 43-53. ISSN 0028-1344 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Paleocene and Miocene Thyasira (s. s.) (Bivalvia) from chemosynthetic communities from Japan and New Zealand Kazutaka Amano Department of Geoscience Joetsu University of Education Joetsu 943-8512, Japan [email protected] Crispin T.S. Little School of Earth and Environment University of Leeds Leeds LS2 9JT, United Kingdom [email protected] Kathleen A. Campbell Earth Sciences programme, School of Environment, Faculty of Science University of Auckland Private Bag 92019, Auckland Mail Centre Auckland 1142, New Zealand [email protected] Robert G.
    [Show full text]